A LOWER BOUND ON THE INDEPENDENCE NUMBER OF A GRAPH IN TERMS OF DEGREES

JOCHEN HARANT

Institut für Mathematik, TU Ilmenau 98684 Ilmenau, Germany

AND

Ingo Schiermeyer

Institut für Diskrete Mathematik und Algebra TU Bergakademie Freiberg 09596 Freiberg, Germany

Abstract

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.

Keywords: independence, stability, algorithm.

2000 Mathematics Subject Classification: 05C69, 05C85.

1. Introduction and Theorem

Let G be a finite, undirected, simple, non-complete, and connected graph on its vertex set $V(G) = \{1, 2, ..., n\}$. For a subgraph H of G and for a vertex $i \in V(H)$ let $d_H(i)$ be the degree of i in H, i.e., the cardinality of the neighbourhood $N_H(i) \subset V(H)$ of i in H, and let $\delta(H)$ be the minimum degree of H. A subset I of V(G) is called *independent* if the subgraph of G spanned by I is edgeless. The *independence number* $\alpha(G)$ is the largest cardinality |I| among all independent sets I of G. The following algorithm MIN (cf. [8]) is a well known procedure to construct an independent set of a graph G.

Algorithm MIN:

1. $G_1 := G, j := 1$

2. while $V(G_i) \neq \emptyset$ do

begin

choose $i_j \in V(G_j)$ with $d_{G_j}(i_j) = \delta(G_j)$, delete $\{i_j\} \cup N_{G_j}(i_j)$ to obtain G_{j+1} and set j := j+1;

end;

3. k := j - 1

STOP

Obviously, the set $\{i_1, i_2, \ldots, i_k\} \subset V(G)$ is an independent set of G and therefore $\alpha(G) \geq k$ for every output k of algorithm MIN. Let k_{MIN} be the smallest k Algorithm MIN provides for a fixed graph G. In the following Theorem a new lower bound on k_{MIN} is established.

Theorem. Let G be a finite, simple, connected, and non-complete graph on n vertices with maximum degree Δ , n_j be the number of vertices of degree j in G, and

$$x(j) = \frac{j(j+1)}{j(j+1)-1} \left[\left(\frac{1}{j+1} - (\Delta - j) \right) n_{\Delta} + \left(\frac{1}{j+1} - (\Delta - j - 1) \right) n_{\Delta-1} + \dots + \left(\frac{1}{j+1} - 1 \right) n_{j+1} + \frac{n_j}{j+1} + \frac{n_{j-1}}{j} + \dots + \frac{n_1}{2} - 1 \right]$$

for $j \in \{\Delta, \Delta - 1, \dots, 1\}$.

(i) Then there is a unique $j_0 \in \{\Delta, \Delta - 1, ..., 1\}$ such that $0 \le x(j_0) < n_{\Delta} + ... + n_{j_0}$ and

(ii)
$$k_{MIN} \ge \left(\sum_{j=1}^{\Delta} \frac{n_j}{j+1}\right) + \frac{n_{\Delta}}{\Delta(\Delta+1)} + \frac{n_{\Delta} + n_{\Delta-1}}{(\Delta-1)\Delta} + \dots + \frac{n_{\Delta} + \dots + n_{j_0+1}}{(j_0+2)(j_0+1)} + \frac{x(j_0)}{(j_0+1)j_0} = 1 + x(j_0) + n_{j_0+1} + 2n_{j_0+2} + \dots + (\Delta-j_0)n_{\Delta}.$$

2. Proof

Let $d_i = d_G(i), i = 1, ..., n$ and for $1 \le k \le d_1 + ... + d_n + 1$ let $f(k) = \min \sum_{i=1}^n \frac{1}{d_i + 1 - x_i}$, where the minimum is taken over integers x_i with $0 \le x_i \le d_i$ and $\sum_{i=1}^n x_i = k - 1$. Lemma 1 and Lemma 2 are proved in [7].

Lemma 1. $k_{MIN} \geq f(k_{MIN})$.

Lemma 2. The following algorithm A calculates f(k): Input: $F = \{d_1, d_2, \dots, d_n\}, k \in \{1, 2, \dots, d_1 + \dots + d_n + 1\}, j := 0;$ while j < k - 1 do begin $F := (F \setminus \{\max(F)\}) \cup \{\max(F) - 1\}; j := j + 1$ end. Output: $f(k) = \sum_{f \in F} \frac{1}{f+1}$.

Note that F is a family, i.e., a member of F may occur more than once. Given $k \in \{1, 2, \ldots, d_1 + \ldots + d_n + 1\}$, in each of the k-1 steps of algorithm A a maximum member f of the current family F is replaced by f-1.

If $k = d_1 + \ldots + d_n + 1$ then f(k) = n. If $1 \le k \le d_1 + \ldots + d_n = n_1 + 2n_2 + \ldots + \Delta n_{\Delta}$ then there are unique integers j and x with $j \in \{\Delta, \Delta - 1, \ldots, 1\}$ and $0 \le x < n_{\Delta} + \ldots + n_j$ such that $k - 1 = x + n_{j+1} + 2n_{j+2} + \ldots + (\Delta - j)n_{\Delta} = n_{\Delta} + (n_{\Delta} + n_{\Delta-1}) + \ldots + (n_{\Delta} + n_{\Delta-1} + \ldots + n_{j+1}) + x$. With this expression for k - 1 the part cut away by algorithm A is illustrated in Figure 1.

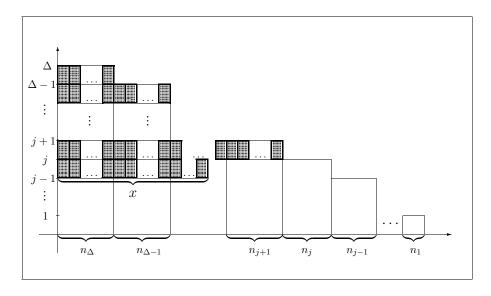


Figure 1

Hence, after applying algorithm A, the family F contains the member j-1 exactly $x+n_{j-1}$ times, the member j exactly $n_{\Delta}+\ldots+n_{j}-x$ times, and all other members of F being smaller than j-1 at the beginning remain unchanched. Thus, the following Lemma 3 is proved.

Lemma 3.

(i) Given $k \in \{1, ..., d_1 + ... + d_n\}$, there are unique integers j and x with $j \in \{\Delta, \Delta - 1, ..., 1\}$ and $x \in \{0, ..., n_{\Delta} + ... + n_j - 1\}$ such that

$$k - 1 = n_{\Delta} + (n_{\Delta} + n_{\Delta - 1}) + \dots + (n_{\Delta} + n_{\Delta - 1} + \dots + n_{j+1}) + x$$
$$= x + n_{j+1} + 2n_{j+2} + \dots + (\Delta - j)n_{\Delta}$$

and

(ii)
$$f(k) = (n_{\Delta} + \dots + n_j - x) \frac{1}{j+1} + \frac{x}{j} + \frac{n_{j-1}}{j} + \dots + \frac{n_1}{2}$$

 $= (n_{\Delta} + \dots + n_j) \frac{1}{j+1} + \frac{x}{j(j+1)} + \frac{n_{j-1}}{j} + \dots + \frac{n_1}{2}$ for that k .

Lemma 4. If $k = 1 + x + n_{j+1} + 2n_{j+2} + \ldots + (\Delta - j)n_{\Delta}$ with $j \in \{\Delta, \Delta - 1, \ldots, 1\}$ and $x \in \{0, \ldots, n_{\Delta} + \ldots + n_{j} - 1\}$, then $f(k+1) - f(k) = \frac{1}{j(j+1)}$.

Proof of Lemma 4. If $x \leq n_{\Delta} + \ldots + n_{j} - 2$ then $k + 1 = 1 + (x + 1) + n_{j+1} + 2n_{j+2} + \ldots + (\Delta - j)n_{\Delta}$ and if $x = n_{\Delta} + \ldots + n_{j} - 1$ then $k + 1 = 1 + n_{j} + 2n_{j+1} + \ldots + (\Delta - j + 1)n_{\Delta}$. In both cases Lemma 3 implies Lemma 4.

Using Lemma 3, the calculation of f(k) is possible now without taking a minimum and without using algorithm A. In the sequel, we will define the function f for real $k \in [1, d_1 + \ldots + d_n + 1)$ and show that the function g(k) = k - f(k) is continuous and strictly increasing on $[1, d_1 + \ldots + d_n + 1)$. Finally, using g(1) < 0 and $g(k_{MIN}) \ge 0$, the lower bound k_0 on k_{MIN} is the unique solution of the equation k = f(k).

Thus, for given integer $j \in \{\Delta, \Delta - 1, \dots, 1\}$ and real number x with $0 \le x < n_{\Delta} + \dots + n_{j}$ let the real numbers k and f(k) (implicitely) be defined as $k = 1 + x + n_{j+1} + 2n_{j+2} + \dots + (\Delta - j)n_{\Delta}$ and $f(k) = (n_{\Delta} + \dots + n_{j})\frac{1}{j+1} + \frac{x}{j(j+1)} + \frac{n_{j-1}}{j} + \dots + \frac{n_{1}}{2}$.

Lemma 5. The function g with g(k) = k - f(k) is continuous and strictly increasing on $[1, d_1 + \ldots + d_n + 1)$.

Proof of Lemma 5. First, let $j \in \{\Delta, \Delta - 1, ..., 1\}$ be fixed. Then $k = 1 + x + n_{j+1} + 2n_{j+2} + ... + (\Delta - j)n_{\Delta}$ with $0 \le x < n_{\Delta} + ... + n_j$ belongs to the interval $I(j) = [1 + n_{j+1} + 2n_{j+2} + ... + (\Delta - j)n_{\Delta}, 1 + n_j + 2n_{j+1} + ... + (\Delta - j + 1)n_{\Delta})$. Obviously g is continuous on I(j) and, because $g(k + \epsilon) - g(k) = \epsilon - \frac{\epsilon}{j(j+1)}$ and $j(j+1) \ge 2$, g is strictly increasing on I(j).

Now consider g on $[1, \ldots, d_1 + \ldots + d_n + 1)$ and note that $I(\Delta) \cup \ldots \cup I(1) = [1, \ldots, d_1 + \ldots + d_n + 1)$ and $I(j) \cap I(j') = \emptyset$ if $j \neq j'$. It is easy to see that g is also continuous in $k = 1 + n_{j+1} + 2n_{j+2} + \ldots + (\Delta - j)n_{\Delta}$ for $j \in \{\Delta - 1, \Delta - 2, \ldots, 2\}$ and we are done.

In [2, 12] the well known Caro-Wei-bound $CW = \sum_{j=1}^{\Delta} \frac{n_j}{j+1}$ is proved to be a lower bound on $\alpha(G)$ and being tight if and only if G is complete. With our assumption that G is non-complete, $g(1) = 1 - \sum_{j=1}^{\Delta} \frac{n_j}{j+1} < 0$ and $g(k_{MIN}) \geq 0$ by Lemma 1. As a consequence of Lemma 5 there is a unique zero $k_0 = 1 + x(j_0) + n_{j_0+1} + 2n_{j_0+2} + \ldots + (\Delta - j_0)n_{\Delta}$ of g with $1 < k_0 \leq k_{MIN}$ and $0 \leq x(j_0) < n_{\Delta} + \ldots + n_{j_0}$. Considering the equation f(k) = k we obtain

Lemma 6. If $j \in \{\Delta, \Delta - 1, ..., 1\}$ and $k = 1 + x + n_{j+1} + 2n_{j+2} + ... + (\Delta - j)n_{\Delta}$ with $0 \le x < n_{\Delta} + ... + n_j$, then f(k) = k if and only if

$$x = \frac{j(j+1)}{j(j+1)-1} \left[\left(\frac{1}{j+1} - (\Delta - j) \right) n_{\Delta} + \dots + \left(\frac{1}{j+1} - 1 \right) n_{j+1} + \frac{n_j}{j+1} + \dots + \frac{n_1}{2} - 1 \right].$$

Now we complete the proof of the Theorem. Assume there is $j_1 \in \{\Delta, \Delta - 1, \ldots, 1\}$ with $j_1 \neq j_0$, $x = \frac{j_1(j_1+1)}{j_1(j_1+1)-1}[(\frac{1}{j_1+1} - (\Delta - j_1))n_{\Delta} + \ldots + (\frac{1}{j_1+1} - 1)n_{j_1+1} + \frac{n_{j_1}}{j_1+1} + \ldots + \frac{n_1}{2} - 1]$, and $0 \leq x < n_{\Delta} + \ldots + n_{j_1}$. Then $k_1 = 1 + x(j_1) + n_{j_1+1} + 2n_{j_1+2} + \ldots + (\Delta - j_1)n_{\Delta}$ is a solution of the equation f(k) = k by Lemma 6 and $k_0 \neq k_1$ by Lemma 3 (i) contradicting the uniqueness of k_0 .

With $k_0 = f(k_0) = f(1) + (f(2) - f(1)) + \ldots + (f(\lfloor k_0 \rfloor) - f(\lfloor k_0 \rfloor - 1)) + (f(k_0) - f(\lfloor k_0 \rfloor))$ and Lemma 4 we have $f(k_0) = (\sum_{j=1}^{\Delta} \frac{n_j}{j+1}) + \frac{n_{\Delta}}{\Delta(\Delta+1)} + \frac{n_{\Delta} + n_{\Delta-1}}{(\Delta-1)\Delta} + \ldots + \frac{n_{\Delta} + \ldots + n_{j_0+1}}{(j_0+2)(j_0+1)} + \frac{x(j_0)}{(j_0+1)j_0}$ and the Theorem is proved.

Many lower bounds on $\alpha(G)$ are known (cf. [1, 2, 3, 4, 5, 6, 8, 9, 10, 11]). If we compare them with k_0 , let us remark here that, by the Theorem,

$$k_{0} = CW + \frac{n_{\Delta}}{\Delta(\Delta+1)} + \frac{n_{\Delta} + n_{\Delta-1}}{(\Delta-1)\Delta} + \dots + \frac{n_{\Delta} + \dots + n_{j_{0}+1}}{(j_{0}+2)(j_{0}+1)} + \frac{x(j_{0})}{(j_{0}+1)j_{0}}$$

$$\geq CW + \frac{n_{\Delta}}{\Delta(\Delta+1)} + \frac{n_{\Delta} + n_{\Delta-1}}{\Delta(\Delta+1)} + \dots + \frac{n_{\Delta} + \dots + n_{j_{0}+1}}{\Delta(\Delta+1)}\Delta(\Delta+1)$$

$$+ \frac{x(j_{0})}{\Delta(\Delta+1)} = CW + \frac{k_{0}-1}{\Delta(\Delta+1)}.$$

This implies $k_0 \geq CW + \frac{CW-1}{\Delta(\Delta+1)-1}$ improving the well known lower bound $CW + \frac{CW-1}{\Delta(\Delta+1)}$ on $\alpha(G)$ by O. Murphy ([8]).

In [6] it was established $\alpha \ge \frac{CW^2}{CW - \sum_{ij \in E(G)} (d_i - d_j)^2 q_i^2 q_j^2}$, and S.M. Selkow

([9]) proved $\alpha \geq \sum_{i=1}^{n} q_i (1 + \max\{0, d_i q_i - \sum_{ij \in E(G)} q_j\})$, where $q_i = \frac{1}{d_i + 1}$ and E(G) is the edge set of G. Both bounds equal CW if the graph is regular, however, Murphy's bound and therefore also k_0 are considerably larger in that case. For a star $K_{1,p}$ on p+1 vertices we have the converse situation, i.e., k_0 is not comparable with these bounds in [6, 9].

Acknowledgement

The authors want to thank Olga Gross (Ilmenau) and Martin Sonntag (Freiberg) for their hints and remarks.

REFERENCES

- [1] E. Bertram and P. Horak, Lower bounds on the independence number, Geombinatorics V (1996) 93–98.
- [2] Y. Caro, New results on the independence number (Technical Report. Tel-Aviv University, 1979).
- [3] Y. Caro and Z. Tuza, *Improved lower bounds on k-independence*, J. Graph Theory **15** (1991) 99–107.
- [4] S. Fajtlowicz, On the size of independent sets in graphs, Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing, Boca Raton 1978, 269–274.
- [5] S. Fajtlowicz, *Independence*, clique size and maximum degree, Combinatorica 4 (1984) 35–38.

- [6] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239–243.
- [7] J. Harant and I. Schiermeyer, On the independence number of a graph in terms of order and size, Discrete Math. 232 (2001) 131–138.
- [8] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. **90** (1991) 207–211.
- [9] S.M. Selkow, The independence number of a graph in terms of degrees, Discrete Math. 132 (1994) 363–365.
- [10] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83–87.
- [11] J.B. Shearer, A note on the independence number of triangle-free graphs, II,
 J. Combin. Theory (B) 53 (1991) 300–307.
- [12] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).

Received 28 November 2005 Revised 28 June 2006