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Abstract

A total edge-irregular k-labelling ξ : V (G) ∪ E(G) → {1, 2, . . . , k}
of a graph G is a labelling of vertices and edges of G in such a way
that for any different edges e and f their weights wt(e) and wt(f) are
distinct. The weight wt(e) of an edge e = xy is the sum of the labels of
vertices x and y and the label of the edge e. The minimum k for which
a graph G has a total edge-irregular k-labelling is called the total edge
irregularity strength of G, tes(G). In this paper we prove that for every
tree T of maximum degree ∆ on p vertices

tes(T ) = max{d(p + 1)/3e, d(∆ + 1)/2e}.
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1. Introduction

In [7], Chartrand et al. proposed the following problem:
Assign positive integer labels to the edges of a simple connected graph

of order at least 3 in such a way that the graph becomes irregular, i.e., the
weights (label sums) at each vertex are distinct. What is the minimum value
of the label over all such irregular assignments?

This parameter of a graph is well known as the irregularity strength of
the graph G, s(G). Finding the irregularity strength of a graph seems to be
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hard even for simple graphs, see e.g., [1, 2, 5, 6, 7, 8, 11] and a survey article
by Lehel [10]. For example, Amar and Togni proved the following result.

Theorem 1 [2]. Let T be a tree having t leaves and no vertex of degree 2.
Then

s(T ) = t.

Motivated by total labellings mentioned in a survey paper of Gallian [9] and
a book of Wallis [12], Bača et al. [4] started to investigate total edge-irregular
labellings of graphs.

For a simple graph G, a labelling ξ : V (G) ∪ E(G) → {1, 2, . . . , k} is
called a total k-labelling. The weight of an edge xy under a total k-labelling
ξ is defined as

wt(xy) = ξ(x) + ξ(xy) + ξ(y).

A total k-labelling is defined to be a total edge-irregular k-labelling of a graph
G if, for different edges e and f of G,

wt(e) 6= wt(f).

The minimum k for which a graph G has a total edge-irregular k-labelling
is called the total edge irregularity strength of G, tes(G).

It is not difficult to prove (see [4]) that for every graph G with q edges

⌈
1
3(q + 2)

⌉ ≤ tes(T ) ≤ q.

The authors of [4] present also a few families of graphs G for which they
found the exact value of tes(G). Among other results they proved

Theorem 2 [4]. Let Pp and Sp be a path and a star K1,p−1 on p vertices,
p ≥ 3. Then

tes(Pp) =
⌈

p + 1
3

⌉
,

tes(Sp) =
⌈p

2

⌉
.

Motivated by results on irregularity strength of trees by Aigner and Triesch
[1], Amar and Togni [2], Bohman and Kravitz [5] and Cammack et al. [6],
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Bača et al. in [4] posed the problem to determine the total edge-irregularity
strength of trees. In a recent paper [3] there is proved

Theorem 3 [3]. Let T be a tree on p vertices, p ≥ 3. Then
⌈

p + 1
3

⌉
≤ tes(T ) ≤

⌈p

2

⌉
.

Moreover, both bounds are tight.

Let us recall that, in the sequel, V (G), E(G), and ∆(G) will denote the
vertex set, the edge set, and the maximum degree of a graph G, respectively.
The main result of this paper is the following

Theorem 4. Let T be a tree. Then

tes(T ) = max
{⌈ |E(T )|+ 2

3

⌉
,

⌈
∆(T ) + 1

2

⌉}
.

2. Four Lemmas

Lemma 1. Suppose that a graph G has a total edge-irregular k-labelling.
Then

3k − 2 ≥ |E(G)| and 2k − 1 ≥ ∆(G).

Proof. Let ξ be a total edge-irregular k-labelling of G. The weight of any
edge xy ∈ E(G) satisfies: 3 ≤ wt(xy) = ξ(x)+ξ(xy)+ξ(y) ≤ 3k. As weights
of different edges are distinct, we get 3k − 2 ≥ |E(G)|.

Let u ∈ V (G) be a vertex of G with degree ∆(G). For two different
vertices x, y adjacent to u it holds: ξ(u)+ξ(ux)+ξ(x) = wt(ux) 6= wt(uy) =
ξ(u)+ξ(uy)+ξ(y). Then ξ(ux)+ξ(x) 6= ξ(uy)+ξ(y). As 2 ≤ ξ(uz)+ξ(z) ≤
2k, for every vertex z adjacent to u, we get 2k − 1 ≥ ∆(G).

Given a mapping ϕ from the vertex set of a graph G to {0, 1}. Put Ei(ϕ) :=
{xy ∈ E(G) : ϕ(x) + ϕ(y) = i}, for i ∈ {0, 1, 2}.

Lemma 2. Suppose that u is a vertex of a tree T with q edges. Then, for
every integer k, 0 ≤ k ≤ q, and i ∈ {0, 1} there is a mapping ϕ : V (T ) →
{0, 1} such that ϕ(u) = i, |E2i(ϕ)| = k and |E1(ϕ)| = q − k.
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Proof. As every non-trivial tree contains at least two leaves (i.e., the
vertices of degree 1), there is an ordering v0, v1,. . . ,vq of V (T ) such that
v0 = u and the set {v0, v1, . . . , vj} induces a subtree of T with the leaf vj ,
j = 1, . . . , q.

Let ϕ : V (T ) → {0, 1} be a mapping defined by

ϕ(vt) =

{
i for 0 ≤ t ≤ k,

1− ϕ(v∗t ) for k < t ≤ q,

where v∗t is a vertex of a subtree induced by {v0, v1, . . . , vt} which is adjacent
to vt. Evidently, ϕ is the desired mapping.

For a graph G, a mapping ϕ : V (G) → {0, 1} is called k-irregularisable if

|E(G)| ≤ 3k − 2, |E0(ϕ)| ≤ k, |E1(ϕ)| ≤ k, |E2(ϕ)| ≤ k,

|E0(ϕ)|+ |E1(ϕ)| ≤ 2k − 1 and |E1(ϕ)|+ |E2(ϕ)| ≤ 2k − 1.

Lemma 3. Suppose that a graph G admits a k-irregularisable mapping.
Then G has a total edge-irregular k-labelling.

Proof. Let ϕ : V (G) → {0, 1} be a k-irregularisable mapping. Let ei
1,

ei
2, . . . , e

i
ri

, i ∈ {0, 1, 2}, ri = |Ei(ϕ)|, be any ordering of edges belonging to
Ei(ϕ). Consider a mapping α from E(G) to positive integers defined by

α(e0
j ) = j,

α(e1
j ) =

{
1 + j if r0 = k,
j if r0 < k,

α(e2
j ) =

{
1 + j if r1 = k or r0 + r1 = 2k − 1,
j if r1 < k and r0 + r1 < 2k − 1.

Clearly, 1 ≤ α(ei
j) ≤ k.

Now define a labelling ξ from V (G) ∪ E(G) into positive integers by

ξ(x) =

{
kϕ(x) if x ∈ V (G),
α(x) if x ∈ E(G).

One can easily check that ξ is a total edge-irregular k-labelling of G.
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For a vertex u of a graph G, let N(u) denote the set of vertices adjacent to
u. The set of vertices of N(u) with degree at least 2 is denoted by N∗(u).

Lemma 4. Let u be a maximum degree vertex of a graph G. Let k be a
positive integer such that ∆ = deg(u) ∈ {2k − 2, 2k − 1}, |E(G)| ≤ 3k − 2,
|N∗(u)| ≤ k, and |E(G)| − |N(u)|+ |N∗(u)| ≤ 2k − 1. Then tes(G) = k.

Proof. Let E∗ denote the set of all edges not incident with u. Clearly, every
vertex of N∗(u) is incident with some edge of E∗ and |N(u)|+|E∗| = |E(G)|,
i.e., |E∗| ≤ k. Moreover, there is a set U , N∗(u) ⊆ U ⊆ N(u), such that
|U | = k− 1 if |E∗| = k and |U | = k if |E∗| < k. Put W := {u}∪ (N(u)−U)
and define a mapping ϕ : V (G) → {0, 1} by

ϕ(x) =

{
0 if x ∈ W ,
1 if x ∈ V (G)−W .

As E1(ϕ) = {uy : y ∈ U} and E2(ϕ) = E∗, ϕ is a k-irregularisable mapping
of G. Combining Lemma 1 and Lemma 3 we obtain the desired assertion.

3. Proof of Theorem 4

Put k = max{d1
3(|E(T )|+ 2)e, d1

2(∆(T ) + 1)e}. According to Lemma 1 and
Lemma 3 it is enough to find some k-irregularisable mapping of T . Consider
the following cases.

A. k = d1
2(∆(T ) + 1)e. Then ∆(T ) ∈ {2k − 2, 2k − 1} and |E(T )| ≤

3k − 2. Let u be a maximum degree vertex of T and let E∗ be the set
of all edges not incident with u. So, |E∗| = |E(T )| − |N(u)| ≤ k. As
T is a tree, at most one end vertex of an edge of E∗ belongs to N(u).
Thus, |N∗(u)| ≤ |E∗| ≤ k. If |N∗(u)| < k, then the assertion follows from
Lemma 4. If |N∗(u)| = k, then ∆(T ) = 2k − 2, |E(T )| = 3k − 2 and
every edge of E∗ is incident with exactly one vertex of N(u). Therefore,
we can denote vertices of T by u, v1, . . . , v2k−2, w1, . . . , wk in such a way
that E(T ) = {uv1, . . . , uv2k−2, v1w1, . . . , vkwk}. In this case, a mapping
ϕ : V (T ) → {0, 1} defined by

ϕ(x) =

{
0 for x ∈ {u, vk, . . . , v2k−2},
1 for x ∈ {v1, . . . , vk−1, w1, . . . , wk},

is k-irregularisable.
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B. k > d1
2(∆(T ) + 1)e. Then ∆(T ) < 2k − 2, |E(T )| ∈ {3k − 2, 3k −

3, 3k − 4} and so, without loss of generality |E(T )| = 3k − 2.
For an edge xy, T (xy, x) denotes the maximal subtree of T , which con-

tains x and does not contain xy. The number of edges in T (xy, x) is denoted
by t(xy, x). Let µ := min{|t(xy, x) − t(xy, y)| : xy ∈ E(T )} and let vw be
an edge of T such that t(vw, w)− t(vw, v) = µ.

B1. Suppose that µ ≤ k. Then t(vw, w) − µ = t(vw, v) ≥ k − 1.
By Lemma 2, there are mappings ϕv : V (T (vw, v)) → {0, 1} and ϕw :
V (T (vw,w)) → {0, 1} such that ϕv(v) = 0, |E0(ϕv)| = k − 1, |E1(ϕv)| =
t(vw, v)−k+1, ϕw(w) = 1, |E2(ϕw)| = k−1 and |E1(ϕw)| = t(vw,w)−k+1.
Evidently, a mapping ϕ : V (T ) → {0, 1}, given by

ϕ(x) =





ϕv(x) if x ∈ V (T (vw, v)),

ϕw(x) if x ∈ V (T (vw,w)),

is k-irregularisable.
B2. Suppose that µ > k. Then t(vw, v) ≤ k − 2. Denote vertices

of N(w) by v1, v2, . . . , vd in such a way that t(v1w, v1) ≥ t(v2w, v2) ≥
· · · ≥ t(vdw, vd). As t(v1w, v1) + t(v2w, v2) + · · · + t(vdw, vd) = |E(T )| −
deg(w) > k, there is an integer % := min{j :

∑j
i=1 t(viw, vi) ≥ k − 1}. Put

κ :=
∑%

i=1 t(viw, vi)− (k − 1). Clearly, 0 ≤ κ < t(v%w, v%).
Let T ∗ be the maximal subtree of T , which contains w and does not

contain v1, . . . , v%. Since
∑%−1

i=1 t(viw, vi) ≤ k− 2 and k− 2 ≥ t(viw, vi) ≥ 1
for every i ∈ {1, . . . , %} we have

%∑

i=1

(1 + t(viw, vi)) ≤
%−1∑

i=1

2t(viw, vi)− (t(v1w, v1)− 1) + t(v%w, v%) + 1

≤ 2(k − 2) + t(v%w, v%)− t(v1w, v1) + 2

= 2k − 2 + (t(v%w, v%)− t(v1w, v1)) ≤ 2k − 2.

Then |E(T ∗)| = |E(T )| − ∑%
i=1(1 + t(viw, vi)) ≥ k. By Lemma 2, there

are mappings ϕ∗ : V (T ∗) → {0, 1} and ϕ◦ : V (T (v%w, v%)) → {0, 1} such
that ϕ∗(w) = 0, |E0(ϕ∗)| = k − 1, |E1(ϕ∗)| = |E(T ∗)| − k + 1, ϕ◦(v%) = 1,
|E1(ϕ◦)| = κ and |E2(ϕ◦)| = t(v%w, v%) − κ. Evidently, a mapping ϕ :
V (T ) → {0, 1}, given by
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ϕ(x) =





ϕ∗(x) if x ∈ V (T ∗),

ϕ◦(x) if x ∈ V (T (v%w, v%)),

1 if x ∈ V (T (viw, vi)) for i ∈ {1, . . . , %− 1},

is k-irregularisable.

4. Appendix

Using Lemma 1 and Lemma 3 it is easy to determine the total edge irregu-
larity strength of some special graphs.

The generalized Petersen graph P (n, k) is a graph with the vertex set
V = {u1, . . . , un, v1, . . . , vn} and the edge set E = {uiui+1, vivi+k, uivi : i =
1, . . . , n} (indices are taken modulo n). The mapping ϕ : V → {0, 1} given
by

ϕ(ui) = 0, ϕ(vi) = 1 for i = 1, . . . , n

is clearly (n+1)-irregularisable. As |E| = 3n < 3(n+1)− 2, Lemmas 1 and
3 immediately imply

Theorem 5. tes(P (n, k)) = n + 1.

Using the same idea for the Cartesian product G × K2 of a graph G and
a complete graph K2 (details are left to the reader) we get

Theorem 6. Let G be a graph with p vertices and q edges. If p−1 ≤ q ≤ p,
then

tes(G×K2) = q + 1.

Similarly, for a graph 3G consisting of three disjoint copies of a bipartite
graph G we have

Theorem 7. Let G be a bipartite graph with q edges. Then

tes(3G) = q + 1.

We believe that the following conjecture is true.

Conjecture. Let G be an arbitrary graph different from K5. Then
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tes(G) = max
{⌈ |E(G)|+ 2

3

⌉
,

⌈
∆(G) + 1

2

⌉}
.
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