Discussiones Mathematicae
Graph Theory 26 (2006) 439448

COMBINATORIAL LEMMAS FOR POLYHEDRONS 1

Apam IDZIK

Akademia Swigtokrzyska
gwigtokrzyska 15, 25-406 Kielce, Poland
and
Institute of Computer Science, Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland

e-mail: adidzik@ipipan.waw.pl
AND
KONSTANTY JUNOSZA-SZANIAWSKI

Warsaw University of Technology
Pl. Politechniki 1, 00-661 Warsaw, Poland

e-mail: k.szaniawski@mini.pw.edu.pl

Abstract

We formulate general boundary conditions for a labelling of vertices
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1. PRELIMINARIES

For n € N, let N = {1,...,n} and Ny = {0,...,n}. By a polyhedron
we understand the convex hull of a finite set of R®. Let P C R" be a
polyhedron of dimension n. A face of the polyhedron P is the intersection
of P with some of its supporting hyperplanes. Denote the set of all k-
dimensional faces of the polyhedron P by Fy(P) (k < n), the set of all
faces of the polyhedron P by F(P) (hence F(P) = UZ;& Fi(P)) and the
set of all vertices of the polyhedron P by V(P) (V(P) = Fo(P)). The
maximal dimension proper faces of the polyhedron P are called facets. For
a finite set A = {ag,...,an} CR" aset coA = {apag+ -+ amam : a; €
A Yoo =1, a; >0forie{0,...,m}} is the convex hull of A, aff A =
{apag + -+ amam = Dty ai =1, a; € A, o5 € Rfori € {0,...,m}}
is the affine hull of A. And if for a finite set A = {ag,...,an} C R”
(m €{0,...,n}) the dimension of aff A is equal to m, then co A is called a
simplex (precisely an m-simplex). Let T, be a finite family of n-simplexes
such that P = UéeTrn ¢ and for any 91,02 € Ty, 01 N Jo is the empty set or
their common face. A triangulation of the polyhedron P (we denote it by
T'r) is a family consisting of simplexes of T'r,, and all their faces. Let T'ry,
(m € Ny) denote the family of m-simplexes belonging to a triangulation T'r.
Hence Tr = U?:o Tr;. Let V = Try be the set of vertices of all simplexes
of T'r. Notice, that V' = Uscrp,, V(6). An (n — 1)-simplex of Try,—; is a
boundary (n — 1)-simplez if it is a facet of exactly one n-simplex of T'ry,.
For a triangulation TrF of the polyhedron P and a triangulation Tr% of a
polyhedron @ a function f : V(TrP) — V(Tr?) is a simplicial function if
for every o € Tr? there exists 6 € Tr? such that f(V (o)) = V(6).

2. MAIN REsSuULT

We start with the following

Definition 2.1. Let ¢ C R™ be a simplex, [ : V(o) — R”, b € R" and
Z C R™. A simplex o is b-balanced if the point b belongs to co (I(V(0))) and
b-subbalanced with respect to Z, if the point b belongs to co (I((V (o)) U Z).
If Z = {x}, then we write b-subbalanced with respect to x instead of with
respect to {z}. For b = 0 we say balanced and subbalanced instead of
b-balanced and b-subbalanced, respectively.
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Notice that in the case Z is a polyhedron, a simplex o is b-subbalanced with
respect to Z if and only if o is b-subbalanced with respect to V(Z2).

Lemma 2.2. Let P C R"™ be a polyhedron of dimension n, Tr be a tri-
angulation of the polyhedron P, 1 : Trg — R™, b € R" and x € R". If
the triangulation T'r contains neither a b-balanced simplex of dimension less
than n nor a simplex of dimension less than n — 1 which is b-subbalanced
with respect to x, then the number of b-balanced simplexes in Tr is con-
gruent modulo 2 to the number of b-subbalanced with respect to x boundary
simplexes in Tr.

Proof. For this proof by a b-subbalanced simplex we understand a b-
subbalanced simplex with respect to z. Consider a graph G = (W, E) where
W is the set of b-balanced n-simplexes and b-subbalanced (n — 1)-simplexes
in T'r and there is an edge between two different simplexes 01,09 € W if
and only if there exists a simplex o € T'r containing o1 and o9 (in particular
o = o01). We will show that

1 if o is a b-balanced or a boundary b-subbalanced simplex,

degg (o) = { e . .
2 if o is a b-subbalanced simplex not in the boundary.

Let o be a b-balanced simplex of T'r. By our assumption ¢ is an n-dimen-
sional simplex. Let V(o) = {vo,...,vn}, ui = l(v;) for i € Ny and let
A; = co{ug,...,Ui—1,%,Uj+1,...,un} for i € Ny. There is at least one
j € Ny such that b € A; since b € cof{ug,...,un} C Uiy Ai. If there
exists j,k € No, j < k such that b € A; and b € Ay, then it is easy to
show that b € co{x,up, ..., Uj—1,Uj41,.., Uk—1,Uk+1,---,Un}, SO that the
simplex co{vo,...,Vj—1,Vj41,...,Vk—1,Vk+1,--.,Upn} is b-subbalanced and
of dimension less than n — 1. This contradicts our assumption.

Now let o be a b-subbalanced simplex in T of dimension n — 1 and let
o1 be an n-simplex containing o, V(o) = {v1,...,v,}, V(1) \ V(o) = {vo},
u; = l(v;) for i € Ny, By = co{ug,u1,...,un}, B; = co{z,ui,...,ui—1,uo,
Uiyl .. up} for i € Np. Since b € co{z,ui,...,un} € U, B, then
there exists i € Ny such that b € B;. If b € By, then o7 is b-balanced
and ¢ and o; form an edge in G. If b € B; for some ¢ € N, then o9 =
co{vo,...,Vi—1,Vit1,...,Un} is b-subbalanced and o and o9 form an edge in
G. If b € By N Bj for some j € N, then the simplex co {v1,...,vj—1,vj41,
...,Up} is b-subbalanced of dimension less that n — 1, but this is im-
possible. If b € B; N By for some j,k € N, j < k, then the simplex
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co{vo, ..., Vj—1,Vj41, ., Vk—1,Vk+1,--.,Vn} is b-subbalanced of dimension
less that n — 1, but this is also impossible. In all cases, o1 defines an adja-
cent edge to o in G. Hence, if o is a boundary simplex (it is a face of exactly
one n-simplex), then deg, (o) = 1 and if o is not a boundary simplex (it is
a face of exactly two n-simplexes), then degs (o) = 2.

Graph G has vertices of degree one and two only. Thus the number of
vertices of degree one is even and hence the number of b-balanced simplexes
in T'r is congruent modulo two to the number of b-subbalanced with respect
to x boundary simplexes in 7T'r. [

Remark 2.3. Let S C R" be a polyhedron, Tr be a triangulation of bd S
and p € ri S, then Tr = {co({p} Uo) : 0 € Tr} UTr U {p} is a triangulation
of the polyhedron S.

Definition 2.4. Two n-dimensional polyhedrons P and () are dual to each
other through ¢ if ¢ : F(P) — F(Q) is a one-to-one inclusion-reversing
mapping, i.e., F1 C Fy if and only if ¢(F}) D ¢ (Fy) for any Fy, F» € F(P).
Polyhedrons P and @ are dual to each other if there exists ¢ : F(P) — F(Q)
such that P and @ are dual to each other through 1.

A simplex of any dimension is dual to itself and a 3-dimensional cube and
octahedron are dual to each other. For more examples and properties of dual
polyhedrons see Grunbaum [4], pp. 46-48. Notice that dim F' +dim ¢)(F') =
n — 1 for any F € F(P).

Duality of polyhedrons may be defined in many ways (see e.g. Alexan-
drov [1], pp. 49):

Definition 2.5. Two n-dimensional polyhedrons P and () are dual to each
other through ¢, if ¢ : Fo(P) — Fp_1(Q) fulfils the following condition: for
vi,v2 € Fo(P), co{vy,va} is a face of P if and only if ¢(v1) and ¢(va) have
a common (n — 2)-dimensional face.

Observe that both definitions are equivalent.

Theorem 2.6. Let P,QQ C R™ be n-dimensional polyhedrons, dual to each
other through a mapping 1, T'r be a triangulation of the polyhedron P, V =
Tro, b €ri@Q and 1 : V — R™ be a labelling. If for every G € F(P) and
every simplex o € Tr and 0 C G, o is not b-subbalanced with respect to the
set P (G), then there exists a b-balanced simplex in Tr.
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Proof. For n = 1 the boundary condition implies that the labels of two
vertices of P lie on opposite sides of the point b. Thus there is a vertex
v € Trg such that [(v) = b or the number of b-balanced simplexes in Tr is
odd.

Consider the case n > 1. Assume that there is no b-balanced simplex in
Tr of dimension less than n. We show that there exists a b-balanced simplex
of dimension n in T'r.

We define a triangulation Tr% of bd Q. For every face H € F1(Q) we
choose a point uy € ri H and apply Remark 2.3 to get a triangulation of
the face H. Then inductively for k = 2,...,n—1: for every face H € Fi(Q)
we choose a point uy € ri H and apply Remark 2.3 to get a triangulation
of the face H. Finally we obtain a triangulation of bd Q.

Let V(P) = {ao,...,ar} (k > n). Fori € {0,...,k} and ¢ € ri P, let
a; = 2a; — c and P’ = co{ay, ..., a}}. Notice that P C P’.

Now we define a triangulation of P’, which is an extension of the tri-
angulation T'r of the polyhedron P. We define a triangulation of the set
P'\riP.

For every face F' = co{a;(), - - -,a;;) } (defined by some: {a;), - ., a1}
C V(P)) of the polyhedron P we denote F' = co {a;(o), . ,ag(l)}. Every face
F of P has one-to-one correspondence to the face F’ of P'.

Let us denote F'F’ = co{F U F'}. Thus P'\1i P = Upcp, ,p) I'F"

For every face F}; € F1(P) we choose a point Uy € 1i F{. By Remark
2.3 we receive a triangulation of F]. Then for every face Fy € Fi(P) we
choose a point vp, Fj ETI F) F{. By Remark 2.3 we receive a triangulation of
F\Fy.

Now we apply the induction for k£ € {2,...,n — 1}: for any face F} €
Fi(P) we choose a point Vp €11 F and by Remark 2.3 we get a triangula-
tion of the face Fj. Analogously we choose a point v, F € ri Fi, ], and get
a triangulation of FjF}.

Finally we obtain a triangulation of P’ \ ri P and denote it by Tr".
Hence Tr' = Tr UTr" is a triangulation of P’, which is an extension of the
triangulation Tr on P.

Let V! = Trj. If v € V'\V, then v € V(P') U {vge,ver : G €
Fi(P),ke{l,....,n—1}}. For G’ € Fo(P') we also denote vgr := G'.

Now, we define a labelling I : V/ — R™:

V(w) = {l(v) for v €V,

uy(q) for v=wvge or v =g .
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We prove that there is no b-balanced simplex in T7”. Consider an n-simplex
oeTr". If cNP = (), then there is exactly one vertex v of o, which is also a
vertex of P'. Let v =aj € V(P') (j € N) and thus I'(V(0)) C ¥(a;), where
Y(a; ) is a facet of @) so o is not b-balanced. Now consider the case cNP # (:
let 7 = 0 N P, G: be the smallest face of P (in the sense of inclusion)
containing 7. Let v € V(o) \ V(7), thus v = vg or v = vge for some
G € F(P). Notice that G; C G and thus ¥(G;) 2 ¥(G). From definition
of Tr% we have uy € H for any H € F(Q) and from definition of labelling
I" we have I'(v) = uyq) € ¥(G) € ¢¥(G). Thus I'(V(o) \ V(1)) C ¥(G7)
and I'(V(0)) = I'((V(e) \ V(r)) U V(7)) = I'((V(e) \ V(7)) U'(V(7)) €
P(Gr) UV (7)) = ¢(Gr) ULV (7).

From the assumption b ¢ co (I(V(7))Ut(G;)). Therefore b ¢ col'(V (o))
and o is not a b-balanced simplex.

Let o be an (n — 1)-simplex, V(o) = {v1,..., 05}, v; =2b—v; (i € N),
C(o) = cone({v],...,v,},b). An (n — 1)-simplex o is b-subbalanced with
respect to z if and only if z € C(o). The set C(o) is an (n — 1)-dimensional

set and the union UUGT%_PUcbd p C(0) is also an (n — 1)-dimensional set.
Hence, we can choose z € R™, x # b in such a way that Tr" does not
contain a b-subbalanced simplex with respect to x of dimension smaller that
n — 1. Consider a line going through z and b. This line meets bd @ in two
points. By z’ we denote the common point of this line and bd @) such that
b € co{x,2'} and by o € Tr? we denote the (n — 1)-dimensional boundary
simplex containing x’. The function I’ restricted to the set bd P’ N V' is
a one-to-one simplicial function. The simplex op := col'"}(V(og)) is b-
subbalanced with respect to z and it is the only such simplex on bd P.
Now, from Lemma 2.2 it follows that the number of b-balanced simplexes
in Tr'" is odd. Since Tr' = Tr UT7r"” and there is no b-balanced simplex in

Tr", there exists b-balanced simplex in T'r. |

3. COROLLARIES AND APPLICATIONS

In this section we present corollaries to Theorem 2.6 in order to show the
strength of this theorem. First we apply Theorem 2.6 to the simplex:

Corollary 3.1. Let P = co{dy,...,d,} C R™ be an n-dimensional simplez,
mpg, = Zj# % be the gravity center of a facet F; = co{dy,...,d;i—1,d;t+1,

ceydp}, mp = Z?:o nﬁl be the gravity center of P, Tr be a triangulation
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of the simplex P, V.= Trg and |l : V — R™ be a labelling. If for every
face F = co{d; : i € M} and every simplex 0 C F, o € Tr, o is not
mp-subbalanced with respect to the set {mp, : i € M}, then there exists an
mp-balanced simplex in T'r.

Corollary 3.1 is more general than the Sperner lemma [12] and the Shapley
lemma (Lemma 7.2 in [11]).

Corollary 3.2. Let P = co{dy,...,d,} C R™ be an n-dimensional simplez,
mp = Z?:o ndel be the gravity center of P, T'r be a triangulation of the
simplex P, V.= Trg and | : V. — R" be a labelling. If for every face
F =co{d;:ie M} (M C Ny) and every simplex o C F, o € Tr, o is not
mp-subbalanced with respect to the set {d; : i ¢ M}, then there exists an
mp-balanced simplex in Tr.

Corollary 3.2 is more general than the Scarf lemma ([10]; see also Theorem
3.4 in [9]) and the Garcia lemma ([3], see also Theorem 3.6 in [9]).

The next result is on an n-dimensional cube. Let I = {(x1,...,2,) €
R": -1 < z; <1, ¢ € N} be an n-dimensional cube and for k& € N,
Myeenstp €N, 1 <dg < - -0 < g, Siqs---ySiy € {—1,1} let I(Silil,...,sikik)
={(®1,...,2p) € I" 1 3y, = 545, € {1,...,k}} be an (n — k)-dimensional

face of I"™.

Corollary 3.3. Let Tr be a triangulation of the cube I™, V. = Trg and
1:V — R" be alabelling. If for allk € N, i1,...,ixg € N, i1 <ig < -+ < i,
Sits- -+, Si, € {—1,1} and every simplex o € Tr and o C I(s 01, .., Siik),
o is not subbalanced with respect to the set {s;j.e;; : j € {1,...k}}, then
there exists a balanced simplex in Tr.

Proof. It follows directly from Theorem 2.6 for P = I", Q = co{e;, —e; :
i € N} and ¢({si;e;; : j € {1,...,k}}) = co{sie;, 1 j € {1,...,k}} for all
keN,ip,...,ip € N, iy <ig <--+ <ip, Sip,---,8i, € {—1,1}. [

Corollary 3.3 is more general than the Freund lemma (Lemma 1 in [2], see
also Lemma 3.7 in [9]). Our next result is a generalization of the Poincaré-
Miranda theorem [8]:

Theorem 3.4. Let f : I" — R"™ be a continuous function, such that for all
keN,iy,....ig € N, iy <ig < -+ <lip, Siy,...,8, € {—1,1}
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f(I(Silil, RN Slklk)) N cone{—sijeij 1j € {1, R ,k}} =0,
then there exists © € I"™ such that f(z) = 0.

Proof. Consider a sequence of triangulations Tr™ of I" (m € N) with
mesh tending to zero, when m tends to infinity. Let V™ = V(T'r™) and
I"™ = flym. We show that the labelling ["™ fulfils the condition of Corollary
3.3. Let I(s;,41,...,si,ik) beafaceof I" for k € N, iy,...,i € N, i1 <1z <
s <k, Siyy- .-y 8, € {—1,1}. Take 0™ C I(s;,41, ..., S,ir). Because f is
continuous and for sufficiently large m the mesh of T'r"™ is small enough, the
condition f(I(sii1,...,sqik)) Ncone{—s;.e;. : j € {1,...,k}} = 0 implies
™(V(e™)) Ncone{—s;,e;, : j € {1,...,k}} = . This is equivalent to the
condition that ¢ is not subbalanced with respect to the set {si]. ei; : j €
{1,...,k}}. Corollary 3.3 implies that there exists a balanced simplex in
Tr™. Now, if the mesh of Tr™ tends to zero, the sequence of simplexes c™
tends to a point z. But each ¢ is a balanced simplex so we have f(z) = 0.

|
Theorem 2.6 is more general than our previous result:

Corollary 3.5 (Theorem 3.4 in [6]). Let P C R" be a polyhedron of dimen-
sion n, Tr be a triangulation of the polyhedron P, V = Try, b € ri P and
[:V — R" be a labelling. If for every facet F' of the polyhedron P there ex-
ists an (n—1)-dimensional hyperplane hf containing the point b and disjoint
with F' such that (VN F) C H{, where H{ is an open halfspace containing
F' such that hf 1s in its boundary, then there exists a b-balanced n-simplex
i the triangulation Tr.

Proof. For every polyhedron P and any point b € P there exists a dual
polyhedron ) such that every face of ) is perpendicular to the ray issu-
ing from b through the vertices of P and whose vertices lie on the rays
issuing from b and perpendicular to the faces of P (for the proof see [1],
pp. 45). Hence P, @ and [ fulfil the condition of Theorem 2.6 and we get our
corollary. [

For every n-dimensional polyhedron P C R™ and any point xy € ri P there
exist vectors a; (i € I C N), such that P = {z € R" : a;a < 1+ a;zg,i € I}.
Let car B ={i € I : ajx =1+ a;xq for all z € B} for B C P.

Two theorems below, proved by van der Laan, Talman and Yang, follow
also from our Theorem 2.6:
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Corollary 3.6 (Theorem 4.1 in [9]). Let P = {z € R" : aq;x < 1 + a;zo,
i € It C R™ be an n-dimensional polyhedron, Q = co{a; € R" : i € I},
beri@, Tr be a triangulation of P, V. =Trg andl : V — R" be a labelling.
There exists a simplex o € Tr such that b € co(I(V (o)) U{a; :i € carc}).

Proof. For a polyhedron P = {x € R" : a;z < 1+ a;xg,i € I} C R"
the polyhedron @ = co{a; € R™ : i € I} is dual to P through a mapping
Y F(P) — F(Q) defined by ¢ (F) = co{a; € R" : i € car F'}, (for the proof
see Grunbaum [4] pp. 46-49).

Notice that for any boundary simplex ¢ € Tr the condition b €
co(l(V(o)) U{a; : i € caro}) says that o is b-subbalanced with respect
co{a; € R™:i € caro}. Hence, if there is no boundary simplex o such that
beco(l(V(o))U{a;: i€ carc}), then the assumptions of Theorem 2.6 are
satisfied and we get the thesis. [

For any k-dimensional polyhedron P C R"™ there exists m vectors a; € R",
m real numbers o; € R (m > k, i € I C N), and n — k vectors d;, € R",
n — k real numbers 0, € R (h € Ny C N) such that P = {z € R" : q;z <
a; for i € I, dpx = 0y, for h € Ni}.

Corollary 3.7 (Theorem 3.1 in [9]). Let P = {z € R" : a;oz < «; fori €
I, dyxz = 0y, for h € Ni} be a k-dimensional polyhedron, W = aff {d}, :
h € Ny, W ={xz € R" : xy = 0 for ally € W}, Tr a triangulation of
P, 1:V — R" be a labelling such that (col(V)) N W = {0}. If for every
F € F(P) and every simplex o € Tr, o C F the intersection (col(V(c))) N
(cone(0,{a; : i € car (F)})+ W) is empty or contains the point 0 € R™, then
there exists a balanced simplex in T'r.

Proof. Without loss of generality we may assume that the vectors a; for
i € I are parallel to the hyperplane W*. We can consider projection of
the polyhedron P, labels (V') and vectors a; for i € I on the hyperplane
W* parallel to the hyperplane W. Hence, we reduce this theorem to the
full-dimensional case. Analogously vectors a; (i € I) can be scaled in such a
way that @ = co{a; : i € I} is a polyhedron dual to P through a mapping
Y F(P) — F(Q) defined by (F) = co{a; € R" : i € car F'}. If there exists
a simplex o such that col(V (o)) contains 0 € R™, then o is a balanced sim-
plex. If for any F' € F(P) and any simplex o € T'r, 0 C F the intersection
col(V (o)) Ncone(0,{a; : i € car(F)}) is empty, then o is not a subbal-
anced simplex with respect to the set ¥(F') and by Theorem 2.6 we get our
theorem. [ ]
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