Discussiones Mathematicae
Graph Theory 26 (2006) 431437

A LOWER BOUND ON THE INDEPENDENCE NUMBER
OF A GRAPH IN TERMS OF DEGREES

JOCHEN HARANT

Institut fiir Mathematik, TU Ilmenau
9868/ Ilmenau, Germany

AND
INGO SCHIERMEYER

Institut fiir Diskrete Mathematik und Algebra
TU Bergakademie Freiberg
09596 Freiberg, Germany

Abstract

For a connected and non-complete graph, a new lower bound on its in-
dependence number is proved. It is shown that this bound is realizable
by the well known efficient algorithm MIN.
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1. INTRODUCTION AND THEOREM

Let G be a finite, undirected, simple, non-complete, and connected graph
on its vertex set V(G) = {1,2,...,n}. For a subgraph H of G and for a
vertex i € V(H) let dg(i) be the degree of i in H, i.e., the cardinality of
the neighbourhood Ny (i) C V(H) of i in H, and let 6(H) be the minimum
degree of H. A subset I of V(G) is called independent if the subgraph of
G spanned by [ is edgeless. The independence number o(G) is the largest
cardinality |I| among all independent sets I of G. The following algorithm
MIN (cf. [8]) is a well known procedure to construct an independent set of
a graph G.
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Algorithm MIN:

1. Gy =G,j:=1

2. while V(G;) # 0 do

begin

choose i; € V(G;) with dg,(i;) = 6(Gj), delete {i;} U Ng;,(i;) to obtain
Gjt1 and set j :=j + 1,

end;

3. ki=j—1

STOP

Obviously, the set {i1,i2,...,it} C V(G) is an independent set of G and
therefore a(G) > k for every output k of algorithm MIN. Let kp;rn be the
smallest k& Algorithm MIN provides for a fixed graph G. In the following
Theorem a new lower bound on kjp;rn is established.

Theorem. Let G be a finite, simple, connected, and non-complete graph on
n vertices with maximum degree A, n; be the number of vertices of degree j
in G, and

2(j) = AU+ (- =)+ (55— B=i-1)nan

jG+) —1[\j+1 j+1

1 n; n;_1 n1 }
Y L O [T TR g e N |
+ +<j+1 )nj+1+j+1+ et

forje{AA-1,...,1}.

(i) Then there is a unique jo € {A, A —1,...,1} such that 0 < z(jo) <
na + ...+ nj, and

A
) . na nA +na—1
> J
(11) kMIN-(ZJ+1>+A(A+1)+ (A_]-)A
j=1
ooy Dot i 2Uo)
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=14 z(jo) + Njo+1 + 2Njo42 + ... + (A — jo)na.
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2. PROOF

Let d; = d(;(') i=1,...,nand for 1 <k <dj+...+d,+1let f(k)
min } i g +1 —-» where the minimum is taken over integers x; with 0
z; < d; and Yoy i =k — 1. Lemma 1 and Lemma 2 are proved in [7].

IA I

Lemma 1. kMIN Z f(kMIN)

Lemma 2. The following algorithm A calculates f(k) :

Input: F ={dy,da,...,dy}, k€{1,2,...;d1+...+dn+ 1}, j:=0;
while j < k —1 do begin F := (F\ {max(F)}) U {max(F) —1}; j:==j5+1
end. Output: f(k) =Y fep ﬁ

Note that F' is a family, i.e., a member of F' may occur more than once.
Given k € {1,2,...,d1+...+d,+ 1}, in each of the k —1 steps of algorithm
A a maximum member f of the current family F is replaced by f — 1.
Ifk=di+...+dy+1then f(k) =n. 1 <k <di+...+d, =n1+2ns+
..+ Ana then there are unique integers j and z with j € {A,A—1,...,1}
and 0 <z < na+...+njsuch that k—1 = z4+nj114+2nj40+. . +(A—j)na =
na+(na+na—1)+...+(na+na—1+...+nj41)+z. With this expression
for k — 1 the part cut away by algorithm A is illustrated in Figure 1.

]

nA NA—-1 Nj+1 n; nj—1 ny

Figure 1
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Hence, after applying algorithm A, the family F' contains the member j — 1
exactly x + n;_1 times, the member j exactly na + ...+ n; — x times, and
all other members of F' being smaller than j — 1 at the beginning remain
unchanched. Thus, the following Lemma 3 is proved.

Lemma 3.
(i) Given k € {1,...,d1+...+dy,}, there are unique integers j and = with
je{A,A—-1,...,1} and z € {0,...,na + ...+ n; — 1} such that

k—1=na+ma+na-1)+...+(na+na1+...+nj41)+z

=x4+nj41+2n40+...+ (A —jna

and
.. T ni—1 ni
k) = ;- - J o+ =
(i) f(k) = (na+...+ny x)j+1+j + ...+ 5
1 T nj_1 ni
= : ...+ — for that k.
S I T SV A T

Lemma 4. Ifk =1+ 2+ nj + 2nj00 + ... + (A — j)na with j €
{AA=1,...,1} andz € {0,...,na+...+n;—1}, then f(k+1)— f(k) =
1

JG+D)”

Proof of Lemma 4. If v+ < nao + ...+ n; — 2 then k +1 = 1+
(x+1)+nj41+2nj40+ ...+ (A—jna and if 2 = na+ ... +n; — 1
thenk+1=1+n;+2n;11+...+ (A —j+1)na. In both cases Lemma 3
implies Lemma 4. [

Using Lemma 3, the calculation of f(k) is possible now without taking a
minimum and without using algorithm A. In the sequel, we will define the
function f for real k € [1,d; + ...+ dy, + 1) and show that the function
g(k) = k— f(k) is continuous and strictly increasing on [1,d; +...+d, +1).
Finally, using ¢g(1) < 0 and g(kp;7n) > 0, the lower bound kg on kprn is
the unique solution of the equation k = f(k).

Thus, for given integer j € {A,A —1,...,1} and real number x with
0 < 2 < na+ ...+ n; let the real numbers k& and f(k) (implicitely)
be defined as k = 1+ 2 + njq1 + 2nj40 + ... + (A — j)na and f(k) =

1 ni_
(na+t. ...+ +Gm+ 5+t %
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Lemma 5. The function g with g(k) = k — f(k) is continuous and strictly
increasing on [1,dy + ...+ dy + 1).

Proof of Lemma 5. First, let j € {A;A —1,...,1} be fixed. Then
k=1+z+nj41+2n402+...+(A—jna with 0 <z <na+...+n;
belongs to the interval I(j) = [1+nj41 +2nj42+ ...+ (A —j)na, 1 +nj+
2nj1+...+(A—j+1)na). Obviously g is continuous on I(j) and, because
glk+e)—glk)=€e— 5 and j(j+1) > 2, g is strictly increasing on I(j).

Now consider gon [1,...,d;+...+dp+1) and note that I(A)U...UI(1) =
1,...,d1+...+d,+1)and I(j)NI(j") = 0 if j # j'. Tt is easy to see
that g is also continuous in k = 1+ nj41 + 2nj42 + ... + (A — j)na for
je{A—-1,A—-2,...,2} and we are done. |
In [2, 12] the well known Caro-Wei-bound CW = Zle ]nﬁ is proved to
be a lower bound on «(G) and being tight if and only if G is complete.
With our assumption that G is non-complete, g(1) = 1 — ZjA:l jnﬁ <0
and g(karn) > 0 by Lemma 1. As a consequence of Lemma 5 there is a
unique zero ko = 1+ z(jo) + njo+1 + 2njo42 + ... + (A — jo)na of g with
1 < ko < kyrnv and 0 < 2(jo) < na + ...+ nj,. Considering the equation
f(k) = k we obtain

Lemma 6. If j e {AJ\A—-1,...,1} and k=142 +njp1+2nj40+ ...+
(A —j)na with 0 < x < na +...+n;, then f(k) =k if and only if

o j(j(ﬁ)lz 1| (i)

1 n; ni
—— —1n; — 44+ = 1.
+ +<j+1 )ng+1+j+1+ —1—2

Now we complete the proof of the Theorem. Assume there is j; € {A, A —

Lo 1} with i # o, = 30 (G — (A= j)na+ -+ (i = 1)
nj1+1+%+...+%— J,and 0 < 2 < na + ...+ nj. Then k =
14+ 2(j1) + nj+1 +2n5,42+ ... + (A — ji)na is a solution of the equation
f(k) = k by Lemma 6 and ko # ki by Lemma 3 (i) contradicting the

uniqueness of k.
With ko = f(ko) = F(1)+ (£(2) = F(1)) +...+ (F(Lko)) — F(Lko) = 1)) +
(f(ko) = f(lko])) and Lemma 4 we have f(ko) = (X5t 745) + aidmy +

NA+NA— na+...4n; +1 x(]) .
ﬁ +...+ (j0+2)(j0$1) + (j0+f)j0 and the Theorem is proved. |
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Many lower bounds on «(G) are known (cf. [1, 2, 3, 4, 5, 6, 8, 9, 10, 11]).
If we compare them with kg, let us remark here that, by the Theorem,

nA nA +nNa_1 nA + ...+ N1 x(jo)
ko = CW + + e —= —10 . .
’ A(A+1) T (A-1)A Go+2)(Go+1) " (o + 1o
nA naA +na—1 nA + ...+ Njot1
>
_CW+A(A+1)+ AG L) A(A+1)
z(jo) ko —1
Taarn - VT AAT

This implies kg > CW + % improving the well known lower bound
CW + Kixr1y on a(G) by O. Murphy ([8]).

In [6] it was established o > CW—ZijeEC;Z?di_dj)Qq?q?’ and S.M. Selkow
([9]) proved a > 351 qi(1 + max{0,diqi — >jepc) }), Where ¢; = ﬁ
and E(G) is the edge set of G. Both bounds equal CW if the graph is
regular, however, Murphy’s bound and therefore also kg are considerably
larger in that case. For a star K, on p + 1 vertices we have the converse
situation, i.e., ko is not comparable with these bounds in [6, 9].
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