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Abstract

For a graph G of order n we consider the unique partition of its
vertex set V (G) = A ∪ B with A = {v ∈ V (G) : d(v) ≥ n/2} and
B = {v ∈ V (G) : d(v) < n/2}. Imposing conditions on the vertices
of the set B we obtain new sufficient conditions for hamiltonian and
pancyclic graphs.
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1. Introduction

We use [4] for terminology and notation not defined here and consider finite
and simple graphs only.

A graph of order n is called hamiltonian if it contains a cycle of length
n and is called pancyclic if it contains cycles of all lengths from 3 to n.

∗The work was partially done while the last author was visiting TU Bergakademie in
Freiberg. This stay was partially supported by Deutscher Akademischer Austauschdienst
(DAAD).
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Let ω(G) denote the number of components of a graph G. A graph G is
called 1-tough if, for every nonempty proper subset S of V (G), we have
ω(G − S) ≤ |S|.

Various sufficient conditions for a graph to be hamiltonian have been given
in terms of vertex degrees. Recall some of them.

Theorem 1 (Dirac [5]). Let G be a graph of order n ≥ 3. If δ(G) ≥ n/2,
then G is hamiltonian.

Theorem 2 (Ore [9]). Let G be a graph of order n ≥ 3. If d(u)+d(v) ≥ n
for every pair of nonadjacent vertices u, v ∈ V (G), then G is hamiltonian.

In [7] Theorem 2 was extended as follows.

Theorem 3 (Flandrin, Li, Marczyk, Woźniak [7]). Let G = (V,E) be a

2-connected graph on n vertices with minimum degree δ. If uv ∈ E(G) for

every pair of vertices u, v ∈ V (G) with d(u) = δ and d(v) < n/2, then G is

hamiltonian.

With respect to its vertex degrees, the vertex set of every graph G has a
unique partition V (G) = A ∪ B with A = {v ∈ V (G) : d(v) ≥ n/2} and
B = {v ∈ V (G) : d(v) < n/2}. In terms of A and B we make the following
observations:

• If a graph G satisfies Dirac’s condition then B = ∅.

• If a graph G satisfies Ore’s condition, then G[B] is complete and |B| ≤
δ + 1.

• If a graph G satisfies the condition of Theorem 3, then G[B] is connected,
G[u ∈ B : d(u) = δ] is complete and |B| ≤ δ + 1.

2. Results

We define three classes of graphs G1, G2 and G3 as follows.
Let G1 be the class of all 2-connected graphs G such that uv ∈ E(G) for

every pair of vertices u, v ∈ B with d(u) = δ(G).
Let G2 be the class of all 2-connected graphs G such that there exists a

vertex u ∈ B with d(u) = δ(G) and uv ∈ E(G) for all vertices v ∈ B − {u}.
Let G3 be the class of all 2-connected graphs G such that |B| ≤ δ(G)+1

and ∆(G[B]) ≥ min{2, |B| − 1}.
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Figure 1. Graph Fn,δ

For all n, δ with 2 ≤ δ ≤ n−1
2 define Fn,δ as a graph of order n, minimum

degree δ and vertex set V (Fn,δ) = {u0, u1, . . . , uδ, w1, . . . , wn−δ−1} such that
d(u0) = δ, N(u0) = {u1, . . . , uδ}, vertices u1, . . . , uδ are independent, ver-
tices w1, . . . , wn−δ−1 induce a clique and uiwj ∈ E(G) for all 1 ≤ i ≤ δ and
1 ≤ j ≤ δ − 1. Now, for S = {u0, w1, . . . , wδ−1} we have

ω(Fn,δ − S) = δ + 1 > δ = |S|.

Hence, Fn,δ is not 1-tough and therefore not hamiltonian.

For all n, δ with 2 ≤ δ ≤ n−1
2 define Hn,δ as a supergraph of Fn,δ such

that V (Hn,δ) = V (Fn,δ) and E(Hn,δ) = E(Fn,δ)∪{u0wi : 1 ≤ i ≤ n−δ−1}.
Hence, Hn,δ is not 1-tough and therefore not hamiltonian, too.

Theorem 3 can be now restated as follows.

Theorem 3 (restated).

If G ∈ G1, then G is hamiltonian.

Using closure operations we obtain the following extension of Theorem 3.

Theorem 4. If G ∈ G2, then G is hamiltonian or G ⊂ Fn,δ.

The proof of the above theorem is given in Section 3. It provides a further
extension which can be formulated as follows.

Theorem 5. If G ∈ G3, then G is hamiltonian or G ⊂ Hn,δ.

Since both Fn,δ and Hn,δ are not 1-tough, we obtain the following corollary.
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Corollary 6. If G ∈ G3 is 1-tough, then G is hamiltonian.

Bondy suggested the interesting ”meta-conjecture” in [2] that almost any
nontrivial condition on graphs which implies that the graph is hamiltonian
also implies that the graph is pancyclic (there may be a family of exceptional
graphs). He proved the following result concerning Ore’s condition.

Theorem 7 ([2]). Let G be a graph of order n ≥ 3. If d(u) + d(v) ≥ n
for every pair of nonadjacent vertices u, v ∈ V (G), then G is pancyclic or

isomorphic to the complete bipartite graph Kn

2
, n

2

.

In [7] it was shown that Theorem 7 can be extended as follows.

Theorem 8. If G ∈ G1, then G is pancyclic or G ∼= Kn

2
, n

2

.

Theorem 3 extends the following result of Jin, Liu and Wang [8].

Corollary 9 ([8]). Let G be a 2-connected graph of order n ≥ 3. If d(u) +
d(v) ≥ n + δ for every pair of nonadjacent vertices u, v ∈ V (G), then G is

pancyclic or G ∼= Kn

2
, n

2

.

Concerning pancyclicity we will prove the following theorems.

Theorem 10. If G ∈ G2, then G is pancyclic or G ∼= Kn

2
, n

2

or G ⊂ Fn,δ.

Theorem 11. If G ∈ G3, then G is pancyclic or bipartite or G ⊂ Hn,δ.

3. Proofs

3.1. Hamiltonicity

The closure concept of Bondy and Chvátal [3] is based on the following
result of Ore [9].

Theorem 12 (Ore [9]). Let G be a graph on n vertices such that the edge

e = uv does not belong to E(G) and d(u) + d(v) ≥ n. Then, the graph G is

hamiltonian if and only if the graph G + e is hamiltonian.

By successively joining pairs of nonadjacent vertices having degree sum at
least n as long as this is possible (in the new graph(s)), the unique so called
n-closure cln(G) is obtained. Using Theorem 12 it is easy to prove the
following result.
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Theorem 13 (Bondy and Chvátal [3]). Let G be a graph of order n ≥ 3.
Then G is hamiltonian if and only if cln(G) is hamiltonian.

Corollary 14 (Bondy and Chvátal [3]). Let G be a graph of order n ≥ 3.
If cln(G) is complete (cln(G) = Kn), then G is hamiltonian.

Ainouche and Christofides [1] established the following generalization of
Theorem 12.

Theorem 15 (Ainouche and Christofides [1]). Let G be a 2-connected graph

on n vertices such that the edge e = uv does not belong to E(G). Let

T = T (u, v) = {w ∈ V (G) \ (N [u] ∪ N [v])} and let t = |T |. Suppose that

(∗) d(w) ≥ t + 2 for all vertices of T.

Then, the graph G is hamiltonian if and only if the graph G + e is hamilto-

nian.

In [1] the corresponding (unique) closure of G is called the 0-dual closure
cl∗(G). Since Theorem 15 is more general than Theorem 12 (cf. [1]), G ⊆
cln(G) ⊆ cl∗(G). The counterpart of Corollary 14 is

Corollary 16 (Ainouche and Christofides [1]). Let G be a 2-connected

graph of order n. If cl∗(G) is complete (cl∗(G) = Kn), then G is hamil-

tonian.

P roof of Theorem 4. Observe first that if δ(G) ≥ n
2 then G is hamilto-

nian by Dirac’s theorem. So, assume that B 6= ∅.

Step 0. Applying the Bondy-Chvátal closure to the set A we get the graph
G0 with the set A complete.

Step 1. By using cl∗ we are able to add to G0 all edges connecting the vertex
u with the set A. Indeed, it suffices to verify the hypothesis of Theorem 15.
Suppose there exists a vertex x ∈ A such that ux /∈ E. Since u is adjacent
to all vertices of B and x is adjacent (in G0) to all vertices of A, we have
TG0

(u, x) = ∅. Denote the graph obtained in this step by G1.

Step 2. Let x ∈ B,x 6= u. We put a(x) = aG(x) = |NG(x)∩A|. Denote by
B′ the vertices of B with a(x) < δ − 1. Consider now a vertex x ∈ B′ and
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a vertex y ∈ A such that xy /∈ E. Then x has at least one neighbour in B
different from u. This implies |T (x, y)| ≤ δ − 2. Hence, the condition (∗) of
Theorem 15 is satisfied. This means that we can add all edges between B′

and A. We denote the graph obtained in this step by G2.

Step 3. Denote by B1 the vertices of B different from u that are joined to
all vertices of A in G2. Note that B′ ⊂ B1. We put B2 = B − (B1 ∪ {u}).
Let ξ = |B1| and η = |B2|. We have 1 + ξ + η = |B| ≤ δ + 1. Consider now
a vertex x ∈ B2 and y ∈ A such that xy /∈ E. By Step 2, aG2

(x) ≥ δ − 1.
Since the vertices of A as well as the vertices of B1 and the vertex u are the
neighbours of y we get |T (x, y)| ≤ η − 1. So, t + 2 ≤ η + 1. If the condition
(∗) of Theorem 15 is not fulfilled then δ ≤ η. This implies in particular
that ξ = 0 and δ = η. Moreover, x has no neighbour in B other than u, for
otherwise |T (x, y)| ≤ η − 2 and (∗) would be satisfied. Observe that either

(a) the above statements concern all vertices of B2 (see Step 5), or

(b) we can add all edges between B2 and A.

In the later case we can continue the closure operation (see Step 4 below).

Step 4. Denote by G3 the graph obtained in Step 3b. Let x, y be two
vertices of B such that xy /∈ E. Then at most δ − 2 vertices of B belong
to T (x, y) and we can finish the closure operation with the conclusion that
cl∗(G) = Kn.

Step 5. Suppose now that no edge can be added in Step 3. Then B
consists of the vertex u and its δ neighbours, say u1, u2, . . . , uδ , forming an
independent set. This implies that each of the vertices u1, u2, . . . , uδ sends
at least δ − 1 edges to A. Suppose, that there exists a vertex x ∈ A such
that uix /∈ E and ujx ∈ E for some j 6= i.. Then |T (ui, x)| ≤ δ − 2 and
the edge uix can be added to G2. Denote by G5 the graph obtained from
G2 by adding all edges as above. We may conclude that in G5 all vertices
u1, u2, . . . , uδ have the same neighbourhood. It is now easy to see that only
in the case where this neighbourhood contains exactly δ − 1 vertices of A
the graph G5 is not hamiltonian. Observe that in this case G5 ⊂ Fn,δ.

P roof of Theorem 5. As in the previous proof observe first that if
δ(G) ≥ n

2 then G is hamiltonian by Dirac’s theorem. So, assume that
B 6= ∅. Applying the Bondy-Chvátal closure to the set A we get the graph
G0 with the set A complete. It is easy to verify the hamiltonicity of the
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graph G0 if |B| ≤ 2. So, suppose |B| ≥ 3. Then ∆(G[B]) ≥ 2. Let u be a
vertex of B having the maximum number of neighbours in B. Consider a
vertex x ∈ A with ux /∈ E(G0). Then |T (u, x)| ≤ δ − 2. This implies that
the operation cl∗ can be applied. That means we can add all edges between
u and A. Denote the graph obtained in this way by G1.

Suppose now that there exists a vertex x ∈ B such that ux /∈ E(G0).
It is easy to see that |T (u, x)| ≤ δ − 3. Therefore, we can add all edges
between u and other vertices of B. It suffices now to observe that the graph
obtained in this way has the same properties as the graph G1 in the proof
of the previous theorem. Now we can follow that proof.

In terms of the 0-dual closure Theorem 5 can be restated as follows.

Theorem 5 (restated).
If G ∈ G3, then G is hamiltonian or cl∗(G) = (Kδ ∪ Kn−2δ) + Kδ.

3.2. Pancyclicity

For the proof of Theorem 11 we will apply the following three theorems.

Theorem 17 (Faudree, Häggkvist, Schelp [6]). Every hamiltonian graph

of order n and size e(G) > (n−1)2

4 + 1 is pancyclic or bipartite.

Lemma 18 (Bondy [2]). Let G be a hamiltonian graph of order n with a

Hamilton cycle v1v2 . . . vnv1 such that d(v1) + d(vn) ≥ n + 1. Then G is

pancyclic.

Theorem 19 (Schmeichel-Hakimi [10]). If G is a hamiltonian graph of

order n ≥ 3 with a Hamilton cycle v1v2...vnv1 such that d(v1) + d(vn) ≥ n,

then G is either

• pancyclic,

• bipartite, or

• missing only an (n − 1)-cycle.

Moreover, in the last case we have d(vn−2), d(vn−1), d(v2), d(v3) < n/2.

Remark. Actually, the Schmeichel-Hakimi result gives some more informa-
tion about the possible adjacency structure near the vertices v1 and vn, but
the above version is sufficient for our proof.
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P roof of Theorem 11. If δ ≥ n/2, then G is pancyclic or G ∼= Kn

2
, n

2

by Theorem 7. Hence we may assume that 2 ≤ δ ≤ n−1
2 . If G ∈ Hn,δ, then

G is not hamiltonian and thus not pancyclic. Hence we may further assume
that G is hamiltonian.

If δ = n−1
2 , then

e(G) ≥
1

2

(

n + 1

2
·
n − 1

2
+

n − 1

2
·
n + 1

2

)

=
n2 − 1

4
>

(n − 1)2

4
+ 1

for all n ≥ 5. Thus G is pancyclic or bipartite by Theorem 17 (since n is
odd, G cannot be bipartite).

If δ = n−2
2 , then

e(G) ≥
1

2

(

n

2
·
n − 2

2
+

n

2
·
n

2

)

=
n2 − n

4
>

(n − 1)2

4
+ 1

for all n ≥ 6. Thus G is pancyclic or bipartite by Theorem 17. In the later
case we conclude that G ∼= Kn

2
, n

2

− n
4K2.

If 2 ≤ δ ≤ n−3
2 , then |A| ≥ n+1

2 > |B|, since |B| ≤ δ + 1 ≤ n−1
2 . In this case

the third alternative of Theorem 19 cannot occur since a simple counting
argument gives |A| ≤ |B|, a contradiction. Hence G is pancyclic or bipartite
by Theorem 19.

P roof of Theorem 10. Since G2 ⊂ G3 we can apply Theorem 11. If
G ⊂ Hn,δ then we conclude that G ⊂ Fn,δ, since there is a vertex u ∈ B
with d(u) = δ. Suppose G 6⊂ Fn,δ. Then G is hamiltonian by Theorem 4.
Thus, if G is bipartite, then G is balanced bipartite with partite sets V1 and
V2. Suppose u ∈ V1 for a vertex u with d(u) = δ and uv ∈ E(G) for all
vertices v ∈ B − {u}. Since δ < n/2, there exists a vertex w ∈ V2 with
w /∈ N(u). But then d(w) ≤ n

2 − 1 < n
2 , a contradiction. Thus G cannot be

bipartite. Therefore, by Theorem 11, G is pancyclic.

4. Concluding Remarks

Our results presented in Section 2 all imply that |B| ≤ δ + 1 for the con-
sidered graphs. Thus it is a natural question to study hamiltonicity (and
pancyclicity) of graphs with |B| ≤ δ + k for some positive integer k ≥ 2.
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For all n, δ and k with 2 ≤ δ ≤ n−1
2 and 1 ≤ k ≤ δ − 1 define In,δ,k as a

graph of order n, minimum degree δ and vertex set

V (In,δ,k) = {u1, . . . , uk, v1, . . . , vδ, w1, . . . , wn−δ−k}

such that d(ui) = n − 1 for 1 ≤ i ≤ k, the vertices {v1, . . . , vδ} are indepen-
dent, G[{w1, . . . , wn−δ−k}] is complete and viwj ∈ E(G) for all 1 ≤ i ≤ δ
and 1 ≤ j ≤ δ − k.

Now, for S = {u1, . . . , uk, w1, . . . , wδ−k} we have

ω(In,δ,k − S) = δ + 1 > δ = |S|.

Hence, In,δ,k is not 1-tough and thus not hamiltonian. Note that In,δ,1 =
Hn,δ.

Following the proof of Theorem 5 we have obtained the following theo-
rem.

Theorem 20. Let G be a 2-connected graph of order n. If for some k with

1 ≤ k ≤ δ − 1

(i) G[B] is complete for |B| ≤ k + 1 or

(ii) there are at least k vertices of degree at least k + 1 in B for k + 2 ≤
|B| ≤ δ + k,

then G is hamiltonian or ⊂ In,δ,k.
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