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Abstract

A global defensive (respectively, offensive) alliance in a graph G =
(V,E) is a set of vertices S ⊆ V with the properties that every vertex
in V − S has at least one neighbor in S, and for each vertex v in
S (respectively, in V − S) at least half the vertices from the closed
neighborhood of v are in S. These alliances are called strong if a strict
majority of vertices from the closed neighborhood of v must be in S.
For each kind of alliance, the associated parameter is the minimum
cardinality of such an alliance. We determine relationships among
these four parameters and the vertex independence number for trees.
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1. Introduction

We begin with some terminology. For a vertex v of a graph G = (V, E),
the open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E} and
the closed neighborhood is N [v] = N(v) ∪ {v}. The degree of v, denoted by
degG(v), is |N(v)|. A vertex of degree one is called a leaf, and its neighbor
is a support vertex. The boundary of S is the set ∂S = N [S]− S. A set S is
a dominating set if S ∪ ∂S = V .

In [7] Hedetniemi, Hedetniemi, and Kristiansen introduced several types
of alliances in graphs, including defensive and offensive alliances, defined as
follows. A non-empty set of vertices S ⊆ V is called a defensive alliance
(respectively, a strong defensive alliance) if for every v ∈ S, |N [v] ∩ S| >
|N [v] − S| (respectively, |N(v) ∩ S| > |N(v) − S|). Since each vertex in a
defensive alliance S has at least as many vertices from its closed neighbor-
hood in S as it has in V − S, by strength of numbers, we say that every
vertex in S can be defended from possible attack by neighboring vertices in
V − S. A non-empty set of vertices S ⊆ V is called an offensive alliance if
for every v ∈ ∂S, |N [v] ∩ S| > |N [v] − S|. The set S is a strong offensive
alliance if the inequality is strict. An alliance S is called global [4] if it effects
every vertex in V − S, that is, every vertex in V − S is adjacent to at least
one member of the alliance S. In other words, S is both an alliance and a
dominating set. The global defensive alliance number γa(G) (respectively,
global strong defensive alliance number γâ(G)) is the minimum cardinality of
a global defensive alliance (respectively, global strong defensive alliance) of
G. The entire vertex set is a global (strong) defensive alliance for any graph
G, so every graph G has a global (strong) defensive alliance number. Simi-
larly, the global offensive alliance number γo(G) (respectively, global strong
offensive alliance number γô(G)) is the minimum cardinality of a global of-
fensive alliance (respectively, global strong offensive alliance) of G, and they
exist for every graph G. We abbreviate global defensive alliance as GDA
and global strong defensive alliance as GSDA. We will use similar notation
for offensive alliances.

Let β0(G) denote the vertex independence number, i(G) denote the
independent domination number, and γ(G) the domination number of G.
Clearly, for any graph G, γ(G) 6 γa(G) 6 γâ(G) and γ(G) 6 γo(G) 6 γô(G).
For terminology not defined here and a thorough treatment of domination
and its variations, see the books [5, 6]. For other graph theory terminology
and notation, we generally follow [2].
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The following well-known inequality chain [5] relates some basic domination
invariants:

(1) ir(G) 6 γ(G) 6 i(G) 6 β0(G) 6 Γ(G) 6 IR(G).

Much research has been focused on when equality is achieved between pairs
of parameters in the chain and also on where other parameters “fit” in
the chain. In this paper, we consider if and where the four global alliance
parameters fit in the inequality chain for trees. We note that for trees
T , the upper parameters of the chain are equal, that is, β0(T ) = Γ(T ) =
IR(T ) [3]. Hence it suffices to consider the relationships between the alliance
parameters and independence numbers. We show that both γa(T ) and γo(T )
are bounded above by β0(T ). However, we will see that this bound does not
hold for the strong versions of the alliance numbers. In fact, we will show in
Section 4 that γô(T ) is bounded below by β0(T ). We will show in Section 3
that although γâ(T ) and β0(T ) are incomparable, γâ(T ) 6 3/2(β0(T ) − 1)
and γâ(T ) 6 β0(T )+s−1 for every tree of order at least three with s support
vertices.

Before presenting our results, we introduce some more terminology. For
a generic parameter µ(G), we call a set satisfying the property for the pa-
rameter and having cardinality µ(G), a µ(G)-set. In particular, a GDA with
minimum cardinality γa(G) is called a γa(G)-set. For a support vertex w,
let Lw denote the set of leaves adjacent to w. A double star is a tree of order
n with exactly two support vertices and n− 2 leaves. The corona of a graph
G is the graph formed from a copy of G by attaching for each v ∈ V , a new
vertex v′ and edge vv′. In general, the k-corona of a graph G is the graph of
order k|V (G)| obtained from G by adding a path of length k to each vertex
of G so that the resulting paths are vertex disjoint.

We will use the following observation.

Observation 1. If T is a tree obtained from a tree T ′ by adding a star
K1,p (p > 1) of center vertex w and an edge wv for some v of T ′, then
β0(T ) = β0(T ′) + p.

2. Global Defensive Alliances

For general graphs, the global defensive alliance number can be much larger
than the independence number. For example, the complete graph Kn has
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β0(Kn) = 1 6
⌊

n+1
2

⌋
= γa(Kn). However, our first theorem shows that for

trees T , γa(T ) is bounded above by the independence number.

Theorem 2. For any tree T , γa(T ) 6 β0(T ), and this bound is sharp.

Proof. We proceed by induction on the order of T . Clearly the result
holds for n = 1, 2. Let T be a tree of order n > 3, and assume that for
every tree T ′ of order n′ < n, we have γa(T ′) 6 β0(T ′). If T is a star, then
γa(T ) = dn/2e 6 β0(T ) = n − 1, and hence the result is valid. So assume
that T is not a star, and let v be a support vertex of T with exactly one
nonleaf neighbor, say w. Let T ′ = T − (Lv ∪ {v}). Since T is not a star, T ′

has order at least two. We consider two cases.

Case 1. degT (v) > 3, that is, v is adjacent to at least two leaves.
Then every γa(T ′)-set S′ can be extended to a GDA of T by adding v
and either b(|Lv| − 1) /2c or d|Lv| /2e leaves depending on whether w is
contained in S′ or not, respectively. Thus, γa(T ) 6 γa(T ′) + d|Lv| /2e + 1.
Also by Observation 1, β0(T ) = β0(T ′) + |Lv|. Now, applying the inductive
hypothesis to T ′, we obtain γa(T ) 6 γa(T ′) + d|Lv| /2e + 1 6 β0(T ′) +
d|Lv| /2e+ 1 6 β0(T )− |Lv|+ d|Lv| /2e+ 1, and therefore γa(T ) 6 β0(T ).

Case 2. degT (v) = 2, that is, v is adjacent to exactly one leaf, say v′.
Then every γa(T ′)-set S′ can be extended to a GDA of T by adding v or v′

depending on whether w ∈ S′. Thus, γa(T ) 6 γa(T ′) + 1. By applying the
inductive hypothesis to T ′ and using Observation 1, we obtain the inequality.

That this bound is sharp may be seen by considering the tree Hk, formed
from a path P2k+1(k > 0) labelled 1, 2, . . . , 2k+1, where for each odd labelled
vertex v of the path, a new P5 is added by identifying its center vertex with
v. Then γa(Hk) = β0(Hk) = 3(k + 1). For example, see H3 in Figure 1.
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Figure 1. The tree H3.

The following upper bound on the global alliance number of a tree is given
in [4].
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Theorem 3 [4]. If T is a tree of order n > 4, then γa(T ) 6 3n
5 .

Since β0(T ) 6 (n + `− 1)/2 for every nontrivial tree T with ` leaves [1], our
next corollary is an improvement on the bound of Theorem 3 for ` 6 n/5.

Corollary 4. For every nontrivial tree T with ` leaves, γa(T ) 6 (n+`−1)/2.

Before concluding this section, we note that γa(T ) and i(T ) are incompa-
rable. For a star T of order n ≥ 3, 1 = i(T ) < dn/2e = γa(T ). On the
other hand, for the caterpillar T6k with 6k support vertices each adjacent to
exactly two leaves has γa(Tk) = 6k, while i(Tk) = 9k.

3. Global Strong Defensive Alliances

The examples in the previous section also show that γâ(T ) is incomparable
to i(T ). Next we show that the global strong defensive alliance number and
the vertex independence number are also incomparable in trees. In fact, the
differences can be arbitrarily large. For example, β0(T ) = p > dp/2e + 1 =
γâ(T ) if T is a star K1,p (p > 4) and γâ(T ) = 4k > 3k = β0(T ) if T is the
2-corona of a path P2k. However, we establish the following upper bounds
on γâ(T ) in terms of β0(T ). We will use rooted trees, and let Tv denote the
subtree of the rooted tree T induced by v and its descendants.

Theorem 5. If T is a tree of order n > 3 with s support vertices, then

(a) γâ(T ) 6 3β0(T )−1
2 ,

(b) γâ(T ) 6 β0(T ) + s− 1,

and these bounds are sharp.

Proof. First note that any GSDA of a graph G contains the support vertices
of G. We proceed by induction on the order n of T . If diam(T ) = 2, then
T is a star K1,p (p > 2) where γâ(K1,p) = dp/2e+ 1, β0(T ) = p, and s = 1,
so the result is valid. If diam(T ) = 3, then T is a double star Sp,q where
γâ(Sp,q) = bp/2c+ bq/2c+ 2, β0(T ) = p + q, and s = 2.

Assume that for every tree T ′ of order n′ with n > n′ > 3 and s′ support
vertices, we have 2γâ(T ′) 6 3β0(T ′) − 1 and γâ(T ′) 6 β0(T ′) + s′ − 1. Let
T be a tree of order n. If any support vertex, say x, of T is adjacent to two
or more leaves, then let T ′ be the tree obtained from T by removing a leaf
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say x′ adjacent to x. Then every γâ(T ′)-set can be extended to a GSDA
of T by adding the vertex x′ and so γâ(T ) 6 γâ(T ′) + 1. Also it can be
seen that β0(T ) = β0(T ′) + 1 and s′ = s. Applying the inductive hypothesis
to T ′, we obtain 2γâ(T ) 6 2 (γâ(T ′) + 1) 6 3β0(T ′) + 1 < 3β0(T ) − 1, and
γâ(T ) 6 γâ(T ′)+ 1 6 (β0(T ′)+ s′− 1)+1 = β0(T )+ s− 1. Thus we assume
that every support vertex is adjacent to exactly one leaf.

Recall that diam(T ) > 4, and root T at a vertex r of maximum eccen-
tricity. Let v be a support vertex of maximum distance from r and u the
parent of v in the rooted tree. Then v has degree two. Let y be the child of
v and consider the following two cases.

Case 1. degT (u) > 3. Then every child of u is either a leaf or a support
vertex of degree two. Let T ′ = T − Tv. Since diam(T ) > 4, T ′ has order at
least three. Let S′ be a γâ(T ′)-set. If u is a support vertex, then u ∈ S′.
If u is not a support vertex, then either S′ contains u and all its children,
or S′ contains all the descendants of u and not u. The minimality of S′

implies that the second case occurs if and only if u has degree two in T ′.
Then removing the leaf descendant of u from S′ and adding u yields a
γâ(T ′)-set containing u. Thus we can assume there is a γâ(T ′)-set that
contains u. Such a set can be extended to a GSDA of T by adding the
vertex v, and hence, γâ(T ) 6 γâ(T ′) + 1. Clearly we also have s′ = s − 1.
Applying the inductive hypothesis to T ′ and using Observation 1, we obtain
2γâ(T ) 6 2 (γâ(T ′) + 1) 6 3β0(T ′) + 1 = 3β0(T )− 3 + 1 < 3β0(T )− 1, and
γâ(T ) 6 γâ(T ′) + 1 6 (β0(T ′) + s′ − 1) + 1 < β0(T ) + s− 1.

Case 2. degT (u) = 2. Let w be the parent of u in the rooted tree. Based
on the previous case, we may assume that every descendent of w has degree
at most two.

Assume first that w is a support vertex or there is a path P3 = abc
besides yvu attached to w by a. Let T ′ = T − Tu. We may assume that T ′

has order at least three else the result holds. Then γâ(T ) 6 γâ(T ′) + 2 since
every γâ(T ′)-set can be extended to a GSDA of T by adding to it v and u.
On the other hand, it is a routine matter to check that there is a β0(T ′)-set
S′ that does not contain w, implying that S′∪{u, y} is an independent set of
T . Thus, β0(T ) > β0(T ′)+2. Also s′ 6 s. Applying the inductive hypothesis
to T ′, we have 2γâ(T ) 6 2 (γâ(T ′) + 2) 6 3β0(T ′) + 3 < 3β0(T ) − 1, and
γâ(T ) 6 γâ(T ′) + 2 6 (β0(T ′) + s′ − 1) + 2 6 β0(T ) + s− 1.

Assume now that degT (w) > 3 and every path attached to w except
the P3 = uvy is a path P2, that is, Tw is obtained from a star K1,p with
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p > 2 where exactly one edge is subdivided twice and the remaining edges
once. Let T ′ = T − Tw. Since w is not a support vertex, T ′ has order
at least two and if T ′ has order two, then γâ(T ) = p + 3, β0(T ) = p + 2
and s = p + 1, and the result is valid. We assume that T ′ has order at
least three. Then γâ(T ) 6 γâ(T ′) + p + 2, β0(T ) > β0(T ′) + p + 1, and
s − p 6 s′ 6 s − p + 1. Applying the inductive hypothesis to T ′, we have
2(γâ(T )− p− 2) 6 2γâ(T ′) 6 3β0(T ′)− 1 6 3(β0(T )− p− 1)− 1. Therefore
2γâ(T ) < 3β0(T )− 1 since p > 2. Also, γâ(T )− p− 2 6 γâ(T ′) 6 β0(T ′) +
s′ − 1 6 (β0(T )− p− 1) + (s− p + 1)− 1, and hence γâ(T ) 6 β0(T ) + s− 1
since p > 2.

Finally assume that degT (w) = 2. Let T ′ = T − Tw. We assume that
T ′ has order at least three for otherwise T ∈ {P5, P6} and the result holds.
Then every γâ(T ′)-set can be extended to a GSDA of T by adding the
vertices v, u, w, and so γâ(T ) 6 γâ(T ′)+3. We also have β0(T ) > β0(T ′)+2
and s − 1 6 s′ 6 s. Applying the inductive hypothesis to T ′, we have
2(γâ(T ) − 3) 6 2γâ(T ′) 6 3β0(T ′) − 1 6 3(β0(T ) − 2) − 1. Therefore,
2γâ(T ) 6 3β0(T )− 1.

Moreover, if s′ = s−1, then γâ(T ) 6 γâ(T ′)+3 6 (β0(T ′) + s′ − 1)+3 6
β0(T )+ s−1. Now if s′ = s, then the parent of w, say w′, in the rooted tree
has degree two in T and is a leaf in T ′. Let S′ be any γâ(T ′)-set. If w′ 6∈ S′,
then S′ ∪ {v, u} is a GSDA of T . If w′ ∈ S′, then since S′ also contains the
support vertex adjacent to w′, S′ ∪ {v, u} is a GSDA of T . In both cases,
γâ(T ) 6 γâ(T ′) + 2. Applying the inductive hypothesis to T ′, we obtain the
desired inequality. This achieves the proof.

That both bounds are sharp may be seen by the caterpillar T , where
T has k > 2 support vertices each adjacent to exactly one leaf and the
distance between every pair of consecutive support vertices is three. Then
β0(T ) = 2k − 1, γâ(T ) = 3k − 2, and s = k.

4. Offensive Alliances

We begin with the following observations.

Observation 6. If G is a graph of order n with no isolated vertices, then
β0(G) + γo(G) 6 n.

Proof. Let S be a β0(G)-set. Then V − S is a global offensive alliance of
G and so γo(G) 6 |V − S| .
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The next corollary follows from Theorem 2 and Observation 6.

Corollary 7. If T is a nontrivial tree, then γa(T ) + γo(T ) 6 n.

We note that for any graph G, the leaves of G are contained in every γô(G)-
set.

Theorem 8. For any tree T , γo(T ) 6 β0(T ) 6 γô(T ), and these bounds are
sharp.

Proof. The first inequality follows directly from Observation 6 and the fact
that β0(T ) ≥ n/2 for trees. To prove the upper bound on β0(T ), we proceed
by induction on the order n of T . Clearly, the result holds for n = 1. For
n = 2, β0(T ) < 2 = γô(T ). Let n > 3, and assume that for every tree T ′ of
order n′ < n, we have β0(T ′) 6 γô(T ′). If T is a star of order n > 3, then
β0(T ) = n − 1 = γô(T ). Therefore assume that T is not a star, and let v
be a support vertex of T with exactly one nonleaf neighbor w. Root T at
vertex w, and let T ′ = T − Tv. Since T is not a star, T ′ has order at least
two.

From our observation, Lv is contained in every γô(T )-set. Hence, with-
out loss of generality, we can choose S to be a γô(T )-set that does not contain
v. Then if S′ is the subset of S restricted to T ′, S′ is a GSOA of T ′. Hence,
γô(T ′) 6 |S| − |Lv| = γô(T ) − |Lv|. Applying the inductive hypothesis to
T ′, we have β0(T ′) 6 γô(T ′) and so β0(T ) = β0(T ′) + |Lv| 6 γô(T ′) + |Lv| 6
γô(T ).

Stars of order n > 3 achieve the upper bound. Moreover, the trees Tp

formed from a star K1,p+1 by subdividing p of its edges exactly three times
each have γo(Tp) = 2p + 1 = β0(Tp).

Note that i(T ) and γo(T ) are incomparable, and the differences can be ar-
bitrarily large. To see this, let T be the 2-corona of a path P3k. Then
i(T ) = 3k < 4k = γo(T ). On the other hand, for the double star Sp,q,
3 6 p 6 q, γo(Sp,q) = 2 < p + 1 = i(Sp,q).
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