NEW SUFFICIENT CONDITIONS FOR HAMILTONIAN AND PANCYCLIC GRAPHS*

Ingo Schiermeyer
Fakultät für Mathematik und Informatik
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany
AND
Mariusz Woźniak
Faculty of Applied Mathematics
AGH University of Science and Technology
Mickiewicza 30, 30-059 Kraków, Poland

Abstract

For a graph G of order n we consider the unique partition of its vertex set $V(G)=A \cup B$ with $A=\{v \in V(G): d(v) \geq n / 2\}$ and $B=\{v \in V(G): d(v)<n / 2\}$. Imposing conditions on the vertices of the set B we obtain new sufficient conditions for hamiltonian and pancyclic graphs.

Keywords: hamiltonian graphs, pancyclic graphs, closure.
2000 Mathematics Subject Classification: 05C38, 05C45.

1. Introduction

We use [4] for terminology and notation not defined here and consider finite and simple graphs only.

A graph of order n is called hamiltonian if it contains a cycle of length n and is called pancyclic if it contains cycles of all lengths from 3 to n.

[^0]Let $\omega(G)$ denote the number of components of a graph G. A graph G is called 1-tough if, for every nonempty proper subset S of $V(G)$, we have $\omega(G-S) \leq|S|$.
Various sufficient conditions for a graph to be hamiltonian have been given in terms of vertex degrees. Recall some of them.

Theorem 1 (Dirac [5]). Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then G is hamiltonian.

Theorem 2 (Ore [9]). Let G be a graph of order $n \geq 3$. If $d(u)+d(v) \geq n$ for every pair of nonadjacent vertices $u, v \in V(G)$, then G is hamiltonian.

In [7] Theorem 2 was extended as follows.
Theorem 3 (Flandrin, Li, Marczyk, Woźniak [7]). Let $G=(V, E)$ be a 2 -connected graph on n vertices with minimum degree δ. If $u v \in E(G)$ for every pair of vertices $u, v \in V(G)$ with $d(u)=\delta$ and $d(v)<n / 2$, then G is hamiltonian.

With respect to its vertex degrees, the vertex set of every graph G has a unique partition $V(G)=A \cup B$ with $A=\{v \in V(G): d(v) \geq n / 2\}$ and $B=\{v \in V(G): d(v)<n / 2\}$. In terms of A and B we make the following observations:

- If a graph G satisfies Dirac's condition then $B=\emptyset$.
- If a graph G satisfies Ore's condition, then $G[B]$ is complete and $|B| \leq$ $\delta+1$.
- If a graph G satisfies the condition of Theorem 3, then $G[B]$ is connected, $G[u \in B: d(u)=\delta]$ is complete and $|B| \leq \delta+1$.

2. Results

We define three classes of graphs $\mathcal{G}_{1}, \mathcal{G}_{2}$ and \mathcal{G}_{3} as follows.
Let \mathcal{G}_{1} be the class of all 2 -connected graphs G such that $u v \in E(G)$ for every pair of vertices $u, v \in B$ with $d(u)=\delta(G)$.

Let \mathcal{G}_{2} be the class of all 2 -connected graphs G such that there exists a vertex $u \in B$ with $d(u)=\delta(G)$ and $u v \in E(G)$ for all vertices $v \in B-\{u\}$.

Let \mathcal{G}_{3} be the class of all 2 -connected graphs G such that $|B| \leq \delta(G)+1$ and $\Delta(G[B]) \geq \min \{2,|B|-1\}$.

Figure 1. Graph $\mathcal{F}_{n, \delta}$
For all n, δ with $2 \leq \delta \leq \frac{n-1}{2}$ define $\mathcal{F}_{n, \delta}$ as a graph of order n, minimum degree δ and vertex set $V\left(\mathcal{F}_{n, \delta}\right)=\left\{u_{0}, u_{1}, \ldots, u_{\delta}, w_{1}, \ldots, w_{n-\delta-1}\right\}$ such that $d\left(u_{0}\right)=\delta, N\left(u_{0}\right)=\left\{u_{1}, \ldots, u_{\delta}\right\}$, vertices $u_{1}, \ldots, u_{\delta}$ are independent, vertices $w_{1}, \ldots, w_{n-\delta-1}$ induce a clique and $u_{i} w_{j} \in E(G)$ for all $1 \leq i \leq \delta$ and $1 \leq j \leq \delta-1$. Now, for $S=\left\{u_{0}, w_{1}, \ldots, w_{\delta-1}\right\}$ we have

$$
\omega\left(\mathcal{F}_{n, \delta}-S\right)=\delta+1>\delta=|S|
$$

Hence, $\mathcal{F}_{n, \delta}$ is not 1-tough and therefore not hamiltonian.
For all n, δ with $2 \leq \delta \leq \frac{n-1}{2}$ define $\mathcal{H}_{n, \delta}$ as a supergraph of $\mathcal{F}_{n, \delta}$ such that $V\left(\mathcal{H}_{n, \delta}\right)=V\left(\mathcal{F}_{n, \delta}\right)$ and $E\left(\mathcal{H}_{n, \delta}\right)=E\left(\mathcal{F}_{n, \delta}\right) \cup\left\{u_{0} w_{i}: 1 \leq i \leq n-\delta-1\right\}$.

Hence, $\mathcal{H}_{n, \delta}$ is not 1-tough and therefore not hamiltonian, too.
Theorem 3 can be now restated as follows.
Theorem 3 (restated).
If $G \in \mathcal{G}_{1}$, then G is hamiltonian.
Using closure operations we obtain the following extension of Theorem 3.

Theorem 4. If $G \in \mathcal{G}_{2}$, then G is hamiltonian or $G \subset \mathcal{F}_{n, \delta}$.
The proof of the above theorem is given in Section 3. It provides a further extension which can be formulated as follows.

Theorem 5. If $G \in \mathcal{G}_{3}$, then G is hamiltonian or $G \subset \mathcal{H}_{n, \delta}$.
Since both $\mathcal{F}_{n, \delta}$ and $\mathcal{H}_{n, \delta}$ are not 1-tough, we obtain the following corollary.

Corollary 6. If $G \in \mathcal{G}_{3}$ is 1 -tough, then G is hamiltonian.
Bondy suggested the interesting "meta-conjecture" in [2] that almost any nontrivial condition on graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of exceptional graphs). He proved the following result concerning Ore's condition.

Theorem 7 ([2]). Let G be a graph of order $n \geq 3$. If $d(u)+d(v) \geq n$ for every pair of nonadjacent vertices $u, v \in V(G)$, then G is pancyclic or isomorphic to the complete bipartite graph $K_{\frac{n}{2}, \frac{n}{2}}$.

In [7] it was shown that Theorem 7 can be extended as follows.
Theorem 8. If $G \in \mathcal{G}_{1}$, then G is pancyclic or $G \cong K_{\frac{n}{2}, \frac{n}{2}}$.
Theorem 3 extends the following result of Jin, Liu and Wang [8].
Corollary 9 ([8]). Let G be a 2 -connected graph of order $n \geq 3$. If $d(u)+$ $d(v) \geq n+\delta$ for every pair of nonadjacent vertices $u, v \in V(G)$, then G is pancyclic or $G \cong K_{\frac{n}{2}, \frac{n}{2}}$.

Concerning pancyclicity we will prove the following theorems.
Theorem 10. If $G \in \mathcal{G}_{2}$, then G is pancyclic or $G \cong K_{\frac{n}{2}, \frac{n}{2}}$ or $G \subset \mathcal{F}_{n, \delta}$.
Theorem 11. If $G \in \mathcal{G}_{3}$, then G is pancyclic or bipartite or $G \subset \mathcal{H}_{n, \delta}$.

3. Proofs

3.1. Hamiltonicity

The closure concept of Bondy and Chvátal [3] is based on the following result of Ore [9].

Theorem 12 (Ore [9]). Let G be a graph on n vertices such that the edge $e=u v$ does not belong to $E(G)$ and $d(u)+d(v) \geq n$. Then, the graph G is hamiltonian if and only if the graph $G+e$ is hamiltonian.

By successively joining pairs of nonadjacent vertices having degree sum at least n as long as this is possible (in the new graph(s)), the unique so called n-closure $\operatorname{cl}_{n}(G)$ is obtained. Using Theorem 12 it is easy to prove the following result.

Theorem 13 (Bondy and Chvátal [3]). Let G be a graph of order $n \geq 3$. Then G is hamiltonian if and only if $\operatorname{cl}_{n}(G)$ is hamiltonian.

Corollary 14 (Bondy and Chvátal [3]). Let G be a graph of order $n \geq 3$. If $c l_{n}(G)$ is complete $\left(c l_{n}(G)=K_{n}\right)$, then G is hamiltonian.

Ainouche and Christofides [1] established the following generalization of Theorem 12.

Theorem 15 (Ainouche and Christofides [1]). Let Ge a 2-connected graph on n vertices such that the edge $e=u v$ does not belong to $E(G)$. Let $T=T(u, v)=\{w \in V(G) \backslash(N[u] \cup N[v])\}$ and let $t=|T|$. Suppose that

$$
\begin{equation*}
d(w) \geq t+2 \text { for all vertices of } T \tag{*}
\end{equation*}
$$

Then, the graph G is hamiltonian if and only if the graph $G+e$ is hamiltonian.

In [1] the corresponding (unique) closure of G is called the 0-dual closure $c l^{*}(G)$. Since Theorem 15 is more general than Theorem 12 (cf. [1]), $G \subseteq$ $c l_{n}(G) \subseteq c l^{*}(G)$. The counterpart of Corollary 14 is

Corollary 16 (Ainouche and Christofides [1]). Let G be a 2-connected graph of order n. If $c l^{*}(G)$ is complete $\left(c l^{*}(G)=K_{n}\right)$, then G is hamiltonian.

Proof of Theorem 4. Observe first that if $\delta(G) \geq \frac{n}{2}$ then G is hamiltonian by Dirac's theorem. So, assume that $B \neq \emptyset$.

Step 0. Applying the Bondy-Chvátal closure to the set A we get the graph G_{0} with the set A complete.

Step 1. By using cl* we are able to add to G_{0} all edges connecting the vertex u with the set A. Indeed, it suffices to verify the hypothesis of Theorem 15. Suppose there exists a vertex $x \in A$ such that $u x \notin E$. Since u is adjacent to all vertices of B and x is adjacent (in G_{0}) to all vertices of A, we have $T_{G_{0}}(u, x)=\emptyset$. Denote the graph obtained in this step by G_{1}.

Step 2. Let $x \in B, x \neq u$. We put $a(x)=a_{G}(x)=\left|N_{G}(x) \cap A\right|$. Denote by B^{\prime} the vertices of B with $a(x)<\delta-1$. Consider now a vertex $x \in B^{\prime}$ and
a vertex $y \in A$ such that $x y \notin E$. Then x has at least one neighbour in B different from u. This implies $|T(x, y)| \leq \delta-2$. Hence, the condition $(*)$ of Theorem 15 is satisfied. This means that we can add all edges between B^{\prime} and A. We denote the graph obtained in this step by G_{2}.

Step 3. Denote by B_{1} the vertices of B different from u that are joined to all vertices of A in G_{2}. Note that $B^{\prime} \subset B_{1}$. We put $B_{2}=B-\left(B_{1} \cup\{u\}\right)$. Let $\xi=\left|B_{1}\right|$ and $\eta=\left|B_{2}\right|$. We have $1+\xi+\eta=|B| \leq \delta+1$. Consider now a vertex $x \in B_{2}$ and $y \in A$ such that $x y \notin E$. By Step $2, a_{G_{2}}(x) \geq \delta-1$. Since the vertices of A as well as the vertices of B_{1} and the vertex u are the neighbours of y we get $|T(x, y)| \leq \eta-1$. So, $t+2 \leq \eta+1$. If the condition $(*)$ of Theorem 15 is not fulfilled then $\delta \leq \eta$. This implies in particular that $\xi=0$ and $\delta=\eta$. Moreover, x has no neighbour in B other than u, for otherwise $|T(x, y)| \leq \eta-2$ and $(*)$ would be satisfied. Observe that either
(a) the above statements concern all vertices of B_{2} (see Step 5), or
(b) we can add all edges between B_{2} and A.

In the later case we can continue the closure operation (see Step 4 below).
Step 4. Denote by G_{3} the graph obtained in Step 3b. Let x, y be two vertices of B such that $x y \notin E$. Then at most $\delta-2$ vertices of B belong to $T(x, y)$ and we can finish the closure operation with the conclusion that $\mathrm{cl}^{*}(G)=K_{n}$.

Step 5. Suppose now that no edge can be added in Step 3. Then B consists of the vertex u and its δ neighbours, say $u_{1}, u_{2}, \ldots, u_{\delta}$, forming an independent set. This implies that each of the vertices $u_{1}, u_{2}, \ldots, u_{\delta}$ sends at least $\delta-1$ edges to A. Suppose, that there exists a vertex $x \in A$ such that $u_{i} x \notin E$ and $u_{j} x \in E$ for some $j \neq i$.. Then $\left|T\left(u_{i}, x\right)\right| \leq \delta-2$ and the edge $u_{i} x$ can be added to G_{2}. Denote by G_{5} the graph obtained from G_{2} by adding all edges as above. We may conclude that in G_{5} all vertices $u_{1}, u_{2}, \ldots, u_{\delta}$ have the same neighbourhood. It is now easy to see that only in the case where this neighbourhood contains exactly $\delta-1$ vertices of A the graph G_{5} is not hamiltonian. Observe that in this case $G_{5} \subset \mathcal{F}_{n, \delta}$.

Proof of Theorem 5. As in the previous proof observe first that if $\delta(G) \geq \frac{n}{2}$ then G is hamiltonian by Dirac's theorem. So, assume that $B \neq \emptyset$. Applying the Bondy-Chvátal closure to the set A we get the graph G_{0} with the set A complete. It is easy to verify the hamiltonicity of the
graph G_{0} if $|B| \leq 2$. So, suppose $|B| \geq 3$. Then $\Delta(G[B]) \geq 2$. Let u be a vertex of B having the maximum number of neighbours in B. Consider a vertex $x \in A$ with $u x \notin E\left(G_{0}\right)$. Then $|T(u, x)| \leq \delta-2$. This implies that the operation cl^{*} can be applied. That means we can add all edges between u and A. Denote the graph obtained in this way by G_{1}.

Suppose now that there exists a vertex $x \in B$ such that $u x \notin E\left(G_{0}\right)$. It is easy to see that $|T(u, x)| \leq \delta-3$. Therefore, we can add all edges between u and other vertices of B. It suffices now to observe that the graph obtained in this way has the same properties as the graph G_{1} in the proof of the previous theorem. Now we can follow that proof.
In terms of the 0-dual closure Theorem 5 can be restated as follows.
Theorem 5 (restated).
If $G \in \mathcal{G}_{3}$, then G is hamiltonian or $c l^{*}(G)=\left(\bar{K}_{\delta} \cup K_{n-2 \delta}\right)+K_{\delta}$.

3.2. Pancyclicity

For the proof of Theorem 11 we will apply the following three theorems.

Theorem 17 (Faudree, Häggkvist, Schelp [6]). Every hamiltonian graph of order n and size $e(G)>\frac{(n-1)^{2}}{4}+1$ is pancyclic or bipartite.

Lemma 18 (Bondy [2]). Let G be a hamiltonian graph of order n with a Hamilton cycle $v_{1} v_{2} \ldots v_{n} v_{1}$ such that $d\left(v_{1}\right)+d\left(v_{n}\right) \geq n+1$. Then G is pancyclic.

Theorem 19 (Schmeichel-Hakimi [10]). If G is a hamiltonian graph of order $n \geq 3$ with a Hamilton cycle $v_{1} v_{2} \ldots v_{n} v_{1}$ such that $d\left(v_{1}\right)+d\left(v_{n}\right) \geq n$, then G is either

- pancyclic,
- bipartite, or
- missing only an ($n-1$)-cycle.

Moreover, in the last case we have $d\left(v_{n-2}\right), d\left(v_{n-1}\right), d\left(v_{2}\right), d\left(v_{3}\right)<n / 2$.
Remark. Actually, the Schmeichel-Hakimi result gives some more information about the possible adjacency structure near the vertices v_{1} and v_{n}, but the above version is sufficient for our proof.

Proof of Theorem 11. If $\delta \geq n / 2$, then G is pancyclic or $G \cong K_{\frac{n}{2}, \frac{n}{2}}$ by Theorem 7. Hence we may assume that $2 \leq \delta \leq \frac{n-1}{2}$. If $G \in \mathcal{H}_{n, \delta}$, then G is not hamiltonian and thus not pancyclic. Hence we may further assume that G is hamiltonian.

If $\delta=\frac{n-1}{2}$, then

$$
e(G) \geq \frac{1}{2}\left(\frac{n+1}{2} \cdot \frac{n-1}{2}+\frac{n-1}{2} \cdot \frac{n+1}{2}\right)=\frac{n^{2}-1}{4}>\frac{(n-1)^{2}}{4}+1
$$

for all $n \geq 5$. Thus G is pancyclic or bipartite by Theorem 17 (since n is odd, G cannot be bipartite).

If $\delta=\frac{n-2}{2}$, then

$$
e(G) \geq \frac{1}{2}\left(\frac{n}{2} \cdot \frac{n-2}{2}+\frac{n}{2} \cdot \frac{n}{2}\right)=\frac{n^{2}-n}{4}>\frac{(n-1)^{2}}{4}+1
$$

for all $n \geq 6$. Thus G is pancyclic or bipartite by Theorem 17. In the later case we conclude that $G \cong K_{\frac{n}{2}, \frac{n}{2}}-\frac{n}{4} K_{2}$.
If $2 \leq \delta \leq \frac{n-3}{2}$, then $|A| \geq \frac{n+1}{2}>|B|$, since $|B| \leq \delta+1 \leq \frac{n-1}{2}$. In this case the third alternative of Theorem 19 cannot occur since a simple counting argument gives $|A| \leq|B|$, a contradiction. Hence G is pancyclic or bipartite by Theorem 19 .

Proof of Theorem 10. Since $\mathcal{G}_{2} \subset \mathcal{G}_{3}$ we can apply Theorem 11. If $G \subset \mathcal{H}_{n, \delta}$ then we conclude that $G \subset \mathcal{F}_{n, \delta}$, since there is a vertex $u \in B$ with $d(u)=\delta$. Suppose $G \not \subset \mathcal{F}_{n, \delta}$. Then G is hamiltonian by Theorem 4 . Thus, if G is bipartite, then G is balanced bipartite with partite sets V_{1} and V_{2}. Suppose $u \in V_{1}$ for a vertex u with $d(u)=\delta$ and $u v \in E(G)$ for all vertices $v \in B-\{u\}$. Since $\delta<n / 2$, there exists a vertex $w \in V_{2}$ with $w \notin N(u)$. But then $d(w) \leq \frac{n}{2}-1<\frac{n}{2}$, a contradiction. Thus G cannot be bipartite. Therefore, by Theorem 11, G is pancyclic.

4. Concluding Remarks

Our results presented in Section 2 all imply that $|B| \leq \delta+1$ for the considered graphs. Thus it is a natural question to study hamiltonicity (and pancyclicity) of graphs with $|B| \leq \delta+k$ for some positive integer $k \geq 2$.

For all n, δ and k with $2 \leq \delta \leq \frac{n-1}{2}$ and $1 \leq k \leq \delta-1$ define $\mathcal{I}_{n, \delta, k}$ as a graph of order n, minimum degree δ and vertex set

$$
V\left(\mathcal{I}_{n, \delta, k}\right)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{\delta}, w_{1}, \ldots, w_{n-\delta-k}\right\}
$$

such that $d\left(u_{i}\right)=n-1$ for $1 \leq i \leq k$, the vertices $\left\{v_{1}, \ldots, v_{\delta}\right\}$ are independent, $G\left[\left\{w_{1}, \ldots, w_{n-\delta-k}\right\}\right]$ is complete and $v_{i} w_{j} \in E(G)$ for all $1 \leq i \leq \delta$ and $1 \leq j \leq \delta-k$.

Now, for $S=\left\{u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{\delta-k}\right\}$ we have

$$
\omega\left(\mathcal{I}_{n, \delta, k}-S\right)=\delta+1>\delta=|S|
$$

Hence, $\mathcal{I}_{n, \delta, k}$ is not 1-tough and thus not hamiltonian. Note that $\mathcal{I}_{n, \delta, 1}=$ $\mathcal{H}_{n, \delta}$.

Following the proof of Theorem 5 we have obtained the following theorem.

Theorem 20. Let G be a 2 -connected graph of order n. If for some k with $1 \leq k \leq \delta-1$
(i) $G[B]$ is complete for $|B| \leq k+1$ or
(ii) there are at least k vertices of degree at least $k+1$ in B for $k+2 \leq$ $|B| \leq \delta+k$,
then G is hamiltonian or $\subset \mathcal{I}_{n, \delta, k}$.

References

[1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Appl. Math. 17 (1987) 213-221.
[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84.
[3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier North Holland, New York, 1976).
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[6] R.J. Faudree, R.Häggkvist and R.H. Schelp, Pancyclic graphs - connected Ramsey number, Ars Combin. 11 (1981) 37-49.
[7] E. Flandrin, H. Li, A. Marczyk and M. Woźniak, A note on a new condition implying pancyclism, Discuss. Math. Graph Theory 21 (2001) 137-143.
[8] G. Jin, Z. Liu and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290.
[9] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107.

Received 1 June 2005
Revised 28 April 2006

[^0]: *The work was partially done while the last author was visiting TU Bergakademie in Freiberg. This stay was partially supported by Deutscher Akademischer Austauschdienst (DAAD).

