Discussiones Mathematicae Graph Theory 26 (2006) 439–448

COMBINATORIAL LEMMAS FOR POLYHEDRONS I

Adam Idzik

Akademia Świętokrzyska Świętokrzyska 15, 25–406 Kielce, Poland and

Institute of Computer Science, Polish Academy of Sciences Ordona 21, 01–237 Warsaw, Poland

e-mail: adidzik@ipipan.waw.pl

AND

Konstanty Junosza-Szaniawski

Warsaw University of Technology Pl. Politechniki 1, 00–661 Warsaw, Poland

e-mail: k.szaniawski@mini.pw.edu.pl

Abstract

We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.

Keywords: *b*-balanced simplex, labelling, polyhedron, simplicial complex, Sperner lemma.

2000 Mathematics Subject Classification: 05B30, 47H10, 52A20, 54H25.

1. Preliminaries

For $n \in \mathbb{N}$, let $N = \{1, \ldots, n\}$ and $N_0 = \{0, \ldots, n\}$. By a polyhedron we understand the convex hull of a finite set of \mathbb{R}^n . Let $P \subset \mathbb{R}^n$ be a polyhedron of dimension n. A face of the polyhedron P is the intersection of P with some of its supporting hyperplanes. Denote the set of all kdimensional faces of the polyhedron P by $\mathbf{F}_k(P)$ (k < n), the set of all faces of the polyhedron P by $\mathbf{F}(P)$ (hence $\mathbf{F}(P) = \bigcup_{k=0}^{n-1} \mathbf{F}_k(P)$) and the set of all vertices of the polyhedron P by V(P) $(V(P) = \mathbf{F}_0(P))$. The maximal dimension proper faces of the polyhedron P are called *facets*. For a finite set $A = \{a_0, \ldots, a_m\} \subset \mathbb{R}^n$ a set co $A = \{\alpha_0 a_0 + \cdots + \alpha_m a_m : a_i \in A\}$ A, $\sum_{i=0}^{m} \alpha_i = 1$, $\alpha_i \ge 0$ for $i \in \{0, \ldots, m\}$ is the convex hull of A, aff A = $\{\alpha_0 a_0 + \dots + \alpha_m a_m : \sum_{i=0}^m \alpha_i = 1, a_i \in A, \alpha_i \in \mathbb{R} \text{ for } i \in \{0, \dots, m\}\}$ is the *affine hull* of A. And if for a finite set $A = \{a_0, \dots, a_m\} \subset \mathbb{R}^n$ $(m \in \{0, \ldots, n\})$ the dimension of aff A is equal to m, then co A is called a simplex (precisely an *m*-simplex). Let Tr_n be a finite family of *n*-simplexes such that $P = \bigcup_{\delta \in Tr_n} \delta$ and for any $\delta_1, \delta_2 \in Tr_n, \delta_1 \cap \delta_2$ is the empty set or their common face. A triangulation of the polyhedron P (we denote it by Tr) is a family consisting of simplexes of Tr_n and all their faces. Let Tr_m $(m \in N_0)$ denote the family of *m*-simplexes belonging to a triangulation Tr. Hence $Tr = \bigcup_{i=0}^{n} Tr_i$. Let $V = Tr_0$ be the set of vertices of all simplexes of Tr. Notice, that $V = \bigcup_{\delta \in Tr_n} V(\delta)$. An (n-1)-simplex of Tr_{n-1} is a boundary (n-1)-simplex if it is a facet of exactly one n-simplex of Tr_n . For a triangulation Tr^P of the polyhedron P and a triangulation Tr^Q of a polyhedron Q a function $f: V(Tr^P) \to V(Tr^Q)$ is a simplicial function if for every $\sigma \in Tr^P$ there exists $\delta \in Tr^Q$ such that $f(V(\sigma)) = V(\delta)$.

2. MAIN RESULT

We start with the following

Definition 2.1. Let $\sigma \subset \mathbb{R}^n$ be a simplex, $l : V(\sigma) \to \mathbb{R}^n$, $b \in \mathbb{R}^n$ and $Z \subset \mathbb{R}^n$. A simplex σ is *b*-balanced if the point *b* belongs to co $(l(V(\sigma)))$ and *b*-subbalanced with respect to Z, if the point *b* belongs to co $(l(V(\sigma))) \cup Z)$. If $Z = \{x\}$, then we write *b*-subbalanced with respect to *x* instead of with respect to $\{x\}$. For b = 0 we say balanced and subbalanced instead of *b*-balanced and *b*-subbalanced, respectively.

Notice that in the case Z is a polyhedron, a simplex σ is b-subbalanced with respect to Z if and only if σ is b-subbalanced with respect to V(Z).

Lemma 2.2. Let $P \subset \mathbb{R}^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $l : Tr_0 \to \mathbb{R}^n$, $b \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$. If the triangulation Tr contains neither a b-balanced simplex of dimension less than n nor a simplex of dimension less than n - 1 which is b-subbalanced with respect to x, then the number of b-balanced simplexes in Tr is congruent modulo 2 to the number of b-subbalanced with respect to x boundary simplexes in Tr.

Proof. For this proof by a *b*-subbalanced simplex we understand a *b*-subbalanced simplex with respect to *x*. Consider a graph G = (W, E) where *W* is the set of *b*-balanced *n*-simplexes and *b*-subbalanced (n-1)-simplexes in Tr and there is an edge between two different simplexes $\sigma_1, \sigma_2 \in W$ if and only if there exists a simplex $\sigma \in Tr$ containing σ_1 and σ_2 (in particular $\sigma = \sigma_1$). We will show that

 $\deg_G(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is a } b\text{-balanced or a boundary } b\text{-subbalanced simplex,} \\ 2 & \text{if } \sigma \text{ is a } b\text{-subbalanced simplex not in the boundary.} \end{cases}$

Let σ be a *b*-balanced simplex of Tr. By our assumption σ is an *n*-dimensional simplex. Let $V(\sigma) = \{v_0, \ldots, v_n\}$, $u_i = l(v_i)$ for $i \in N_0$ and let $A_i = \operatorname{co} \{u_0, \ldots, u_{i-1}, x, u_{i+1}, \ldots, u_n\}$ for $i \in N_0$. There is at least one $j \in N_0$ such that $b \in A_j$ since $b \in \operatorname{co} \{u_0, \ldots, u_n\} \subseteq \bigcup_{i=0}^n A_i$. If there exists $j, k \in N_0$, j < k such that $b \in A_j$ and $b \in A_k$, then it is easy to show that $b \in \operatorname{co} \{x, u_0, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{k-1}, u_{k+1}, \ldots, u_n\}$, so that the simplex $\operatorname{co} \{v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n\}$ is *b*-subbalanced and of dimension less than n-1. This contradicts our assumption.

Now let σ be a *b*-subbalanced simplex in Tr of dimension n-1 and let σ_1 be an *n*-simplex containing σ , $V(\sigma) = \{v_1, \ldots, v_n\}$, $V(\sigma_1) \setminus V(\sigma) = \{v_0\}$, $u_i = l(v_i)$ for $i \in N_0$, $B_0 = \operatorname{co} \{u_0, u_1, \ldots, u_n\}$, $B_i = \operatorname{co} \{x, u_1, \ldots, u_{i-1}, u_0, u_{i+1}, \ldots, u_n\}$ for $i \in N_0$. Since $b \in \operatorname{co} \{x, u_1, \ldots, u_n\} \subseteq \bigcup_{i=0}^n B_i$, then there exists $i \in N_0$ such that $b \in B_i$. If $b \in B_0$, then σ_1 is *b*-balanced and σ and σ_1 form an edge in G. If $b \in B_i$ for some $i \in N$, then $\sigma_2 = \operatorname{co} \{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}$ is *b*-subbalanced and σ and σ_2 form an edge in G. If $b \in B_0 \cap B_j$ for some $j \in N$, then the simplex $\operatorname{co} \{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$ is *b*-subbalanced of dimension less that n-1, but this is impossible. If $b \in B_j \cap B_k$ for some $j, k \in N, j < k$, then the simplex

co $\{v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n\}$ is *b*-subbalanced of dimension less that n-1, but this is also impossible. In all cases, σ_1 defines an adjacent edge to σ in *G*. Hence, if σ is a boundary simplex (it is a face of exactly one *n*-simplex), then deg_{*G*}(σ) = 1 and if σ is not a boundary simplex (it is a face of exactly two *n*-simplexes), then deg_{*G*}(σ) = 2.

Graph G has vertices of degree one and two only. Thus the number of vertices of degree one is even and hence the number of b-balanced simplexes in Tr is congruent modulo two to the number of b-subbalanced with respect to x boundary simplexes in Tr.

Remark 2.3. Let $S \subset \mathbb{R}^n$ be a polyhedron, \widetilde{Tr} be a triangulation of $\operatorname{bd} S$ and $p \in \operatorname{ri} S$, then $Tr = \{co(\{p\} \cup \sigma) : \sigma \in \widetilde{Tr}\} \cup \widetilde{Tr} \cup \{p\}$ is a triangulation of the polyhedron S.

Definition 2.4. Two *n*-dimensional polyhedrons *P* and *Q* are *dual to each* other through ψ if ψ : $\mathbf{F}(P) \to \mathbf{F}(Q)$ is a one-to-one inclusion-reversing mapping, i.e., $F_1 \subset F_2$ if and only if $\psi(F_1) \supset \psi(F_2)$ for any $F_1, F_2 \in \mathbf{F}(P)$. Polyhedrons *P* and *Q* are dual to each other if there exists $\psi : \mathbf{F}(P) \to \mathbf{F}(Q)$ such that *P* and *Q* are dual to each other through ψ .

A simplex of any dimension is dual to itself and a 3-dimensional cube and octahedron are dual to each other. For more examples and properties of dual polyhedrons see Grunbaum [4], pp. 46–48. Notice that dim $F + \dim \psi(F) = n - 1$ for any $F \in \mathbf{F}(P)$.

Duality of polyhedrons may be defined in many ways (see e.g. Alexandrov [1], pp. 49):

Definition 2.5. Two *n*-dimensional polyhedrons *P* and *Q* are *dual to each* other through ϕ , if $\phi : \mathbf{F}_0(P) \to \mathbf{F}_{n-1}(Q)$ fulfils the following condition: for $v_1, v_2 \in \mathbf{F}_0(P)$, co $\{v_1, v_2\}$ is a face of *P* if and only if $\phi(v_1)$ and $\phi(v_2)$ have a common (n-2)-dimensional face.

Observe that both definitions are equivalent.

Theorem 2.6. Let $P, Q \subset \mathbb{R}^n$ be n-dimensional polyhedrons, dual to each other through a mapping ψ , Tr be a triangulation of the polyhedron P, V = $Tr_0, b \in \operatorname{ri} Q$ and $l : V \to \mathbb{R}^n$ be a labelling. If for every $G \in \mathbf{F}(P)$ and every simplex $\sigma \in Tr$ and $\sigma \subseteq G$, σ is not b-subbalanced with respect to the set $\psi(G)$, then there exists a b-balanced simplex in Tr. **Proof.** For n = 1 the boundary condition implies that the labels of two vertices of P lie on opposite sides of the point b. Thus there is a vertex $v \in Tr_0$ such that l(v) = b or the number of b-balanced simplexes in Tr is odd.

Consider the case n > 1. Assume that there is no *b*-balanced simplex in Tr of dimension less than n. We show that there exists a *b*-balanced simplex of dimension n in Tr.

We define a triangulation Tr^Q of $\operatorname{bd} Q$. For every face $H \in \mathbf{F}_1(Q)$ we choose a point $u_H \in \operatorname{ri} H$ and apply Remark 2.3 to get a triangulation of the face H. Then inductively for $k = 2, \ldots, n-1$: for every face $H \in \mathbf{F}_k(Q)$ we choose a point $u_H \in \operatorname{ri} H$ and apply Remark 2.3 to get a triangulation of the face H. Finally we obtain a triangulation of $\operatorname{bd} Q$.

Let $V(P) = \{a_0, \ldots, a_k\}$ $(k \ge n)$. For $i \in \{0, \ldots, k\}$ and $c \in \operatorname{ri} P$, let $a'_i = 2a_i - c$ and $P' = \operatorname{co} \{a'_0, \ldots, a'_k\}$. Notice that $P \subset P'$.

Now we define a triangulation of P', which is an extension of the triangulation Tr of the polyhedron P. We define a triangulation of the set $P' \setminus \operatorname{ri} P$.

For every face $F = co \{a_{i(0)}, \ldots, a_{i(l)}\}$ (defined by some: $\{a_{i(0)}, \ldots, a_{i(l)}\}$ $\subset V(P)$) of the polyhedron P we denote $F' = co \{a'_{i(0)}, \ldots, a'_{i(l)}\}$. Every face F of P has one-to-one correspondence to the face F' of P'.

Let us denote $FF' = co\{F \cup F'\}$. Thus $P' \setminus riP = \bigcup_{F \in \mathbf{F}_{n-1}(P)} FF'$.

For every face $F_1 \in \mathbf{F}_1(P)$ we choose a point $v_{F'_1} \in \operatorname{ri} F'_1$. By Remark 2.3 we receive a triangulation of F'_1 . Then for every face $F_1 \in \mathbf{F}_1(P)$ we choose a point $v_{F_1F'_1} \in \operatorname{ri} F_1F'_1$. By Remark 2.3 we receive a triangulation of $F_1F'_1$.

Now we apply the induction for $k \in \{2, ..., n-1\}$: for any face $F_k \in \mathbf{F}_k(P)$ we choose a point $v_{F'_k} \in \operatorname{ri} F'_k$ and by Remark 2.3 we get a triangulation of the face F'_k . Analogously we choose a point $v_{F_kF'_k} \in \operatorname{ri} F_kF'_k$ and get a triangulation of $F_kF'_k$.

Finally we obtain a triangulation of $P' \setminus ri P$ and denote it by Tr''. Hence $Tr' = Tr \cup Tr''$ is a triangulation of P', which is an extension of the triangulation Tr on P.

Let $V' = Tr'_0$. If $v \in V' \setminus V$, then $v \in V(P') \cup \{v_{GG'}, v_{G'} : G \in \mathbf{F}_k(P), k \in \{1, \ldots, n-1\}\}$. For $G' \in \mathbf{F}_0(P')$ we also denote $v_{G'} := G'$.

Now, we define a labelling $l': V' \to \mathbb{R}^n$:

$$l'(v) = \begin{cases} l(v) & \text{for } v \in V, \\ u_{\psi(G)} & \text{for } v = v_{GG'} \text{ or } v = v_{G'}. \end{cases}$$

We prove that there is no b-balanced simplex in Tr''. Consider an n-simplex $\sigma \in Tr''$. If $\sigma \cap P = \emptyset$, then there is exactly one vertex v of σ , which is also a vertex of P'. Let $v = a'_j \in V(P')$ $(j \in \mathbb{N})$ and thus $l'(V(\sigma)) \subset \psi(a_j)$, where $\psi(a_j)$ is a facet of Q so σ is not b-balanced. Now consider the case $\sigma \cap P \neq \emptyset$: let $\tau = \sigma \cap P$, G_{τ} be the smallest face of P (in the sense of inclusion) containing τ . Let $v \in V(\sigma) \setminus V(\tau)$, thus $v = v_{G'}$ or $v = v_{GG'}$ for some $G \in \mathbf{F}(P)$. Notice that $G_{\tau} \subseteq G$ and thus $\psi(G_{\tau}) \supseteq \psi(G)$. From definition of Tr^Q we have $u_H \in H$ for any $H \in \mathbf{F}(Q)$ and from definition of labelling l' we have $l'(v) = u_{\psi(G)} \in \psi(G) \subseteq \psi(G_{\tau})$. Thus $l'(V(\sigma) \setminus V(\tau)) \subseteq \psi(G_{\tau})$ and $l'(V(\sigma)) = l'((V(\sigma) \setminus V(\tau)) \cup V(\tau)) = l'((V(\sigma) \setminus V(\tau))) \subseteq \psi(G_{\tau}) \cup \ell(V(\tau)) = \psi(G_{\tau}) \cup l(V(\tau))$.

From the assumption $b \notin \operatorname{co}(l(V(\tau)) \cup \psi(G_{\tau}))$. Therefore $b \notin \operatorname{co} l'(V(\sigma))$ and σ is not a b-balanced simplex.

Let σ be an (n-1)-simplex, $V(\sigma) = \{v_1, \ldots, v_n\}, v'_i = 2b - v_i \ (i \in N), C(\sigma) = \operatorname{cone}(\{v'_1, \ldots, v'_n\}, b)$. An (n-1)-simplex σ is b-subbalanced with respect to x if and only if $x \in C(\sigma)$. The set $C(\sigma)$ is an (n-1)-dimensional set and the union $\bigcup_{\sigma \in Tr'_{n-1}, \sigma \subset \operatorname{bd} P'} C(\sigma)$ is also an (n-1)-dimensional set. Hence, we can choose $x \in \mathbb{R}^n$, $x \neq b$ in such a way that Tr' does not contain a b-subbalanced simplex with respect to x of dimension smaller that n-1. Consider a line going through x and b. This line meets $\operatorname{bd} Q$ in two points. By x' we denote the common point of this line and $\operatorname{bd} Q$ such that $b \in \operatorname{co}\{x, x'\}$ and by $\sigma_Q \in Tr^Q$ we denote the (n-1)-dimensional boundary simplex containing x'. The function l' restricted to the set $\operatorname{bd} P' \cap V'$ is a one-to-one simplicial function. The simplex $\sigma_P := \operatorname{co} l'^{-1}(V(\sigma_Q))$ is b-subbalanced with respect to x and it is the only such simplex on $\operatorname{bd} P$.

Now, from Lemma 2.2 it follows that the number of b-balanced simplexes in Tr' is odd. Since $Tr' = Tr \cup Tr''$ and there is no b-balanced simplex in Tr'', there exists b-balanced simplex in Tr.

3. COROLLARIES AND APPLICATIONS

In this section we present corollaries to Theorem 2.6 in order to show the strength of this theorem. First we apply Theorem 2.6 to the simplex:

Corollary 3.1. Let $P = co \{d_0, \ldots, d_n\} \subset \mathbb{R}^n$ be an n-dimensional simplex, $m_{F_i} = \sum_{j \neq i} \frac{d_j}{n}$ be the gravity center of a facet $F_i = co \{d_0, \ldots, d_{i-1}, d_{i+1}, \ldots, d_n\}, m_P = \sum_{j=0}^n \frac{d_j}{n+1}$ be the gravity center of P, Tr be a triangulation of the simplex $P, V = Tr_0$ and $l : V \to \mathbb{R}^n$ be a labelling. If for every face $F = \operatorname{co} \{d_i : i \in M\}$ and every simplex $\sigma \subset F$, $\sigma \in Tr$, σ is not m_P -subbalanced with respect to the set $\{m_{F_i} : i \in M\}$, then there exists an m_P -balanced simplex in Tr.

Corollary 3.1 is more general than the Sperner lemma [12] and the Shapley lemma (Lemma 7.2 in [11]).

Corollary 3.2. Let $P = co \{d_0, \ldots, d_n\} \subset \mathbb{R}^n$ be an n-dimensional simplex, $m_P = \sum_{j=0}^n \frac{d_j}{n+1}$ be the gravity center of P, Tr be a triangulation of the simplex P, $V = Tr_0$ and $l : V \to \mathbb{R}^n$ be a labelling. If for every face $F = co \{d_i : i \in M\}$ $(M \subset N_0)$ and every simplex $\sigma \subset F$, $\sigma \in Tr$, σ is not m_P -subbalanced with respect to the set $\{d_i : i \notin M\}$, then there exists an m_P -balanced simplex in Tr.

Corollary 3.2 is more general than the Scarf lemma ([10]; see also Theorem 3.4 in [9]) and the Garcia lemma ([3], see also Theorem 3.6 in [9]).

The next result is on an *n*-dimensional cube. Let $I^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : -1 \leq x_i \leq 1, i \in N\}$ be an *n*-dimensional cube and for $k \in N$, $i_1, \ldots, i_k \in N, i_1 < i_2 < \cdots < i_k, s_{i_1}, \ldots, s_{i_k} \in \{-1, 1\}$ let $I(s_{i_1}i_1, \ldots, s_{i_k}i_k) = \{(x_1, \ldots, x_n) \in I^n : x_{i_j} = s_{i_j}, j \in \{1, \ldots, k\}\}$ be an (n - k)-dimensional face of I^n .

Corollary 3.3. Let Tr be a triangulation of the cube I^n , $V = Tr_0$ and $l: V \to \mathbb{R}^n$ be a labelling. If for all $k \in N$, $i_1, \ldots, i_k \in N$, $i_1 < i_2 < \cdots < i_k$, $s_{i_1}, \ldots, s_{i_k} \in \{-1, 1\}$ and every simplex $\sigma \in Tr$ and $\sigma \subseteq I(s_{i_1}i_1, \ldots, s_{i_k}i_k)$, σ is not subbalanced with respect to the set $\{s_{i_j}e_{i_j}: j \in \{1, \ldots, k\}\}$, then there exists a balanced simplex in Tr.

Proof. It follows directly from Theorem 2.6 for $P = I^n$, $Q = co\{e_i, -e_i : i \in N\}$ and $\psi(\{s_{i_j}e_{i_j} : j \in \{1, \dots, k\}\}) = co\{s_{i_j}e_{i_j} : j \in \{1, \dots, k\}\}$ for all $k \in N$, $i_1, \dots, i_k \in N$, $i_1 < i_2 < \dots < i_k$, $s_{i_1}, \dots, s_{i_k} \in \{-1, 1\}$.

Corollary 3.3 is more general than the Freund lemma (Lemma 1 in [2], see also Lemma 3.7 in [9]). Our next result is a generalization of the Poincaré-Miranda theorem [8]:

Theorem 3.4. Let $f: I^n \to \mathbb{R}^n$ be a continuous function, such that for all $k \in N$, $i_1, \ldots, i_k \in N$, $i_1 < i_2 < \cdots < i_k$, $s_{i_1}, \ldots, s_{i_k} \in \{-1, 1\}$

 $f(I(s_{i_1}i_1,\ldots,s_{i_k}i_k)) \cap \operatorname{cone}\{-s_{i_j}e_{i_j}: j \in \{1,\ldots,k\}\} = \emptyset,$

then there exists $x \in I^n$ such that f(x) = 0.

Proof. Consider a sequence of triangulations Tr^m of I^n $(m \in \mathbb{N})$ with mesh tending to zero, when m tends to infinity. Let $V^m = V(Tr^m)$ and $l^m = f|_{V^m}$. We show that the labelling l^m fulfils the condition of Corollary 3.3. Let $I(s_{i_1}i_1,\ldots,s_{i_k}i_k)$ be a face of I^n for $k \in N$, $i_1,\ldots,i_k \in N$, $i_1 < i_2 < \cdots < i_k$, $s_{i_1},\ldots,s_{i_k} \in \{-1,1\}$. Take $\sigma^m \subseteq I(s_{i_1}i_1,\ldots,s_{i_k}i_k)$. Because f is continuous and for sufficiently large m the mesh of Tr^m is small enough, the condition $f(I(s_{i_1}i_1,\ldots,s_{i_k}i_k)) \cap \operatorname{cone}\{-s_{i_j}e_{i_j}: j \in \{1,\ldots,k\}\} = \emptyset$ implies $l^m(V(\sigma^m)) \cap \operatorname{cone}\{-s_{i_j}e_{i_j}: j \in \{1,\ldots,k\}\} = \emptyset$. This is equivalent to the condition that σ^m is not subbalanced with respect to the set $\{s_{i_j}e_{i_j}: j \in \{1,\ldots,k\}\}$. Corollary 3.3 implies that there exists a balanced simplex in Tr^m . Now, if the mesh of Tr^m is a balanced simplex so we have f(z) = 0.

Theorem 2.6 is more general than our previous result:

Corollary 3.5 (Theorem 3.4 in [6]). Let $P \subset \mathbb{R}^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = Tr_0$, $b \in ri P$ and $l: V \to \mathbb{R}^n$ be a labelling. If for every facet F of the polyhedron P there exists an (n-1)-dimensional hyperplane h_b^F containing the point b and disjoint with F such that $l(V \cap F) \subset H_b^F$, where H_b^F is an open halfspace containing F such that h_b^F is in its boundary, then there exists a b-balanced n-simplex in the triangulation Tr.

Proof. For every polyhedron P and any point $b \in P$ there exists a dual polyhedron Q such that every face of Q is perpendicular to the ray issuing from b through the vertices of P and whose vertices lie on the rays issuing from b and perpendicular to the faces of P (for the proof see [1], pp. 45). Hence P, Q and l fulfil the condition of Theorem 2.6 and we get our corollary.

For every *n*-dimensional polyhedron $P \subset \mathbb{R}^n$ and any point $x_0 \in \operatorname{ri} P$ there exist vectors a_i $(i \in I \subset \mathbb{N})$, such that $P = \{x \in \mathbb{R}^n : a_i x \leq 1 + a_i x_0, i \in I\}$. Let $\operatorname{car} B = \{i \in I : a_i x = 1 + a_i x_0 \text{ for all } x \in B\}$ for $B \subset P$.

Two theorems below, proved by van der Laan, Talman and Yang, follow also from our Theorem 2.6:

Corollary 3.6 (Theorem 4.1 in [9]). Let $P = \{x \in \mathbb{R}^n : a_i x \leq 1 + a_i x_0, i \in I\} \subset \mathbb{R}^n$ be an n-dimensional polyhedron, $Q = \operatorname{co} \{a_j \in \mathbb{R}^n : i \in I\}, b \in \operatorname{ri} Q, Tr$ be a triangulation of $P, V = Tr_0$ and $l : V \to \mathbb{R}^n$ be a labelling. There exists a simplex $\sigma \in Tr$ such that $b \in \operatorname{co} (l(V(\sigma)) \cup \{a_i : i \in \operatorname{car} \sigma\})$.

Proof. For a polyhedron $P = \{x \in \mathbb{R}^n : a_i x \leq 1 + a_i x_0, i \in I\} \subset \mathbb{R}^n$ the polyhedron $Q = \operatorname{co} \{a_j \in \mathbb{R}^n : i \in I\}$ is dual to P through a mapping $\psi : \mathbf{F}(P) \to \mathbf{F}(Q)$ defined by $\psi(F) = \operatorname{co} \{a_i \in \mathbb{R}^n : i \in \operatorname{car} F\}$, (for the proof see Grunbaum [4] pp. 46–49).

Notice that for any boundary simplex $\sigma \in Tr$ the condition $b \in \operatorname{co}(l(V(\sigma)) \cup \{a_i : i \in \operatorname{car} \sigma\})$ says that σ is *b*-subbalanced with respect $\operatorname{co}\{a_i \in \mathbb{R}^n : i \in \operatorname{car} \sigma\}$. Hence, if there is no boundary simplex σ such that $b \in \operatorname{co}(l(V(\sigma)) \cup \{a_i : i \in \operatorname{car} \sigma\})$, then the assumptions of Theorem 2.6 are satisfied and we get the thesis.

For any k-dimensional polyhedron $P \subset \mathbb{R}^n$ there exists m vectors $a_i \in \mathbb{R}^n$, m real numbers $\alpha_i \in \mathbb{R}$ $(m > k, i \in I \subset \mathbb{N})$, and n - k vectors $d_h \in \mathbb{R}^n$, n - k real numbers $\delta_h \in \mathbb{R}$ $(h \in N_k \subset \mathbb{N})$ such that $P = \{x \in \mathbb{R}^n : a_i x \leq \alpha_i \text{ for } i \in I, d_h x = \delta_h \text{ for } h \in N_k\}$.

Corollary 3.7 (Theorem 3.1 in [9]). Let $P = \{x \in \mathbb{R}^n : a_i x \leq \alpha_i \text{ for } i \in I, d_h x = \delta_h \text{ for } h \in N_k\}$ be a k-dimensional polyhedron, $W = \text{aff} \{d_h : h \in N_k\}$, $W^* = \{x \in \mathbb{R}^n : xy = 0 \text{ for all } y \in W\}$, Tr a triangulation of $P, l : V \to \mathbb{R}^n$ be a labelling such that $(\operatorname{col}(V)) \cap W = \{0\}$. If for every $F \in \mathbf{F}(P)$ and every simplex $\sigma \in Tr$, $\sigma \subseteq F$ the intersection $(\operatorname{col}(V(\sigma))) \cap (\operatorname{cone}(0, \{a_i : i \in \operatorname{car}(F)\}) + W)$ is empty or contains the point $0 \in \mathbb{R}^n$, then there exists a balanced simplex in Tr.

Proof. Without loss of generality we may assume that the vectors a_i for $i \in I$ are parallel to the hyperplane W^* . We can consider projection of the polyhedron P, labels l(V) and vectors a_i for $i \in I$ on the hyperplane W^* parallel to the hyperplane W. Hence, we reduce this theorem to the full-dimensional case. Analogously vectors a_i $(i \in I)$ can be scaled in such a way that $Q = \operatorname{co} \{a_i : i \in I\}$ is a polyhedron dual to P through a mapping $\psi : \mathbf{F}(P) \to \mathbf{F}(Q)$ defined by $\psi(F) = \operatorname{co} \{a_i \in \mathbb{R}^n : i \in \operatorname{car} F\}$. If there exists a simplex σ such that $\operatorname{co} l(V(\sigma))$ contains $0 \in \mathbb{R}^n$, then σ is a balanced simplex. If for any $F \in \mathbf{F}(P)$ and any simplex $\sigma \in Tr$, $\sigma \subseteq F$ the intersection $\operatorname{co} l(V(\sigma)) \cap \operatorname{cone}(0, \{a_i : i \in \operatorname{car}(F)\})$ is empty, then σ is not a subbalanced simplex with respect to the set $\psi(F)$ and by Theorem 2.6 we get our theorem.

Acknowledgment

The authors thank the anonymous referee for many helpful comments and suggestions.

References

- [1] A.D. Alexandrov, Convex Polyhedra (Springer, Berlin, 2005).
- [2] R.W. Freund, Variable dimension complexes Part II: A unified approach to some combinatorial lemmas in topology, Math. Oper. Res. 9 (1984) 498–509.
- [3] C.B. Garcia, A hybrid algorithm for the computation of fixed points, Manag. Sci. 22 (1976) 606–613.
- [4] B. Grunbaum, Convex Polytopes (Wiley, London, 1967).
- [5] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387–398.
- [6] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for polyhedrons, Discuss. Math. Graph Theory 25 (2005) 95–102.
- [7] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes f
 ür n-dimensionale Simplexe, Fund. Math. 14 (1929) 132–137.
- [8] W. Kulpa, Poincaré and Domain Invariance Theorem, Acta Univ. Carolinae
 Mathematica et Physica 39 (1998) 127–136.
- [9] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25–38.
- [10] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math. 15 (1967) 1328–1343.
- [11] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming, New York: Academic Press (1973) 261–290.
- [12] E. Sperner, Neuer Beweis f
 ür die Invarianz der Dimensionszahl und des Gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265–272.

Received 2 December 2005 Revised 3 October 2006