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Abstract

The upper domination Ramsey number u(m,n) is the smallest in-
teger p such that every 2-coloring of the edges of K, with color red
and blue, I'(B) > m or I'(R) > n, where B and R is the subgraph of
K, induced by blue and red edges, respectively; I'(G) is the maximum
cardinality of a minimal dominating set of a graph G. In this paper,
we show that u(4,4) < 15.
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1. INTRODUCTION

Our notation comes from [6] and [7]. Let G = (V(G), E(G)) be a graph
with a vertex set V(G) of order p = |V(G)| and an edge set E(G). If
v is a vertex in V(G), then the open neighborhood of v is Ng(v) = {u €
V(GQ)|luww € E(G)} and the closed neighborhood of v is Ng[v] = {v}UNg(v).
The external private neighborhood of v relative to S C V(G) is epn(v, S) =



420 T. DzIDO AND R. ZAKRZEWSKA

N(v)—N[S—{v}]. The open neighborhood of a set S of vertices is Ng(5) =
Uwves Na(v), and the closed neighborhood is Ng[S] = Ng(v) U S.

A set S C V(G) is a dominating set in S if each vertex v of G belongs
to S or is adjacent to some vertex in S. A set S C V(G) is an irredundant
set if for each s € S there is a vertex w in G such that Ng[w|NS = {s}. A
set S C V(G) is independent in G if no two vertices of S are adjacent in G.
If S is an irredundant set in G and v € S, then the set N[v] — N[S — {v}] is
nonempty and is called the set of private neighbors of v in G (relative to S),
denoted by png(v, S) or simply by pn(v,S). The upper domination number
of G, denoted by I'(G), is the maximum cardinality of a minimal dominat-
ing set of G. The upper irredundance number of G, denoted by IR(G), is
the maximum cardinality of an irredundant set of G. The independence
number of G, denoted by (@), is the maximum cardinality among all inde-
pendent sets of vertices of G. A minimal dominating set of cardinality I'(G)
is called a I'(G)-set. Similarly, an irredundant set of cardinality IR(G) is
called an IR(G)-set.

It is apparent that irredundance is a hereditary property.

Remark 1. Any independent set is also irredundant.

Remark 2. Every minimal dominating set is an irredundant set. Conse-
quently, we have I'(G) < IR(G) for every graph G.

Remark 3 [5]. A set D C V(G) is a minimal dominating set if and only if
it is dominating and irredundant, and therefore, if I'(G) < IR(G), then no
I R-set is dominating.

Remark 4. Every maximum independent set is also a dominating set, thus
we have §(G) < T'(G) for every graph G.

Hence the parameters 3(G),I'(G),[R(G) are related by the following in-
equalities which were observed by Cockayne and Hedetniemi [3].

Theorem 1 [3]. For every graph G, 5(G) <T'(G) < IR(G).

Let G1,Go,...,Gy be an arbitrary t-edge coloring of K,, where for each
i € {1,2,...,t}, G; is the spanning subgraph of K, whose edges are col-
ored with color i. The classical Ramsey number r(ni,na,...,n;) is the
smallest value of n such that for every t-edge coloring G1,Go, ..., G of K,
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there is an i € {1,2,...,t} for which 3(G;) > n;, where G is the comple-
ment of G. The irredundant Ramsey number denoted by s(ni,na,...,n),
is the smallest n such that for every t-edge coloring G1,Go,...,Gy of K,
there is at least one i € {1,2,...,t} for which IR(G;) > n;. The irre-
dundant Ramsey numbers exist by Ramsey’s theorem, and by Remark 1
s(ni,na,...,ng) < r(niy,ng,...,n) for all n;, where i =1,2,... ¢. The up-
per domination Ramsey number u(ni,na,...,n;) is defined as the smallest
n such that for every t-edge coloring G1, G, ..., Gt of K, there is at least
one i € {1,2,...,t} for which T'(G;) > n;.

In the case t = 2, r(m,n) is the smallest integer p such that for every
2-coloring of the edges of K, with colors red (R) and blue (B), 8(B) > m
or f(R) > n. Similarly, the irredundant Ramsey number s(m,n) is the
smallest integer p such that every 2-coloring of the edges of K, with colors
red (R) and blue (B) satisfies IR(B) > m or IR(R) > n. Finally, the
upper domination Ramsey number u(m,n) is the smallest integer p such
that every 2-coloring of the edges of Kj, with colors red (R) and blue (B)
satisfies I'(B) > m or I'(R) > n.

It follows from Theorem 1 that for all m, n,

s(m,n) < u(m,n) <r(m,n),

and for the purpose of our proof of the main result, let us recall the following
results.

Theorem 2 [2]. s(4,4) = 13.
Theorem 3 [4]. r(3,4) = 9.

Theorem 4 [4]. r(4,4) = 18.

2. MAIN RESULT
First we state the following

Lemma 5. Let (R, B) be a 2-edge coloring of K, such that T'(B) < 3,
IR(B) > 4 and B(R) < 3. Then there exists an irredundant set X of B
such that | X| =4 and epn(z, X) # 0 for each x € X.

Proof. Let Y be an I R-set of B and X the subset of Y such that epn(z,Y)
# () for all x € X. Suppose firstly that |X| = 3; say X = {x1, 22,23} and



422 T. DzIDO AND R. ZAKRZEWSKA

let X' = {z, ), 2%}, where 2 € epn(z;,Y), i = 1,2,3. Note that each
is joined by red edges to all vertices in Y — {x;}. Since |Y| > 4, there is
a vertex w € Y — X such that pn(w,Y) = {w}; hence w is joined by red
edges to the vertices in X U X’. Furthermore, by Remark 3 there is also a
vertex v € V(B) — N[Y]; so v is joined by red edges to all vertices in Y.
But G(B) < 3 and so, to avoid a red K4, the above-mentioned red edges
force all edges between vertices in X’ U {v} to be blue. But this is a blue
Ky, contradicting S(R) < 3. The case |X| < 2 is easy and omitted. |

Now we are ready to prove the following theorem.
Theorem 6. u(4,4) < 15.

Proof. Let (R, B) be a 2-edge coloring of K15 and suppose that I'(R) < 3
and I'(B) < 3. By Theorem 1, 8(R) < 3 and §(B) < 3. By Theorem 2,
s(4,4) = 13 and therefore, without loss of generality, we may assume that
IR(B) > 4. We only consider the case IR(B) = 4; the case IR(B) > 5
is similar but simpler, and thus omitted. Then, by Lemma 5, there exists
an I R-set X of B in which epn(z, X) # 0 for each z € X. Let V(K35) =
{0,1,...,9,2,y,z,w,t}, X ={0,2,4,6} and Y = {1,3,5, 7}, where for each
i€Y,i€epnp(i—1,X). Thus there is a blue matching consisting of the
edges {0,1},{2,3},{4,5} and {6, 7}, and each vertex i € X is joined to all
vertices j € Y — {i + 1} by red edges, according to the private neighbor
property. Since I'(B) < IR(B), Remark 3 applied to the irredundant sets
X and Y implies that there are vertices u and v joined by red edges to the
vertices in X and Y, respectively. If u = v, then X U {u} is irredundant in
B and TR(B) > 5, which is not the case. Hence we may assume that u # v;
say u =9 and v = 8. Similarly, we may assume that {8,9} is red, otherwise
X' = X U{8} is irredundant in B (where 9 € epn(8, X')).

We now make a few observations about the effects that a red edge
between two vertices in X (or Y) has on the colors of the other edges between
vertices in X UY U{8,9}. For simplicity, we consider the edge {1,3}; similar
remarks hold for the other edges. Suppose therefore that {1, 3} is red. Then

Observation 1. {7, 8} is blue for ¢ € {4,6}, otherwise {1, 3,4,8} induces a
red Ky, thus contradicting 5(B) < 3.

Observation 2. {4,6} is blue, otherwise {1, 3,4,6} induces a red Kj.
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Observation 3. {1,9} and {3,9} are blue, otherwise, if (say) {1,9} is red,
then {2, 8} (respectively {2,4},{2,6}) is blue to avoid the red K4 induced by
{1,2,8,9} (respectively {1,2,4,9}, {1,2,6,9}), thus forming the blue K, on
{2,4,6,8}, by Observation 1 and Observation 2. This contradicts S(R) < 3.

Now, if (say) {1,3},{1,5} and {1,7} are all red, then by Observation 2,
{2,4,6} induces a blue triangle and thus by Observation 1, {2,4,6,8} in-
duces a blue K4, a contradiction. Therefore

Observation 4. No vertex in X (or V) is adjacent in R to all other vertices
of X (orY).

Observation 5. The red subgraph induced by X is triangle-free, other-
wise any such red triangle forms a red K4 with vertex 9; similarly, the red
subgraph induced by Y is triangle-free.

The remaining part of the proof is divided into two parts.

e Part 1: there is a vertex v € Y such that v is joined by exactly two red
edges to the remaining vertices of Y.

e Part 2: there is no vertex v € Y such that v is joined by two red edges
to the remaining vertices of Y.

Part 1

Without loss of generality, let us suppose that edges {1,3}, {1,5} are
red. By Observations 1-5 we have {1, 7}, {1,9}, {2,6}, {2,8}, {3,5}, {3,9},
{4,6}, {4,8}, {5,9}, {6,8} and {7,9} are blue, the edge {2,4} is red. To
avoid a blue triangle (3,5,7) we have that at least one of the edges {3, 7},
{5, 7} must be red. This forces {0,8} to be blue. Now, we have to consider
three cases:

e Case 1: {3,7} and {5, 7} are red.
o Case 2: {3,7} is blue, {5, 7} is red.
e Case 3: {3,7} is red, {5, 7} is blue.

Case 1. In this case, we have that {3,7} and {5,7} are red. By an
observation similar to Observation 1, the edges {0,2} and {0,4} are blue.
Similarly, {0,6} is red.

Suppose {8,z} is blue. If z is joined by red edges to {2,4}, then, to
avoid a red Ky, the edges {1,z}, {7,2} and {9,2} are blue, and we obtain
a blue K4 on {1,7,9,x}.
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Similarly, if x is joined by red edges to {0,6}, then to avoid a red Kjy,
the edges {3,z}, {5,z} and {9,z} are blue, and we obtain a blue K4 on
(3,5,9,z).

Suppose {2, z} is blue. Then {6, z} is red, since otherwise a blue K4 on
{2,6,8, 2} results. Since {6,z} is red, {0,z} is blue. But then we have a
blue K4 on {0,2,8,x}. Thus {2,z} is red, and so {4, z} is blue. To avoid a
blue K4 on {4,6,8,z}, {6,z} is red. Since {6,x} is red, {0,z} is blue. But
then we have a blue K4 on {0,4,8,z}.

Thus vertex 8 is joined by a red edge to every vertex in {z,y, z,w,t}
and so the red degree of 8 is at least 10. As r(3,4) = 9, we immediately
have a red K4 containing 8 or a blue K4 amongst the neighbors of 8.

Case 2. In this case, we have that {3,7} is blue and {5,7} is red.
Similarly to Observation 1, the edge {0,2} is blue. To avoid a blue K4 on
{0,2,6,8}, {0,6} is red. If {0,4} is blue, then by using similar methods to
those in Case 1, we immediately obtain a contradiction. Thus, edge {0,4}
is red.

Next, suppose that vertex 8 has three blue edges incident to vertices
{z,y,z,w,t}. Without loss of generality, let us suppose that edges {8,z},
{8,y} and {8, z} are blue.

Now suppose {6,z} is blue. Then {2,z} and {4,z} are red, since oth-
erwise there are two blue K4’s on {2,6,8,2} and {4,6,8,2}. But then we
have a blue K4 on {1,7,9,z}. Thus, {6,x} is red.

If {0, 2} is red, we have a blue K4 on {3,5,9,z}.

Thus there is only one possible method of coloring the edges joining
vertices {x,y, z} to vertices {0,2,4,6}: {0,z}, {0,y}, {0, =z}, {4,z}, {4,y},
{4, z} are blue, and {2,z}, {2,y}, {2, 2}, {6,2}, {6,y}, {6, 2} are red. But
this coloring forces a red K4 on the set {x,y, z,2}, a contradiction.

Thus our assumption that vertex 8 has three blue edges incident to ver-
tices {z,y, z, w, t} is incorrect. Similarly, vertex 9 has at most two blue edges
to vertices {z,y, z,w,t}. It is easy to see that there are exactly two blue
edges joining vertex 8 (9) to vertices {z, vy, z,w, t}, for otherwise degr(8) > 9
or degr(9) > 9, and by the fact r(3,4) = 9 we shall to obtain a contradiction.
Now, we have to consider three subcases.

Subcase 2.1. In this subcase two blue edges joining vertices 8 and 9 to
vertices {x,y, z, w, t} have the same end-vertices. Without loss of generality,
let us suppose that the end-vertices of these blue edges are x and y.
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Suppose {6, z} is blue. Then {2, z} and {4, z} are red, since otherwise there
are two blue Ky’s on {2,6,8,2} and {4,6,8,z}. But then we have a blue
Ky on {1,7,9,z}. Thus {6,z} is red.

Suppose {0, x} is also colored red. Then {3, z} and {5, x} are blue, since
otherwise two red Ky’s on {0,3,6,z} and {0,5,6,z}. But then we have a
blue K4 on {3,5,9,z}. Thus {0,z} is blue.

Now, suppose {1,x} is red. Then {3,x} and {5,z} are blue, since oth-
erwise there are two red K4’s on {1,3,6,2} and {1,5,6,2}. But then we
have a blue K4 on {3,5,9,z}. Thus {1, z} is blue.

Consequently, to avoid a blue Ky on {1,7,9,z}, {7,2} is red, and to
avoid a blue K4 on {0,2,8,z}, {2,z} is red. Then {4, z} and {5, x} are blue
and {3,z} is red. Thus there is only one possible method of coloring the
edges joining vertices x and y to the vertices of sets X and Y: {0,z(y)},
{Lz(y)}, {4,2(y)}, {5,z(y)} are blue, and {2,2(y)}, {3,2(y)}, {6,2(y)},
{7,x(y)} are red. But this forces {z,y} to be red, and we obtain a red K4
on vertices {3,6,z,y}, a contradiction.

Subcase 2.2. In this subcase vertices 8 and 9 are joined by two blue
edges to different vertices among {x,y, z,w,t}. Assume {8, z}, {8,t}, {9,z}
and {9,y} are blue.

To avoid the blue Ky on {3,5,9,z}, one of the edges {3,z} or {5,z}
is red. Then {1,z} is blue, since otherwise there is a red K4 on either
{1,3,8,2} or {1,5,8,2}. Similarly {1,y} is blue.

Next, to avoid the blue K4 on {1,7,9,x}, edge {7,x} is red, and simi-
larly, {7,y} is red.

To avoid the blue K4 on {1,9,z,y} edge {x,y} is red. But then
({7,8,z,y}) is a red K4, a contradiction.

Subcase 2.3. We have to consider the subcase when vertices 8 and 9
are joined by blue edges to exactly one common vertex among {x,y, z,w, t}.
Without loss of generality, assume that {8,y}, {8, z}, {9, 2}, {9,y} are blue
and the remaining edges which join vertices 8 and 9 to {x,y, z, w, t} are red.
Then we immediately have that {w,t} is blue.

Suppose {1,z} is red. Then, to avoid two red K4’s on {1,3,8,z} and
{1,5,8,x}, we obtain that the edges {3,z} and {5,z} are blue. But then
({3,5,9,z}) is a blue K4, a contradiction. We conclude that {1,z} is blue,
{7,x} is red and {5, x} is blue.

Suppose {2,y} is blue. Then, to avoid a blue K4 on {0,2,8,y}, {0,y} is
red. Similarly, to avoid a blue K4 on {2,6,8,y}, {6,y} is red. To avoid a blue
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K,y on {3,5,9,y}, {5,y} or {3,y} is red. If {5,y} is red, then {0,5,6,y} is a
red K4. Thus {5,y} is blue, and so {3,y} is red. But then ({0,3,6,y}) is a
red Ky. Thus {2,y} is red.

Suppose {4,y} is red. To avoid a red K4 on {1,2,4,y} it follows that
{1,y} is blue. To avoid a red K4 on {2,4,7,y}, {7,y} is blue. But then
({1,7,9,y}) is a blue K4, a contradiction. Thus {4, y} is blue, and so {6,y}
is red.

Suppose {0,y} is red. To avoid a red K4 on {0,3,6,y}, {3,y} is blue.
To avoid a red K4 on {0,5,6,y}, it follows that {5,y} is blue. But then
({3,5,9,y}) is a blue K4, a contradiction. Thus {0, y} is blue.

Suppose {1,y} is red. Then, to avoid a red K4 on {1,3,6,y}, the edge
{3,y} is blue. To avoid a red K4 on {1,5,6,y}, the edge {5, y} is blue. But
then {3,5,9,y} is a blue Ky, which is a contradiction. Thus {1,y} is blue.

Suppose {5,y} is red. Then, to avoid a red K4 on {2,5,7,y}, it follows
that {7,y} is blue. But then we obtain a blue K4 on {1,7,9,y}. Thus {5,y}
is blue.

Suppose {6, z} is blue. To avoid a blue K4 on {4, 6,8, z}, {4, z} isred. To
avoid a blue K4 on {2,6,8, z}, the edge {2, z} is red. But then ({2,4,9,z})
is a red Ky, a contradiction.

Thus {6, z} is red. Finally:

e to avoid a red K4 on {0,6,9, 2z}, the edge {0, z} is blue;
e to avoid a blue K4 on {0,2,8, 2z}, the edge {2, 2} is red;
e to avoid a red K4 on {2,4,9, z}, the edge {4, z} is blue;
e to avoid a blue K4 on {3,5,9,y}, the edge {3,y} is red;
e to avoid a blue K4 on {1,7,9,y}, the edge {7,y} is red;
e to avoid a blue Ky on {3,5,9,x}, the edge {3, z} is red;
e to avoid a blue Ky on {5,9,z,y}, the edge {x,y} is red;
e to avoid a blue K4 on {0,8,y, z}, the edge {y, z} is red;
e to avoid a red Ky on {2,7,z,y}, the edge {2,z} is blue;
e to avoid a red K4 on {2,7,y, 2}, the edge {7, z} is blue;
e to avoid a red K4 on {3,6,z,y}, the edge {6,z} is blue;
e to avoid a red K4 on {3,6,y, z}, the edge {3, z} is blue.
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Suppose, to the contrary, that {w,z} is red. Then {3,w} and {7,w} are
blue, since otherwise ({3,8,w,z}) and ({7,8,w,z}) are blue Ky’s.

Suppose {w, z} is red. If {2, w} is red, then {2,9,z,w} is a red Ky4. If
{6, w} is red, then {6,9,w, z} is a red K4. Thus {2, w} and {6,w} are blue.

If ¢ sends a blue edge to {2,7} and ¢ sends a blue edge to {3,6}, we
obtain a blue K4, and we are done.

Suppose t is joined by red edges to 2 and 7. Then {4,t}, {5,t} and {y,t}
are blue, since otherwise there are three red Ky’s on {2,4,7,t}, {2,5,7,t}
and {2,7,y,t}. But then we obtain a blue K4 on {4,5,y,t}, a contradiction.

Suppose t is joined by red edges to 3 and 6. Then {y,t}, {1,¢} and {0,t}
are blue, since otherwise there are three red Ky’s: {0,3,6,t}, {1,3,6,t} and
{3,6,y,t}. But then ({0,1,y,t}) is a blue K4. Thus {w, z} is blue. But then,
in both cases, {3,7,w, z} forms a blue K4, a contradiction. Consequently,
{w, z} is blue.

Now, by using the same methods to those for the edge {w,z}, we prove
that {z,t} is blue. Suppose {z,t} is red. Then {3,t} and {7,¢} are blue,
since otherwise, ({3,8,z,t}) and ({7,8,z,t}) are blue K4’s.

Suppose {z,t} is red. If {2,t} is red, then ({2,9,z,t}) is a red Ky4. If
{6,t} is red, then ({6,9, z,t}) is a red K4. Thus {2,¢} and {6,¢} are blue.

If {2,w}, {3,w}, {6,w} and {7, w} are blue, then {3,7,w,t}, {2,6,w,t}
or {2,6,w,z} are a blue Kjy.

Suppose w is joined by red edges to 2 and 7. Then {4,w}, {5, w} and
{y,w} are blue, since otherwise there are three red Ky’s on {2,4,7,w},
{2,5,7,w} and {2,7,y,w}. But then we obtain a blue K4 on {4,5,y,w}, a
contradiction.

Suppose w is joined by red edges to 3 and 6. Then {y,w}, {1,w}
and {0,w} are blue, since otherwise there are three red Ky’s: {0,3,6,w},
{1,3,6,w} and {3,6,y,w}. But then ({0,1,y,w}) is a blue K4. Thus {z,¢}
is blue. But then, in both cases, {3,7,t, z} forms a blue K4, a contradiction.
Hence, {z,t} is blue.

Suppose now that {z,t} is red. Then {2,¢} and {6,¢} are blue, since
otherwise ({2,9, z,t}) and ({7,8, z,t}) are red K4’s. But then we obtain a
blue K4 on {2,6,¢,x2}. Thus {z,t} is blue. Similarly, {w, z} is also colored
blue. Then, to avoid a blue K4 on {w,t,z, 2}, it follows {z, z} is red.

Now, let us consider a vertex x and all blue edges incident to it. Since
r(3,4) = 9, we obtain that x is joined by at most one blue edge to one of
vertices 0 and 4.

If {0,2} and {4, z} are red, then we have a red K4 on {0,4,7,x}.
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First, suppose {0,z} is blue. To avoid a red K, on vertices {1,5,8, w} or
{1,5,8,t} we may assume without loss of generality that {1,w} is blue.
Then {5,w} and {1,t} are red, and {5,¢} is blue. To avoid a blue K4 on
vertices {0, 1, z,w}, {0, w} is red. Then {6,w} is blue, since otherwise there
is a red K4 on {0,6,9,w}. Similarly, {6,¢} is red and {0,¢} is blue. It is
easy to see that {2,w} and {2,t} are red.

Now, consider a vertex z and all blue edges incident to it. Similarly to
x, vertex z is joined by exactly one blue edge either to vertex 1 or to 5.

If {1, 2z} is blue and {5, z} is red, then, since {0, w} is red, we obtain that
{4,w} is blue and {4,t} is red. But then we have a red K4 on {2,4,9,t}.

If {1, 2} is red and {5, z} is blue, we also easily obtain a contradiction,
so {0,z} is red. If {4, 2} is blue, then by using similar arguments we obtain
a contradiction, and the proof of this subcase is complete.

Case 3. In this case we have that {3,7} is red and {5, 7} is blue. To
avoid a red K4 on {0,3,4,7}, it follows that {0,4} is blue. To avoid a
blue K4 on {0,4,6,8}, {0,6} is red. If {0,2} is blue, then by using similar
methods to those in Case 1, we obtain a contradiction. Thus edge {0, 2} is
red and we obtain a coloring isomorphic to that considered in Case 2.

Part 2

Without loss of generality we can assume that {1,3} is red. By Ob-
servations 1-5, we obtain that vertices 1 and 3 are joined by blue edges to
vertex 9. Edge {5,9} is blue, otherwise a blue K, on {0,2,4,8} results.
Similarly {7,9} is blue, otherwise there is a blue K4 on {0,2,6,8}. To avoid
a blue K4 on {3,5,7,9}, {5,7} is red. So we obtain two red edges, and
all the remaining edges of K5 on {0,2}, {0, 8}, {2,8}, {4,6}, {4,8}, {6,8}.
When we color the remaining edges of K5 on X U {8}, we must consider six-
teen cases. When {0,4}, {0,6}, {2,4}, {2,6} are red, we obtain a coloring
which is isomorphic to that considered in Part 1, Case 1 above. In the nine
following cases:

. {0,4}, {0,6} are blue and {2,4}, {2,6} are red,
. {0,4}, {2,4} are blue and {0,6}, {2,6} are red,
. {0,6}, {2,6} are blue and {0,4}, {2,4} are red,
. {2,4}, {2,6} are blue and {0,4}, {0,6} are red,
. {0,4}, {0,6}, {2,4} are blue and {2,6} is red,
. {0,4}, {0,6}, {2,6} are blue and {2,4} is red,
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7. {0,4}, {2,4}, {2,6} are blue and {0,6} is red,
8. {0,6}, {2,4}, {2,6} are blue and {0,4} is red,
9. {0,4}, {0,6}, {2,4} and {2,6} are blue,

we immediately obtain a contradiction. In the remaining six cases:

. {0,4}, {0,6}, {2,4} are red and {2,6} is blue,
. {0,4}, {0,6}, {2,6} are red and {2,4} is blue,
. {0,4}, {2,4}, {2,6} are red and {0,6} is blue,
. {0,6}, {2,4}, {2,6} are red and {0,4} is blue,
. {0,6}, {2,4} are red and {0,4}, {2,6} are blue,
. {0,4}, {2,6} are red and {0,6}, {2,4} are blue,

S O s W NN

similarily to Case 1, we obtain that vertex 9 is joined by a red edge to every
vertex in {z,y, z,w, t}, so the red degree of 9 is at least 10. This observation
completes the proof of Theorem 6. [
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