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Abstract

The upper domination Ramsey number u(m,n) is the smallest in-
teger p such that every 2-coloring of the edges of Kp with color red
and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of
Kp induced by blue and red edges, respectively; Γ(G) is the maximum
cardinality of a minimal dominating set of a graph G. In this paper,
we show that u(4, 4) ≤ 15.
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1. Introduction

Our notation comes from [6] and [7]. Let G = (V (G), E(G)) be a graph
with a vertex set V (G) of order p = |V (G)| and an edge set E(G). If
v is a vertex in V (G), then the open neighborhood of v is NG(v) = {u ∈
V (G)|uv ∈ E(G)} and the closed neighborhood of v is NG[v] = {v}∪NG(v).
The external private neighborhood of v relative to S ⊆ V (G) is epn(v, S) =
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N(v)−N [S−{v}]. The open neighborhood of a set S of vertices is NG(S) =⋃
v∈S NG(v), and the closed neighborhood is NG[S] = NG(v) ∪ S.

A set S ⊆ V (G) is a dominating set in S if each vertex v of G belongs
to S or is adjacent to some vertex in S. A set S ⊆ V (G) is an irredundant
set if for each s ∈ S there is a vertex w in G such that NG[w] ∩ S = {s}. A
set S ⊆ V (G) is independent in G if no two vertices of S are adjacent in G.
If S is an irredundant set in G and v ∈ S, then the set N [v]−N [S −{v}] is
nonempty and is called the set of private neighbors of v in G (relative to S),
denoted by pnG(v, S) or simply by pn(v, S). The upper domination number
of G, denoted by Γ(G), is the maximum cardinality of a minimal dominat-
ing set of G. The upper irredundance number of G, denoted by IR(G), is
the maximum cardinality of an irredundant set of G. The independence
number of G, denoted by β(G), is the maximum cardinality among all inde-
pendent sets of vertices of G. A minimal dominating set of cardinality Γ(G)
is called a Γ(G)-set. Similarly, an irredundant set of cardinality IR(G) is
called an IR(G)-set.

It is apparent that irredundance is a hereditary property.

Remark 1. Any independent set is also irredundant.

Remark 2. Every minimal dominating set is an irredundant set. Conse-
quently, we have Γ(G) ≤ IR(G) for every graph G.

Remark 3 [5]. A set D ⊆ V (G) is a minimal dominating set if and only if
it is dominating and irredundant, and therefore, if Γ(G) < IR(G), then no
IR-set is dominating.

Remark 4. Every maximum independent set is also a dominating set, thus
we have β(G) ≤ Γ(G) for every graph G.

Hence the parameters β(G),Γ(G), IR(G) are related by the following in-
equalities which were observed by Cockayne and Hedetniemi [3].

Theorem 1 [3]. For every graph G, β(G) ≤ Γ(G) ≤ IR(G).

Let G1, G2, . . . , Gt be an arbitrary t-edge coloring of Kn, where for each
i ∈ {1, 2, . . . , t}, Gi is the spanning subgraph of Kn whose edges are col-
ored with color i. The classical Ramsey number r(n1, n2, . . . , nt) is the
smallest value of n such that for every t-edge coloring G1, G2, . . . , Gt of Kn,
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there is an i ∈ {1, 2, . . . , t} for which β(Gi) ≥ ni, where G is the comple-
ment of G. The irredundant Ramsey number denoted by s(n1, n2, . . . , nt),
is the smallest n such that for every t-edge coloring G1, G2, . . . , Gt of Kn,
there is at least one i ∈ {1, 2, . . . , t} for which IR(Gi) ≥ ni. The irre-
dundant Ramsey numbers exist by Ramsey’s theorem, and by Remark 1
s(n1, n2, . . . , nt) ≤ r(n1, n2, . . . , nt) for all ni, where i = 1, 2, . . . , t. The up-
per domination Ramsey number u(n1, n2, . . . , nt) is defined as the smallest
n such that for every t-edge coloring G1, G2, . . . , Gt of Kn, there is at least
one i ∈ {1, 2, . . . , t} for which Γ(Gi) ≥ ni.

In the case t = 2, r(m, n) is the smallest integer p such that for every
2-coloring of the edges of Kp with colors red (R) and blue (B), β(B) ≥ m
or β(R) ≥ n. Similarly, the irredundant Ramsey number s(m,n) is the
smallest integer p such that every 2-coloring of the edges of Kp with colors
red (R) and blue (B) satisfies IR(B) ≥ m or IR(R) ≥ n. Finally, the
upper domination Ramsey number u(m,n) is the smallest integer p such
that every 2-coloring of the edges of Kp with colors red (R) and blue (B)
satisfies Γ(B) ≥ m or Γ(R) ≥ n.

It follows from Theorem 1 that for all m, n,

s(m,n) ≤ u(m,n) ≤ r(m,n),

and for the purpose of our proof of the main result, let us recall the following
results.

Theorem 2 [2]. s(4, 4) = 13.

Theorem 3 [4]. r(3, 4) = 9.

Theorem 4 [4]. r(4, 4) = 18.

2. Main Result

First we state the following

Lemma 5. Let (R, B) be a 2-edge coloring of Kn such that Γ(B) ≤ 3,
IR(B) ≥ 4 and β(R) ≤ 3. Then there exists an irredundant set X of B
such that |X| = 4 and epn(x,X) 6= ∅ for each x ∈ X.

Proof. Let Y be an IR-set of B and X the subset of Y such that epn(x, Y )
6= ∅ for all x ∈ X. Suppose firstly that |X| = 3; say X = {x1, x2, x3} and
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let X ′ = {x′1, x′2, x′3}, where x′i ∈ epn(xi, Y ), i = 1, 2, 3. Note that each x′i
is joined by red edges to all vertices in Y − {xi}. Since |Y | ≥ 4, there is
a vertex w ∈ Y − X such that pn(w, Y ) = {w}; hence w is joined by red
edges to the vertices in X ∪X ′. Furthermore, by Remark 3 there is also a
vertex v ∈ V (B) − N [Y ]; so v is joined by red edges to all vertices in Y .
But β(B) < 3 and so, to avoid a red K4, the above-mentioned red edges
force all edges between vertices in X ′ ∪ {v} to be blue. But this is a blue
K4, contradicting β(R) ≤ 3. The case |X| ≤ 2 is easy and omitted.

Now we are ready to prove the following theorem.

Theorem 6. u(4, 4) ≤ 15.

Proof. Let (R, B) be a 2-edge coloring of K15 and suppose that Γ(R) ≤ 3
and Γ(B) ≤ 3. By Theorem 1, β(R) ≤ 3 and β(B) ≤ 3. By Theorem 2,
s(4, 4) = 13 and therefore, without loss of generality, we may assume that
IR(B) ≥ 4. We only consider the case IR(B) = 4; the case IR(B) ≥ 5
is similar but simpler, and thus omitted. Then, by Lemma 5, there exists
an IR-set X of B in which epn(x,X) 6= ∅ for each x ∈ X. Let V (K15) =
{0, 1, . . . , 9, x, y, z, w, t}, X = {0, 2, 4, 6} and Y = {1, 3, 5, 7}, where for each
i ∈ Y , i ∈ epnB(i − 1, X). Thus there is a blue matching consisting of the
edges {0, 1}, {2, 3}, {4, 5} and {6, 7}, and each vertex i ∈ X is joined to all
vertices j ∈ Y − {i + 1} by red edges, according to the private neighbor
property. Since Γ(B) < IR(B), Remark 3 applied to the irredundant sets
X and Y implies that there are vertices u and v joined by red edges to the
vertices in X and Y , respectively. If u = v, then X ∪ {u} is irredundant in
B and IR(B) ≥ 5, which is not the case. Hence we may assume that u 6= v;
say u = 9 and v = 8. Similarly, we may assume that {8, 9} is red, otherwise
X ′ = X ∪ {8} is irredundant in B (where 9 ∈ epn(8, X ′)).

We now make a few observations about the effects that a red edge
between two vertices in X (or Y ) has on the colors of the other edges between
vertices in X∪Y ∪{8, 9}. For simplicity, we consider the edge {1, 3}; similar
remarks hold for the other edges. Suppose therefore that {1, 3} is red. Then

Observation 1. {i, 8} is blue for i ∈ {4, 6}, otherwise {1, 3, i, 8} induces a
red K4, thus contradicting β(B) ≤ 3.

Observation 2. {4, 6} is blue, otherwise {1, 3, 4, 6} induces a red K4.
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Observation 3. {1, 9} and {3, 9} are blue, otherwise, if (say) {1, 9} is red,
then {2, 8} (respectively {2, 4},{2, 6}) is blue to avoid the red K4 induced by
{1, 2, 8, 9} (respectively {1, 2, 4, 9}, {1, 2, 6, 9}), thus forming the blue K4 on
{2, 4, 6, 8}, by Observation 1 and Observation 2. This contradicts β(R) ≤ 3.

Now, if (say) {1, 3}, {1, 5} and {1, 7} are all red, then by Observation 2,
{2, 4, 6} induces a blue triangle and thus by Observation 1, {2, 4, 6, 8} in-
duces a blue K4, a contradiction. Therefore

Observation 4. No vertex in X (or Y ) is adjacent in R to all other vertices
of X (or Y ).

Observation 5. The red subgraph induced by X is triangle-free, other-
wise any such red triangle forms a red K4 with vertex 9; similarly, the red
subgraph induced by Y is triangle-free.

The remaining part of the proof is divided into two parts.

• Part 1: there is a vertex v ∈ Y such that v is joined by exactly two red
edges to the remaining vertices of Y .

• Part 2: there is no vertex v ∈ Y such that v is joined by two red edges
to the remaining vertices of Y .

Part 1
Without loss of generality, let us suppose that edges {1, 3}, {1, 5} are

red. By Observations 1–5 we have {1, 7}, {1, 9}, {2, 6}, {2, 8}, {3, 5}, {3, 9},
{4, 6}, {4, 8}, {5, 9}, {6, 8} and {7, 9} are blue, the edge {2, 4} is red. To
avoid a blue triangle (3, 5, 7) we have that at least one of the edges {3, 7},
{5, 7} must be red. This forces {0, 8} to be blue. Now, we have to consider
three cases:

• Case 1: {3, 7} and {5, 7} are red.
• Case 2: {3, 7} is blue, {5, 7} is red.
• Case 3: {3, 7} is red, {5, 7} is blue.

Case 1. In this case, we have that {3, 7} and {5, 7} are red. By an
observation similar to Observation 1, the edges {0, 2} and {0, 4} are blue.
Similarly, {0, 6} is red.

Suppose {8, x} is blue. If x is joined by red edges to {2, 4}, then, to
avoid a red K4, the edges {1, x}, {7, x} and {9, x} are blue, and we obtain
a blue K4 on {1, 7, 9, x}.
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Similarly, if x is joined by red edges to {0, 6}, then to avoid a red K4,
the edges {3, x}, {5, x} and {9, x} are blue, and we obtain a blue K4 on
{3, 5, 9, x}.

Suppose {2, x} is blue. Then {6, x} is red, since otherwise a blue K4 on
{2, 6, 8, x} results. Since {6, x} is red, {0, x} is blue. But then we have a
blue K4 on {0, 2, 8, x}. Thus {2, x} is red, and so {4, x} is blue. To avoid a
blue K4 on {4, 6, 8, x}, {6, x} is red. Since {6, x} is red, {0, x} is blue. But
then we have a blue K4 on {0, 4, 8, x}.

Thus vertex 8 is joined by a red edge to every vertex in {x, y, z, w, t}
and so the red degree of 8 is at least 10. As r(3, 4) = 9, we immediately
have a red K4 containing 8 or a blue K4 amongst the neighbors of 8.

Case 2. In this case, we have that {3, 7} is blue and {5, 7} is red.
Similarly to Observation 1, the edge {0, 2} is blue. To avoid a blue K4 on
{0, 2, 6, 8}, {0, 6} is red. If {0, 4} is blue, then by using similar methods to
those in Case 1, we immediately obtain a contradiction. Thus, edge {0, 4}
is red.

Next, suppose that vertex 8 has three blue edges incident to vertices
{x, y, z, w, t}. Without loss of generality, let us suppose that edges {8, x},
{8, y} and {8, z} are blue.

Now suppose {6, x} is blue. Then {2, x} and {4, x} are red, since oth-
erwise there are two blue K4’s on {2, 6, 8, x} and {4, 6, 8, x}. But then we
have a blue K4 on {1, 7, 9, x}. Thus, {6, x} is red.

If {0, x} is red, we have a blue K4 on {3, 5, 9, x}.
Thus there is only one possible method of coloring the edges joining

vertices {x, y, z} to vertices {0, 2, 4, 6}: {0, x}, {0, y}, {0, z}, {4, x}, {4, y},
{4, z} are blue, and {2, x}, {2, y}, {2, z}, {6, x}, {6, y}, {6, z} are red. But
this coloring forces a red K4 on the set {x, y, z, 2}, a contradiction.

Thus our assumption that vertex 8 has three blue edges incident to ver-
tices {x, y, z, w, t} is incorrect. Similarly, vertex 9 has at most two blue edges
to vertices {x, y, z, w, t}. It is easy to see that there are exactly two blue
edges joining vertex 8 (9) to vertices {x, y, z, w, t}, for otherwise degR(8) ≥ 9
or degR(9) ≥ 9, and by the fact r(3, 4) = 9 we shall to obtain a contradiction.
Now, we have to consider three subcases.

Subcase 2.1. In this subcase two blue edges joining vertices 8 and 9 to
vertices {x, y, z, w, t} have the same end-vertices. Without loss of generality,
let us suppose that the end-vertices of these blue edges are x and y.
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Suppose {6, x} is blue. Then {2, x} and {4, x} are red, since otherwise there
are two blue K4’s on {2, 6, 8, x} and {4, 6, 8, x}. But then we have a blue
K4 on {1, 7, 9, x}. Thus {6, x} is red.

Suppose {0, x} is also colored red. Then {3, x} and {5, x} are blue, since
otherwise two red K4’s on {0, 3, 6, x} and {0, 5, 6, x}. But then we have a
blue K4 on {3, 5, 9, x}. Thus {0, x} is blue.

Now, suppose {1, x} is red. Then {3, x} and {5, x} are blue, since oth-
erwise there are two red K4’s on {1, 3, 6, x} and {1, 5, 6, x}. But then we
have a blue K4 on {3, 5, 9, x}. Thus {1, x} is blue.

Consequently, to avoid a blue K4 on {1, 7, 9, x}, {7, x} is red, and to
avoid a blue K4 on {0, 2, 8, x}, {2, x} is red. Then {4, x} and {5, x} are blue
and {3, x} is red. Thus there is only one possible method of coloring the
edges joining vertices x and y to the vertices of sets X and Y : {0, x(y)},
{1, x(y)}, {4, x(y)}, {5, x(y)} are blue, and {2, x(y)}, {3, x(y)}, {6, x(y)},
{7, x(y)} are red. But this forces {x, y} to be red, and we obtain a red K4

on vertices {3, 6, x, y}, a contradiction.

Subcase 2.2. In this subcase vertices 8 and 9 are joined by two blue
edges to different vertices among {x, y, z, w, t}. Assume {8, z}, {8, t}, {9, x}
and {9, y} are blue.

To avoid the blue K4 on {3, 5, 9, x}, one of the edges {3, x} or {5, x}
is red. Then {1, x} is blue, since otherwise there is a red K4 on either
{1, 3, 8, x} or {1, 5, 8, x}. Similarly {1, y} is blue.

Next, to avoid the blue K4 on {1, 7, 9, x}, edge {7, x} is red, and simi-
larly, {7, y} is red.

To avoid the blue K4 on {1, 9, x, y} edge {x, y} is red. But then
〈{7, 8, x, y}〉 is a red K4, a contradiction.

Subcase 2.3. We have to consider the subcase when vertices 8 and 9
are joined by blue edges to exactly one common vertex among {x, y, z, w, t}.
Without loss of generality, assume that {8, y}, {8, z}, {9, x}, {9, y} are blue
and the remaining edges which join vertices 8 and 9 to {x, y, z, w, t} are red.
Then we immediately have that {w, t} is blue.

Suppose {1, x} is red. Then, to avoid two red K4’s on {1, 3, 8, x} and
{1, 5, 8, x}, we obtain that the edges {3, x} and {5, x} are blue. But then
〈{3, 5, 9, x}〉 is a blue K4, a contradiction. We conclude that {1, x} is blue,
{7, x} is red and {5, x} is blue.

Suppose {2, y} is blue. Then, to avoid a blue K4 on {0, 2, 8, y}, {0, y} is
red. Similarly, to avoid a blue K4 on {2, 6, 8, y}, {6, y} is red. To avoid a blue
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K4 on {3, 5, 9, y}, {5, y} or {3, y} is red. If {5, y} is red, then {0, 5, 6, y} is a
red K4. Thus {5, y} is blue, and so {3, y} is red. But then 〈{0, 3, 6, y}〉 is a
red K4. Thus {2, y} is red.

Suppose {4, y} is red. To avoid a red K4 on {1, 2, 4, y} it follows that
{1, y} is blue. To avoid a red K4 on {2, 4, 7, y}, {7, y} is blue. But then
〈{1, 7, 9, y}〉 is a blue K4, a contradiction. Thus {4, y} is blue, and so {6, y}
is red.

Suppose {0, y} is red. To avoid a red K4 on {0, 3, 6, y}, {3, y} is blue.
To avoid a red K4 on {0, 5, 6, y}, it follows that {5, y} is blue. But then
〈{3, 5, 9, y}〉 is a blue K4, a contradiction. Thus {0, y} is blue.

Suppose {1, y} is red. Then, to avoid a red K4 on {1, 3, 6, y}, the edge
{3, y} is blue. To avoid a red K4 on {1, 5, 6, y}, the edge {5, y} is blue. But
then {3, 5, 9, y} is a blue K4, which is a contradiction. Thus {1, y} is blue.

Suppose {5, y} is red. Then, to avoid a red K4 on {2, 5, 7, y}, it follows
that {7, y} is blue. But then we obtain a blue K4 on {1, 7, 9, y}. Thus {5, y}
is blue.

Suppose {6, z} is blue. To avoid a blue K4 on {4, 6, 8, z}, {4, z} is red. To
avoid a blue K4 on {2, 6, 8, z}, the edge {2, z} is red. But then 〈{2, 4, 9, z}〉
is a red K4, a contradiction.

Thus {6, z} is red. Finally:

• to avoid a red K4 on {0, 6, 9, z}, the edge {0, z} is blue;

• to avoid a blue K4 on {0, 2, 8, z}, the edge {2, z} is red;

• to avoid a red K4 on {2, 4, 9, z}, the edge {4, z} is blue;

• to avoid a blue K4 on {3, 5, 9, y}, the edge {3, y} is red;

• to avoid a blue K4 on {1, 7, 9, y}, the edge {7, y} is red;

• to avoid a blue K4 on {3, 5, 9, x}, the edge {3, x} is red;

• to avoid a blue K4 on {5, 9, x, y}, the edge {x, y} is red;

• to avoid a blue K4 on {0, 8, y, z}, the edge {y, z} is red;

• to avoid a red K4 on {2, 7, x, y}, the edge {2, x} is blue;

• to avoid a red K4 on {2, 7, y, z}, the edge {7, z} is blue;

• to avoid a red K4 on {3, 6, x, y}, the edge {6, x} is blue;

• to avoid a red K4 on {3, 6, y, z}, the edge {3, z} is blue.
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Suppose, to the contrary, that {w, x} is red. Then {3, w} and {7, w} are
blue, since otherwise 〈{3, 8, w, x}〉 and 〈{7, 8, w, x}〉 are blue K4’s.

Suppose {w, z} is red. If {2, w} is red, then {2, 9, z, w} is a red K4. If
{6, w} is red, then {6, 9, w, z} is a red K4. Thus {2, w} and {6, w} are blue.

If t sends a blue edge to {2, 7} and t sends a blue edge to {3, 6}, we
obtain a blue K4, and we are done.

Suppose t is joined by red edges to 2 and 7. Then {4, t}, {5, t} and {y, t}
are blue, since otherwise there are three red K4’s on {2, 4, 7, t}, {2, 5, 7, t}
and {2, 7, y, t}. But then we obtain a blue K4 on {4, 5, y, t}, a contradiction.

Suppose t is joined by red edges to 3 and 6. Then {y, t}, {1, t} and {0, t}
are blue, since otherwise there are three red K4’s: {0, 3, 6, t}, {1, 3, 6, t} and
{3, 6, y, t}. But then 〈{0, 1, y, t}〉 is a blue K4. Thus {w, z} is blue. But then,
in both cases, {3, 7, w, z} forms a blue K4, a contradiction. Consequently,
{w, x} is blue.

Now, by using the same methods to those for the edge {w, x}, we prove
that {x, t} is blue. Suppose {x, t} is red. Then {3, t} and {7, t} are blue,
since otherwise, 〈{3, 8, x, t}〉 and 〈{7, 8, x, t}〉 are blue K4’s.

Suppose {z, t} is red. If {2, t} is red, then 〈{2, 9, z, t}〉 is a red K4. If
{6, t} is red, then 〈{6, 9, z, t}〉 is a red K4. Thus {2, t} and {6, t} are blue.

If {2, w}, {3, w}, {6, w} and {7, w} are blue, then {3, 7, w, t}, {2, 6, w, t}
or {2, 6, w, x} are a blue K4.

Suppose w is joined by red edges to 2 and 7. Then {4, w}, {5, w} and
{y, w} are blue, since otherwise there are three red K4’s on {2, 4, 7, w},
{2, 5, 7, w} and {2, 7, y, w}. But then we obtain a blue K4 on {4, 5, y, w}, a
contradiction.

Suppose w is joined by red edges to 3 and 6. Then {y, w}, {1, w}
and {0, w} are blue, since otherwise there are three red K4’s: {0, 3, 6, w},
{1, 3, 6, w} and {3, 6, y, w}. But then 〈{0, 1, y, w}〉 is a blue K4. Thus {z, t}
is blue. But then, in both cases, {3, 7, t, z} forms a blue K4, a contradiction.
Hence, {x, t} is blue.

Suppose now that {z, t} is red. Then {2, t} and {6, t} are blue, since
otherwise 〈{2, 9, z, t}〉 and 〈{7, 8, z, t}〉 are red K4’s. But then we obtain a
blue K4 on {2, 6, t, x}. Thus {z, t} is blue. Similarly, {w, z} is also colored
blue. Then, to avoid a blue K4 on {w, t, x, z}, it follows {x, z} is red.

Now, let us consider a vertex x and all blue edges incident to it. Since
r(3, 4) = 9, we obtain that x is joined by at most one blue edge to one of
vertices 0 and 4.

If {0, x} and {4, x} are red, then we have a red K4 on {0, 4, 7, x}.
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First, suppose {0, x} is blue. To avoid a red K4 on vertices {1, 5, 8, w} or
{1, 5, 8, t} we may assume without loss of generality that {1, w} is blue.
Then {5, w} and {1, t} are red, and {5, t} is blue. To avoid a blue K4 on
vertices {0, 1, x, w}, {0, w} is red. Then {6, w} is blue, since otherwise there
is a red K4 on {0, 6, 9, w}. Similarly, {6, t} is red and {0, t} is blue. It is
easy to see that {2, w} and {2, t} are red.

Now, consider a vertex z and all blue edges incident to it. Similarly to
x, vertex z is joined by exactly one blue edge either to vertex 1 or to 5.

If {1, z} is blue and {5, z} is red, then, since {0, w} is red, we obtain that
{4, w} is blue and {4, t} is red. But then we have a red K4 on {2, 4, 9, t}.

If {1, z} is red and {5, z} is blue, we also easily obtain a contradiction,
so {0, x} is red. If {4, x} is blue, then by using similar arguments we obtain
a contradiction, and the proof of this subcase is complete.

Case 3. In this case we have that {3, 7} is red and {5, 7} is blue. To
avoid a red K4 on {0, 3, 4, 7}, it follows that {0, 4} is blue. To avoid a
blue K4 on {0, 4, 6, 8}, {0, 6} is red. If {0, 2} is blue, then by using similar
methods to those in Case 1, we obtain a contradiction. Thus edge {0, 2} is
red and we obtain a coloring isomorphic to that considered in Case 2.

Part 2
Without loss of generality we can assume that {1, 3} is red. By Ob-

servations 1–5, we obtain that vertices 1 and 3 are joined by blue edges to
vertex 9. Edge {5, 9} is blue, otherwise a blue K4 on {0, 2, 4, 8} results.
Similarly {7, 9} is blue, otherwise there is a blue K4 on {0, 2, 6, 8}. To avoid
a blue K4 on {3, 5, 7, 9}, {5, 7} is red. So we obtain two red edges, and
all the remaining edges of K5 on {0, 2}, {0, 8}, {2, 8}, {4, 6}, {4, 8}, {6, 8}.
When we color the remaining edges of K5 on X ∪{8}, we must consider six-
teen cases. When {0, 4}, {0, 6}, {2, 4}, {2, 6} are red, we obtain a coloring
which is isomorphic to that considered in Part 1, Case 1 above. In the nine
following cases:

1. {0, 4}, {0, 6} are blue and {2, 4}, {2, 6} are red,
2. {0, 4}, {2, 4} are blue and {0, 6}, {2, 6} are red,
3. {0, 6}, {2, 6} are blue and {0, 4}, {2, 4} are red,
4. {2, 4}, {2, 6} are blue and {0, 4}, {0, 6} are red,
5. {0, 4}, {0, 6}, {2, 4} are blue and {2, 6} is red,
6. {0, 4}, {0, 6}, {2, 6} are blue and {2, 4} is red,
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7. {0, 4}, {2, 4}, {2, 6} are blue and {0, 6} is red,
8. {0, 6}, {2, 4}, {2, 6} are blue and {0, 4} is red,
9. {0, 4}, {0, 6}, {2, 4} and {2, 6} are blue,

we immediately obtain a contradiction. In the remaining six cases:

1. {0, 4}, {0, 6}, {2, 4} are red and {2, 6} is blue,
2. {0, 4}, {0, 6}, {2, 6} are red and {2, 4} is blue,
3. {0, 4}, {2, 4}, {2, 6} are red and {0, 6} is blue,
4. {0, 6}, {2, 4}, {2, 6} are red and {0, 4} is blue,
5. {0, 6}, {2, 4} are red and {0, 4}, {2, 6} are blue,
6. {0, 4}, {2, 6} are red and {0, 6}, {2, 4} are blue,

similarily to Case 1, we obtain that vertex 9 is joined by a red edge to every
vertex in {x, y, z, w, t}, so the red degree of 9 is at least 10. This observation
completes the proof of Theorem 6.
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