Discussiones Mathematicae
Graph Theory 27 (2007) 5-18

GRUNDY NUMBER OF GRAPHS

BRICE EFFANTIN
AND
HaMAMACHE KHEDDOUCI

Laboratoire PRISMa, Université Claude Bernard Lyon 1
Bat. Nautibus (ex. 710), 843, Bd. du 11 novembre 1918
69622 Villeurbanne Cedex FRANCE

e-mail: {beffanti, hkheddou}@bat710.univ-lyonl.fr

Abstract

The Grundy number of a graph G is the maximum number k of
colors used to color the vertices of G such that the coloring is proper
and every vertex x colored with color 4, 1 < i < k, is adjacent to
(i — 1) vertices colored with each color j, 1 < j < i — 1. In this paper
we give bounds for the Grundy number of some graphs and cartesian
products of graphs. In particular, we determine an exact value of this
parameter for n-dimensional meshes and some n-dimensional toroidal
meshes. Finally, we present an algorithm to generate all graphs for a
given Grundy number.
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1. Introduction

We consider graphs without loops or multiple edges. Let G be a graph on
vertices o, 21, . .., Tn,—1, With vertex set V(G) and edge set £(G). Let d(x)
be the degree of the vertex x of G and let A(G) be the maximum degree
of G.

The cartesian product of two graphs G = (V1, Ey) and H = (Va, Es),
denoted G O H, has the vertex set V; x V5, and the neighborhood of each
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vertex (z1,22) is Naomp((z1,22)) = ({z1} X Ng(z2)) U (Ng(x1) x {z2}).
Thus, in the graph GO H we find several copies of graphs G and H denoted
by G* and H’, where i represents the rows of G O H, with 0 <4 < nyg — 1,
and j represents the columns of G O H, with 0 < j < ng — 1. The set
{z},2],... ,mflc_l} denotes the vertices of the j** copy of G in GO H (i.e.,
G7), with 0 < j <ng — 1.

Next, we define a k-coloring of G as a function ¢ defined on V(G)
into a set of colors C = {1,2,...,k} such that for each vertex z;, with
0<i<ng—1,cy € C. A proper k-coloring is a k-coloring verifying the
condition ¢, # ¢, for any pair of adjacent vertices z,y € V(G). A Grundy
coloring is a proper k-coloring satisfying the following property P: every
vertex v, colored with color i (1 < i < k), is adjacent to vertices colored
by each color j such that 1 < j < i — 1. The Grundy number T'(G) of a
graph G is then defined as the maximum number of colors among all Grundy
colorings of GG. If we color only a set of vertices of a graph G, we will say
that the coloring of G is partial.

This parameter was introduced by Christen and Selkow [2] in 1979.
They proved that determining the Grundy number is NP-complete for gen-
eral graphs (also studied by McRae in 1994 [11]). In [8], Hedetniemi et al.
gave a linear algorithm for the Grundy number of a tree and established a
relation between the chromatic number, the Grundy number and the achro-
matic number: x(G) < I'(G) < ¢¥(G), where the achromatic number ¢ (QG)
is the maximum number of colors used for a proper coloring of G such that
each pair of colors appears on at least one edge of G. In 1997, Telle and
Proskurowski [14] gave an algorithm for the Grundy number of partial k-
trees in O(n?*") and bounded this parameter for these graphs by the value
1 + klogy n, where n is the graph order. In 2000, Dunbar et al. used the
Grundy number to bound new parameters that they introduced in [4], the
chromatic and the achromatic numbers of a fall coloring. Recently, Germain
and Kheddouci studied in [5, 6], the Grundy coloring of power graphs. They
gave bounds for the Grundy number of the power graphs of a path, a cycle,
a caterpillar and a complete binary tree. Such colorings are also explored
for other graphs like chessboard graphs [12].

The cartesian product of graphs is widely studied in literature since it
generates interesting classes of graphs like grids (obtained by the cartesian
product of paths and cycles) or hypercubes, which are used to model prob-
lems on interconnection networks or multiprocessor networks [1, 7, 9, 13]. In
particular, several coloring parameters were evaluated for graphs resulting
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from the cartesian product of graphs. Cizek and Klavzar [3] computed chro-
matic numbers of the cartesian sum of two odd cycles. In [10], Kouider and
Mahéo were interested in the b-chromatic number of the cartesian product
of two graphs. In [15] and [16], Zhu presented several bounds for respectively
the star and the fractional chromatic number of graph products.

In our case, we are interested in the Grundy number of the carte-
sian product of graphs. This parameter has a lot of applications in fields
like scheduling or multiprocessor architectures. For instance, suppose a
set of processes such that a process P; could be computed if processes
P, P, ..., P,y are already computed. Such a law on the processes can
be modeled by a Grundy coloring. Thus, if we consider a given architecture
G, the study of the Grundy number brings a solution for two questions.
First, how many processes can we put into this architecture ? This is di-
rectly given by the Grundy number I'(G) of the architecture G. Second,
how many times must we load processes in the architecture to compute P, ?
The relation ?Zg)(fl) + 1 gives a solution to this second question.

Thus in this paper we will decompose our study in several parts. First
in Section 2, we will present some properties of the Grundy number, by
comparing it to other graph parameters. Then we will discuss in Section
3 the Grundy number of several cartesian products of two graphs (paths,
cycles, complete and bipartite graphs,...). In Section 4, this parameter
will be studied for the cartesian product of several graphs. Thus, we will
determine an exact value of the Grundy number for n-dimensional meshes
and some n-dimensional toroidal meshes. In these sections, in addition to
determining exact values and bounds for the Grundy number, we will also
propose constructions of these colorings. Finally in Section 5, we will present
an algorithm to generate graphs for a given Grundy number.

2. Grundy Number of a Graph

First, the following obvious fact enables us to find a proper coloring for a
graph G from a proper coloring of G’, where G’ is a subgraph of G.

Fact 1. Let G’ be an induced subgraph of G given by a set of vertices V' C V.
Any proper coloring of G' can be extended to a proper coloring of G.

Proof. We extend the coloring of G’ to G as follows. Let z be a vertex
of G such that x ¢ V'. Let C be the set of colors of Ng/(z). Let ¢ be the
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smallest color such that ¢ ¢ C. We put ¢, := ¢ and V' := V' U {z}. Then,
we repeat this process until V' = V. |

Then, we present some results for the Grundy number of simple graphs.

Proposition 2. Let S,, K,, P,, C, and K, , be respectively the stable
graph, the complete graph, the path, the cycle on order n and the complete
bipartite graph on n + p vertices. Let G be a non connected graph with
connected components G1,Ga,...,G,. Then, we have:

1. I'(S,) =1 and I'(K,,) = n,

2if2<n<3,
2'HBJ_{3ﬁnz¢

2ifn — 4,
2 F(O")_{ 3if n #4,

4. T(G) > max{D(Gy) : 1 <i < p},
5 T(Knp) =2

Proof. For cases 1 to 4, the proofs are obvious.

For the complete bipartite graph, we prove the result by contradiction.
Let V(Kyp) = AU B, with A = {a1,a2,...,a,} and B = {by,b2,...,b,}.
Let a; be a vertex colored by a color ¢, with 1 < 4 < n and ¢ > 3. There exists
two vertices bj, by colored respectively by colors 1 and 2, with 1 < j # k£ < p.
Observe that by must be adjacent to color 1 on a vertex a;, with 1 <4’ #
i <n. So a; and b; admit the same color 1, which is a contradiction. [

Next, we show two results where the Grundy number of a graph G is bounded
by other parameters of G. Firstly, we give a relation between the Grundy
number and the stability number of G.

Theorem 3. Let G be a connected graph on order n and stability number
a. ThenT'(G) <n+1-—a.

Proof. Let A be an independent set in G of size a. Suppose that there is
a Grundy coloring of G with kK > n — «a + 2 colors. Then at least two color
classes should be subsets of A. This contradicts the definition of a Grundy
coloring. [

Secondly, we present the inequality of " Nordhaus-Gaddum”-type for Grundy
number of some graph classes.
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Proposition 4. Let G be a graph on order n and G its complement. Let T’
and T’ be the Grundy number of G and G, respectively. Let x and y be two
vertices of G (noted T and § in G) such that ¢, =T and c; = T. Then,
I' +T < n+1 if one of these assertions is verified:

1. G is a k-regular graph, with k > 1,
2. d(z) < d(y), or
3. co =T andcz =T.

Proof. 1. The graph G is k-regular. By definition we have I'(G) <

A(G)+1and I'(G) < A(G)+1. Since the graph is k-regular, we deduce that

A(G) =k and A(G) =n—1—k. Thus, I'(G)+T'(G) < A(G)+A(G)+2 <
n+ 1.

2. By definition we have

1) dx) > T -1,
and
(2) d(F) >T -1

Then, inequality (2) implies

(3) dly) =n—-1-d(y) <n-T.
As d(x) < d(y), inequalities (1) and (3) give

[ —1<d(z)<d(y)<n-T,

F+T <n+1.

3. From inequalities (1) and (2) we can deduce

F+T<d(z)+d@)+2=d(x)+(n—dx)—1)+2=n+1. .
Remark. Observe that this inequality is not verified for any graph. Indeed,
consider a graph G on order n composed by a complete graph K3 (vertices
denoted x1,z2 and x3), where every node w; is the center of a star K ,,,
with 1 <4 < 3 and n; > 1. By coloring G such that c¢(z;) = 2, ¢(z2) = 3,
c(x3) = 4 and each endvertex of the stars is colored by 1 (see Figure 1.a),
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we find I'(G) > 4. Then in the complement graph G, the endvertices of the
stars form a clique (denoted K, yn,+ny) and vertices x, xo and x3 are the
centers of the stars respectively Ki ny4nszs K1 ny4ns and K1 p,4+n,. Therefore
by coloring c(x1) = ¢(x2) = ¢(x3) = 1 and every vertex of the clique with a
different color ¢, with 2 < ¢ < n —2 (see Figure 1.b), we have I'(G) > n — 2.
Thus, T'(G) +T'(G) > n+2. This remark presents a counterexample! to the
inequality of ”Nordhaus-Gaddum”-type for any graph.

a) b)

Figure 1. Grundy colorings of a) G and b) G where 2 < c¢; #ca # ... # cy3 <
n—2.

3. Grundy Number of the Cartesian Product of
Two Graphs

In this section, we will discuss the Grundy number of the cartesian product
of two graphs. In particular we will study the cartesian product of two
paths, two cycles, a path by a cycle, a bipartite graph by other graphs and
a complete graph by any graph G.

Proposition 5. Let G be a bipartite graph. Let P, be a path on ordern > 3
and Cp, be a cycle on order m > 4. Then,

I(GOP,) >T(G)+2,

[(GOCp) >T(G) +2.

! Authors thank referees for this counterexample.
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Proof. On the copy G, we put the coloring of G incremented by 2. Thus,
on G we find the colors 3 to I'(G)+2. Let X; and Y; be the two independent
sets of the copy G*. We put the color 1 on every vertex of Xy and Y3, and
the color 2 on every vertex of Xo and Yj. If some vertices are not colored,
Fact 1 allows us to color them with a proper coloring. Thus we can deduce
NGOP,) >T(G)+2and (GO Cy) > T(G) + 2. |

As we studied the cartesian product of G by a path or a cycle, where G is
a bipartite graph, we discuss the same products if G is not bipartite.

Proposition 6. Let G be a non bipartite graph on order ng. Let P, be a
path on order n > 4 and C,, be a cycle on order m > 4. Then,

N(GOP) >T(G) +1,
[(GOC,) >T(G)+ 1.

Proof. The proof is given by construction. We color G°, G' and G? with
the coloring of G. Let xg be a vertex of G colored by I'(G). Then we put
€y = IG)+1, Cp1 = I'(G) and Cpz = I'(G) — 1. Next we can remove the

colors of vertices le on G for which ¢,1 = 1 (with 0 < j # p < ng — 1)
J

and the colors of vertices 22 on G? for which c,2 = I'(G) — 1 (with 0 < i #

p < ng — 1). Then for every remaining colored vertex on G, we compute

¢t = ¢, — 1. Finally, by Fact 1, we color the remaining non colored
J J

vertices with a proper coloring. Thus we can deduce I'(G O P,,) > I'(G) + 1
and [(GOCp) > 0(G) + 1. n

Corollary 7. Let P, and P,, be the paths on order n and m respectively.
And let Cy,, Cy, and Cy be the cycles on respectively n, m and k vertices.
Then,

a)
()4 ifn=2orn=m=3,
I'(P,0P,) = :
5 otherwise,
4 ifn=2o0orn=%k=3,
F(Pn O Ck) = .
5 otherwise,
()4 ifn=3andm=4orn=m=3,
5

otherwise.

P(Cy0C) = {
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Proof. In each case, the maximum degree is 4. So the Grundy number is
less or equal to 5. The lower bounds are obvious, they are deduced from
constructions (see Figure 2). |

1 3 12 /3
TRERFRL A EE 2 i#l 4
2 15 11 12 314 [[5 ]3[4
ENRCERCERL AR CAREARE
7 14 12 |1 1( (1(2(1 % fF
2 13 11 12 ERCR\EA\R\E IAJ2 \[3\]4 2 \[3 AT \4
1 4 2 1 2 1 21 2 4 3 1 2 3 1 3 1
a) b) c) d)

Figure 2. Grundy colorings of a) P, O P5, b) Ps0Cy, ¢) C4,0Cy and d) C,OC5.

In the following theorems we study the Grundy number for the cartesian
product of a complete graph by another graph. Firstly, we present the
cartesian product of a bipartite graph by a complete graph.

Theorem 8. Let G be a bipartite graph on order ng. Let K, be a complete
graph on order p > 3. Then,

T(G)+p—1<T(K,0G)<p+AG).

Proof. We prove by construction that I'(K, O0G) > T'(G) +p — 1. Let X;
and Y; be the two independent sets of the copy G*. We color G° by Ciy =
cz; +p — 1 where ¢, is the color of the vertex z; of G, with 0 <1 <ng — 1.
Then, for each 1 < i < p — 1, we color each vertex of X; with the color i,
and each vertex of Y; with the color i+ 1 (mod(p—1)). For example, Figure
3.b gives a Grundy coloring of K, O0G. As A(K,0G) = A(G) +p—1, we
can deduce that I'(K, 0 G) < A(G) +p. |

Remark. For all the classes of bipartite graphs such that I'(G) = A(G) +1,
the equality I'(K, O G) =T'(G) + p — 1 holds.

Secondly we bound the Grundy number of the cartesian product of a
complete graph by any graph G.
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1 0 4 1 2 3
3 6 1 2 3
1 4) 1 2 3
2 Yo 5 \ 2 \ 3 \ 1
¢ ¢ G G’

a) b)

Figure 3. Grundy colorings of a) G and b) K, OG.

Theorem 9. Let G be a graph on order ng. Let K, be a complete graph on
order n. Then,
n+I(G)—1 if I'(G)<n-—1,
NK,O0G)>< 2n—2 if n<I(G)<2n-3,
I'G) if T'(G)>2n-—2,

T(K,DOG) <n+AG).

Proof. As A(K,,0G) = A(G)+n—1, we have I'(K,,0G) < A(K,,0G)+1 <

n 4+ A(G). The proof of the lower bound is given by construction.

o I'(G) <n-—1. Let k =n+TI(G) — 1. For each vertex z}, with 0 < i <
na — 1, we shift the color of the vertex z; on G by (n — 1) (i.e., we put
Cpi = Ca; T 10— 1). Then, for each vertex z%, with 0 < i < ng — 1, we
put c,i = Cq;- Next, for each remaining vertex, we put c o) = Gyl +1

(mod(n — 1)), with2<i<n—1and 0<j<ng-—1. Flgure 4b shows
a Grundy coloring of K5 O G.

en <TI(G) <2n—3. Let k = 2n —2. Let z;, with 0 < i < ng —1,
be a vertex of G colored by I'(G). As I'(G) > n, then z; (resp. )
has at least n — 1 neighbors in G (resp. G°). Let {v1,v2,...,v,_1} be
a set of n — 1 vertices of Ngo(z}). To color K,, O G we put the colors
(k,k —1,...,n) respectively on vertices z},zt,... ,x};_n. Then, on each
copy Kﬁl containing a vertex v,,, with 0 < j<ng—land 1 <m <n-—1,
we put the colors (m,m +1,...,m +n — 2), where each color is taken
modulo (n — 1), on vertices :U%,le, el ﬁl o respectively. Then, Fact 1

gives a proper coloring for the non colored vertices. Figure 4.c presents

a Grundy coloring of K4 O G.
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e I'(G) > 2n — 2. We put the coloring of G on G® and Fact 1 completes

the coloring of K,, O G to have a proper coloring. [
1 5 1 2 3 4 1 2 3 4
T
1 5 1 2 3 4 2 /\ 3 1 4
4 s 4 1] 2 3 6 5 4 1
3 7 M 2 7 2 3 7 Tz [+
T
2 6 2 3 4 1 1 2 3 5
1 5 1 2 3 4 2 3 1 6
a) b) e)

Figure 4. Grundy colorings of a) G, b) K5 O G and ¢) K4 OG.

4. Grundy Number of the Cartesian Product of
Several Graphs

The results presented in the previous sections enable us to deduce some

results for the cartesian product of several graphs. Firstly, we determine

exact values for the Grundy number of the cartesian product of several
paths and the cartesian product of several even cycles.

Proposition 10. Let P, , Py,,,...,P,, be the paths of sizes respectively

ni,na, ..., ng such that k > 2, n; > 3 for each 1 < i < k and max{n; :
1 <i<k} >3 Let Cpy,Cny,...,Cn, be the cycles of sizes respectively
mi,ma, ..., Mg, where k > 2, m; > 4 and m; is even, for every 1 <i < k.
Then,

P, O0P,0...0P,,)=2k+1,
['(Cpy OCm, O0...0Cy,,) =2k+1.

Proof. The proof is given by induction. Suppose k = 2. Since n; > 3 and
either ny > 3 or ng > 3, and as m; > 4, Corollary 7 shows that I'(P,,0P,,) =
['(Cpy 0Ch,) =5 = 2k+1. Suppose that I'(P,, OF,,0...0F,, ,)=2k—1
and I'(Cy,, O0Chy, O...0Chy,_,) = 2k — 1. From its structure, the graph
P, 0P, 0...0F,, ,isa bipartite graph. Moreover, as m; is even, with

1 < i <k, the graph C),, O0Cp,, O...0Cy,,_, is also a bipartite graph.
Thus, Proposition 5 gives,

e, o0P,0...0P,,)>I(P,,0P,,0...0P,,_,)+2>2k+1,
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and
[(Cp O0Cp,O0...0Cy,) >T(Cpr 0C,,0...0C,, ,)+2>2k+1.

Finally, as A(P,, OF,, 0...0PF,,) = A(C,, OCp, O...0Cy, ) = 2k, we
deduce I'(P,,0F,,0...0F,,) < 2k+1and I'(C,,, 0Cy,,0...0C,,, ) < 2k+1.
|
Remark. The graph P, OF,,0...0F,, is a ng-dimensional mesh. There-
fore, Proposition 10 gives the Grundy number of an n-dimensional mesh.
Secondly, we give a bound to the parameter for the cartesian product
of odd cycles.

Corollary 11. Let Cy,,C,,,...,Cy, be the cycles of size respectively ny,
ng,...,Nng, where k > 2, n; is odd, for each 1 < i < k, and max{n; : 1 <
i <k} >3. Then

T(Cp,0Cn,0...0Cy,) > k+3.

Proof. The proof is given by induction. For k = 2, as either n; > 3 or
ng > 3, Corollary 7 shows that I'(Cy,, O Cy,) = 5 = k + 3. Suppose that
G, 0C,,0...0C,,_,)>(k—-1)+3=Fk+2. Asn; is odd, for each
1 <4 <k, the graph C,, OCy, 0...0C,, , is not a bipartite graph. Then
Proposition 6 gives

[(Cpy 0CpyO0...0Cy,) >T(Cp, 0Cy,0...0Ch,_,)+1>k+3. 4

However, an exact value of the parameter can be determined for the cartesian
product of the k first odd cycles.

Proposition 12. Let C5,C5, ..., Coriq be the cycles of size 3,5,...,2k+1
respectively. The Grundy number of C30C50...0 Cogyq @S given by

F(C3|:|C5|:|...|:|Cgk+1):2k+l.

Proof. As A(C50C50...0C9%41) = 2k, we have I'(C30C50...0C%11) <
2k 4+ 1. Next, the lower bound is deduced by construction. We define a basic
element E = (30 C5 and we use the partial coloring of E given in Figure
S.a. Let G=C30C;0...0C%%41 and H =C30C50...0C_1. Thus
in G we find (2k + 1) copies of H, denoted by H°, H',... H?*. A partial
coloring of GG is obtained from that of H. The principle of the coloring
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of G is the following. We put a partial coloring of H on H¥2 Hk-1 HF
and H**t!. Then, to keep the coloring proper, we permute some colors in
the basic elements of these copies, and we put the colors 2k and 2k + 1
on respectively H*~! and H*, as shown in Figure 5.b (a partial coloring of
C30C5 0C%). Thus, a partial coloring of G is deduced. Finally, by Fact 1

we color the remaining vertices. [
2 3 1
1 5 2
2 4 1
1 3 2

k-2 k-1 k k+1

Figure 5. Partial colorings of a) C30C5 and b) C30C5 0 Cy.

Remark. The graph C,, O0C,, O...0C),, is a ng-dimensional toroidal
mesh. So Proposition 10 and Proposition 12 give the Grundy number of a
n-dimensional toroidal mesh in two particular cases.

5. Generating Algorithm

We present a simple recursive algorithm to generate all graphs G with the
minimum number of edges such that I'(G) = k. The main idea is the
following : we start from a tree with 2¥~1 vertices and we join together some
vertices having the same color. By computing all the possible groupings, we
find a set of graphs with a Grundy number equals to k. Recursively we



GRUNDY NUMBER OF GRAPHS 17

start again from each graph of this set while the computation can be done.
Figure 6 shows the generation of graphs for which I'(G) = 4.

4 4 4 4 A 4 7 i 4 4 7 LN 4
3 3 3 3 PR NS ) .3 3 '3 /3 .3
1 1 1 ' L : 1 1 ! v '
. 2 2 2 3 2 5 12 21 of % 2 ! f !
1 1 1 R R ] 4 SENy 2 2 AR 4
/\ o L P S
4 a2 4
3 /'3 AN 3
1) L 1
2] 2
| [Se
/’ o 1
»

1

Figure\\Gf "Generation of graphs verifying I'(G) = 4 (surrounded graphs are
duplications).

6. Conclusion

In this article, we first positioned the Grundy number of a graph G com-
pared to other graph parameters (stability number, complement graph of
G). Then we presented several bounds and values for the Grundy number
of the cartesian product of two graphs. In particular we studied the carte-
sian product of a bipartite graph by a path or a cycle, a bipartite graph by
a complete graph and a complete graph by any graph G. Then, we deduced
exact values for the Grundy number of a n-dimensional mesh and particular
cases of a n-dimensional toroidal mesh.

Thus, for every graph H containing an induced subgraph G presented
in this paper, Fact 1 shows that I'(H) > I'(G) and gives a proper coloring
to H.
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