THE UPPER DOMINATION RAMSEY NUMBER $u(4,4)$

Tomasz Dzido
Department of Computer Science
University of Gdańsk Wita Stwosza 57, 80-952 Gdańsk, Poland
e-mail: tdz@math.univ.gda.pl
AND
Renata Zakrzewska
Department of Discrete Mathematics
Gdańsk University of Technology
G. Narutowicza 11/12, 80-952 Gdańsk, Poland
e-mail: renataz@mif.pg.gda.pl

Abstract

The upper domination Ramsey number $u(m, n)$ is the smallest integer p such that every 2-coloring of the edges of K_{p} with color red and blue, $\Gamma(B) \geq m$ or $\Gamma(R) \geq n$, where B and R is the subgraph of K_{p} induced by blue and red edges, respectively; $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that $u(4,4) \leq 15$.

Keywords: edge coloring, upper domination Ramsey number.
2000 Mathematics Subject Classification: 05C15, 05C55, 05C69.

1. Introduction

Our notation comes from [6] and [7]. Let $G=(V(G), E(G))$ be a graph with a vertex set $V(G)$ of order $p=|V(G)|$ and an edge set $E(G)$. If v is a vertex in $V(G)$, then the open neighborhood of v is $N_{G}(v)=\{u \in$ $V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. The external private neighborhood of v relative to $S \subseteq V(G)$ is $\operatorname{epn}(v, S)=$
$N(v)-N[S-\{v\}]$. The open neighborhood of a set S of vertices is $N_{G}(S)=$ $\bigcup_{v \in S} N_{G}(v)$, and the closed neighborhood is $N_{G}[S]=N_{G}(v) \cup S$.

A set $S \subseteq V(G)$ is a dominating set in S if each vertex v of G belongs to S or is adjacent to some vertex in S. A set $S \subseteq V(G)$ is an irredundant set if for each $s \in S$ there is a vertex w in G such that $N_{G}[w] \cap S=\{s\}$. A set $S \subseteq V(G)$ is independent in G if no two vertices of S are adjacent in G. If S is an irredundant set in G and $v \in S$, then the set $N[v]-N[S-\{v\}]$ is nonempty and is called the set of private neighbors of v in G (relative to S), denoted by $p n_{G}(v, S)$ or simply by $p n(v, S)$. The upper domination number of G, denoted by $\Gamma(G)$, is the maximum cardinality of a minimal dominating set of G. The upper irredundance number of G, denoted by $\operatorname{IR}(G)$, is the maximum cardinality of an irredundant set of G. The independence number of G, denoted by $\beta(G)$, is the maximum cardinality among all independent sets of vertices of G. A minimal dominating set of cardinality $\Gamma(G)$ is called a $\Gamma(G)$-set. Similarly, an irredundant set of cardinality $\operatorname{IR}(G)$ is called an $I R(G)$-set.

It is apparent that irredundance is a hereditary property.
Remark 1. Any independent set is also irredundant.
Remark 2. Every minimal dominating set is an irredundant set. Consequently, we have $\Gamma(G) \leq I R(G)$ for every graph G.

Remark 3 [5]. A set $D \subseteq V(G)$ is a minimal dominating set if and only if it is dominating and irredundant, and therefore, if $\Gamma(G)<I R(G)$, then no $I R$-set is dominating.

Remark 4. Every maximum independent set is also a dominating set, thus we have $\beta(G) \leq \Gamma(G)$ for every graph G.

Hence the parameters $\beta(G), \Gamma(G), I R(G)$ are related by the following inequalities which were observed by Cockayne and Hedetniemi [3].

Theorem 1 [3]. For every graph $G, \beta(G) \leq \Gamma(G) \leq I R(G)$.
Let $G_{1}, G_{2}, \ldots, G_{t}$ be an arbitrary t-edge coloring of K_{n}, where for each $i \in\{1,2, \ldots, t\}, G_{i}$ is the spanning subgraph of K_{n} whose edges are colored with color i. The classical Ramsey number $r\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ is the smallest value of n such that for every t-edge coloring $G_{1}, G_{2}, \ldots, G_{t}$ of K_{n},
there is an $i \in\{1,2, \ldots, t\}$ for which $\beta\left(\overline{G_{i}}\right) \geq n_{i}$, where \bar{G} is the complement of G. The irredundant Ramsey number denoted by $s\left(n_{1}, n_{2}, \ldots, n_{t}\right)$, is the smallest n such that for every t-edge coloring $G_{1}, G_{2}, \ldots, G_{t}$ of K_{n}, there is at least one $i \in\{1,2, \ldots, t\}$ for which $\operatorname{IR}\left(\overline{G_{i}}\right) \geq n_{i}$. The irredundant Ramsey numbers exist by Ramsey's theorem, and by Remark 1 $s\left(n_{1}, n_{2}, \ldots, n_{t}\right) \leq r\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ for all n_{i}, where $i=1,2, \ldots, t$. The upper domination Ramsey number $u\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ is defined as the smallest n such that for every t-edge coloring $G_{1}, G_{2}, \ldots, G_{t}$ of K_{n}, there is at least one $i \in\{1,2, \ldots, t\}$ for which $\Gamma\left(\overline{G_{i}}\right) \geq n_{i}$.

In the case $t=2, r(m, n)$ is the smallest integer p such that for every 2-coloring of the edges of K_{p} with colors red (R) and blue $(B), \beta(B) \geq m$ or $\beta(R) \geq n$. Similarly, the irredundant Ramsey number $s(m, n)$ is the smallest integer p such that every 2-coloring of the edges of K_{p} with colors red (R) and blue (B) satisfies $I R(B) \geq m$ or $I R(R) \geq n$. Finally, the upper domination Ramsey number $u(m, n)$ is the smallest integer p such that every 2-coloring of the edges of K_{p} with colors red (R) and blue (B) satisfies $\Gamma(B) \geq m$ or $\Gamma(R) \geq n$.

It follows from Theorem 1 that for all m, n,

$$
s(m, n) \leq u(m, n) \leq r(m, n)
$$

and for the purpose of our proof of the main result, let us recall the following results.

Theorem $2[2] . s(4,4)=13$.
Theorem 3 [4]. $r(3,4)=9$.
Theorem 4 [4]. $r(4,4)=18$.

2. Main Result

First we state the following
Lemma 5. Let (R, B) be a 2-edge coloring of K_{n} such that $\Gamma(B) \leq 3$, $I R(B) \geq 4$ and $\beta(R) \leq 3$. Then there exists an irredundant set X of B such that $|X|=4$ and $\operatorname{epn}(x, X) \neq \emptyset$ for each $x \in X$.

Proof. Let Y be an $I R$-set of B and X the subset of Y such that epn (x, Y) $\neq \emptyset$ for all $x \in X$. Suppose firstly that $|X|=3$; say $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and
let $X^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\}$, where $x_{i}^{\prime} \in \operatorname{epn}\left(x_{i}, Y\right), i=1,2,3$. Note that each x_{i}^{\prime} is joined by red edges to all vertices in $Y-\left\{x_{i}\right\}$. Since $|Y| \geq 4$, there is a vertex $w \in Y-X$ such that $p n(w, Y)=\{w\}$; hence w is joined by red edges to the vertices in $X \cup X^{\prime}$. Furthermore, by Remark 3 there is also a vertex $v \in V(B)-N[Y]$; so v is joined by red edges to all vertices in Y. But $\beta(B)<3$ and so, to avoid a red K_{4}, the above-mentioned red edges force all edges between vertices in $X^{\prime} \cup\{v\}$ to be blue. But this is a blue K_{4}, contradicting $\beta(R) \leq 3$. The case $|X| \leq 2$ is easy and omitted.
Now we are ready to prove the following theorem.
Theorem 6. $u(4,4) \leq 15$.
Proof. Let (R, B) be a 2-edge coloring of K_{15} and suppose that $\Gamma(R) \leq 3$ and $\Gamma(B) \leq 3$. By Theorem $1, \beta(R) \leq 3$ and $\beta(B) \leq 3$. By Theorem 2, $s(4,4)=13$ and therefore, without loss of generality, we may assume that $\operatorname{IR}(B) \geq 4$. We only consider the case $\operatorname{IR}(B)=4$; the case $\operatorname{IR}(B) \geq 5$ is similar but simpler, and thus omitted. Then, by Lemma 5 , there exists an $I R$-set X of B in which $\operatorname{epn}(x, X) \neq \emptyset$ for each $x \in X$. Let $V\left(K_{15}\right)=$ $\{0,1, \ldots, 9, x, y, z, w, t\}, X=\{0,2,4,6\}$ and $Y=\{1,3,5,7\}$, where for each $i \in Y, i \in e p n_{B}(i-1, X)$. Thus there is a blue matching consisting of the edges $\{0,1\},\{2,3\},\{4,5\}$ and $\{6,7\}$, and each vertex $i \in X$ is joined to all vertices $j \in Y-\{i+1\}$ by red edges, according to the private neighbor property. Since $\Gamma(B)<I R(B)$, Remark 3 applied to the irredundant sets X and Y implies that there are vertices u and v joined by red edges to the vertices in X and Y, respectively. If $u=v$, then $X \cup\{u\}$ is irredundant in B and $\operatorname{IR}(B) \geq 5$, which is not the case. Hence we may assume that $u \neq v$; say $u=9$ and $v=8$. Similarly, we may assume that $\{8,9\}$ is red, otherwise $X^{\prime}=X \cup\{8\}$ is irredundant in B (where $9 \in \operatorname{epn}\left(8, X^{\prime}\right)$).

We now make a few observations about the effects that a red edge between two vertices in X (or Y) has on the colors of the other edges between vertices in $X \cup Y \cup\{8,9\}$. For simplicity, we consider the edge $\{1,3\}$; similar remarks hold for the other edges. Suppose therefore that $\{1,3\}$ is red. Then

Observation 1. $\{i, 8\}$ is blue for $i \in\{4,6\}$, otherwise $\{1,3, i, 8\}$ induces a red K_{4}, thus contradicting $\beta(B) \leq 3$.

Observation 2. $\{4,6\}$ is blue, otherwise $\{1,3,4,6\}$ induces a red K_{4}.

Observation 3. $\{1,9\}$ and $\{3,9\}$ are blue, otherwise, if (say) $\{1,9\}$ is red, then $\{2,8\}$ (respectively $\{2,4\},\{2,6\}$) is blue to avoid the red K_{4} induced by $\{1,2,8,9\}$ (respectively $\{1,2,4,9\},\{1,2,6,9\}$), thus forming the blue K_{4} on $\{2,4,6,8\}$, by Observation 1 and Observation 2. This contradicts $\beta(R) \leq 3$.

Now, if (say) $\{1,3\},\{1,5\}$ and $\{1,7\}$ are all red, then by Observation 2 , $\{2,4,6\}$ induces a blue triangle and thus by Observation $1,\{2,4,6,8\}$ induces a blue K_{4}, a contradiction. Therefore

Observation 4. No vertex in X (or Y) is adjacent in R to all other vertices of X (or Y).

Observation 5. The red subgraph induced by X is triangle-free, otherwise any such red triangle forms a red K_{4} with vertex 9 ; similarly, the red subgraph induced by Y is triangle-free.

The remaining part of the proof is divided into two parts.

- Part 1: there is a vertex $v \in Y$ such that v is joined by exactly two red edges to the remaining vertices of Y.
- Part 2: there is no vertex $v \in Y$ such that v is joined by two red edges to the remaining vertices of Y.

Part 1

Without loss of generality, let us suppose that edges $\{1,3\},\{1,5\}$ are red. By Observations $1-5$ we have $\{1,7\},\{1,9\},\{2,6\},\{2,8\},\{3,5\},\{3,9\}$, $\{4,6\},\{4,8\},\{5,9\},\{6,8\}$ and $\{7,9\}$ are blue, the edge $\{2,4\}$ is red. To avoid a blue triangle $(3,5,7)$ we have that at least one of the edges $\{3,7\}$, $\{5,7\}$ must be red. This forces $\{0,8\}$ to be blue. Now, we have to consider three cases:

- Case 1: $\{3,7\}$ and $\{5,7\}$ are red.
- Case 2: $\{3,7\}$ is blue, $\{5,7\}$ is red.
- Case 3: $\{3,7\}$ is red, $\{5,7\}$ is blue.

Case 1. In this case, we have that $\{3,7\}$ and $\{5,7\}$ are red. By an observation similar to Observation 1, the edges $\{0,2\}$ and $\{0,4\}$ are blue. Similarly, $\{0,6\}$ is red.

Suppose $\{8, x\}$ is blue. If x is joined by red edges to $\{2,4\}$, then, to avoid a red K_{4}, the edges $\{1, x\},\{7, x\}$ and $\{9, x\}$ are blue, and we obtain a blue K_{4} on $\{1,7,9, x\}$.

Similarly, if x is joined by red edges to $\{0,6\}$, then to avoid a red K_{4}, the edges $\{3, x\},\{5, x\}$ and $\{9, x\}$ are blue, and we obtain a blue K_{4} on $\{3,5,9, x\}$.

Suppose $\{2, x\}$ is blue. Then $\{6, x\}$ is red, since otherwise a blue K_{4} on $\{2,6,8, x\}$ results. Since $\{6, x\}$ is red, $\{0, x\}$ is blue. But then we have a blue K_{4} on $\{0,2,8, x\}$. Thus $\{2, x\}$ is red, and so $\{4, x\}$ is blue. To avoid a blue K_{4} on $\{4,6,8, x\},\{6, x\}$ is red. Since $\{6, x\}$ is red, $\{0, x\}$ is blue. But then we have a blue K_{4} on $\{0,4,8, x\}$.

Thus vertex 8 is joined by a red edge to every vertex in $\{x, y, z, w, t\}$ and so the red degree of 8 is at least 10 . As $r(3,4)=9$, we immediately have a red K_{4} containing 8 or a blue K_{4} amongst the neighbors of 8 .

Case 2. In this case, we have that $\{3,7\}$ is blue and $\{5,7\}$ is red. Similarly to Observation 1, the edge $\{0,2\}$ is blue. To avoid a blue K_{4} on $\{0,2,6,8\},\{0,6\}$ is red. If $\{0,4\}$ is blue, then by using similar methods to those in Case 1 , we immediately obtain a contradiction. Thus, edge $\{0,4\}$ is red.

Next, suppose that vertex 8 has three blue edges incident to vertices $\{x, y, z, w, t\}$. Without loss of generality, let us suppose that edges $\{8, x\}$, $\{8, y\}$ and $\{8, z\}$ are blue.

Now suppose $\{6, x\}$ is blue. Then $\{2, x\}$ and $\{4, x\}$ are red, since otherwise there are two blue K_{4} 's on $\{2,6,8, x\}$ and $\{4,6,8, x\}$. But then we have a blue K_{4} on $\{1,7,9, x\}$. Thus, $\{6, x\}$ is red.

If $\{0, x\}$ is red, we have a blue K_{4} on $\{3,5,9, x\}$.
Thus there is only one possible method of coloring the edges joining vertices $\{x, y, z\}$ to vertices $\{0,2,4,6\}:\{0, x\},\{0, y\},\{0, z\},\{4, x\},\{4, y\}$, $\{4, z\}$ are blue, and $\{2, x\},\{2, y\},\{2, z\},\{6, x\},\{6, y\},\{6, z\}$ are red. But this coloring forces a red K_{4} on the set $\{x, y, z, 2\}$, a contradiction.

Thus our assumption that vertex 8 has three blue edges incident to vertices $\{x, y, z, w, t\}$ is incorrect. Similarly, vertex 9 has at most two blue edges to vertices $\{x, y, z, w, t\}$. It is easy to see that there are exactly two blue edges joining vertex $8(9)$ to vertices $\{x, y, z, w, t\}$, for otherwise $\operatorname{deg}_{R}(8) \geq 9$ or $\operatorname{deg}_{R}(9) \geq 9$, and by the fact $r(3,4)=9$ we shall to obtain a contradiction. Now, we have to consider three subcases.

Subcase 2.1. In this subcase two blue edges joining vertices 8 and 9 to vertices $\{x, y, z, w, t\}$ have the same end-vertices. Without loss of generality, let us suppose that the end-vertices of these blue edges are x and y.

Suppose $\{6, x\}$ is blue. Then $\{2, x\}$ and $\{4, x\}$ are red, since otherwise there are two blue K_{4} 's on $\{2,6,8, x\}$ and $\{4,6,8, x\}$. But then we have a blue K_{4} on $\{1,7,9, x\}$. Thus $\{6, x\}$ is red.

Suppose $\{0, x\}$ is also colored red. Then $\{3, x\}$ and $\{5, x\}$ are blue, since otherwise two red K_{4} 's on $\{0,3,6, x\}$ and $\{0,5,6, x\}$. But then we have a blue K_{4} on $\{3,5,9, x\}$. Thus $\{0, x\}$ is blue.

Now, suppose $\{1, x\}$ is red. Then $\{3, x\}$ and $\{5, x\}$ are blue, since otherwise there are two red K_{4} 's on $\{1,3,6, x\}$ and $\{1,5,6, x\}$. But then we have a blue K_{4} on $\{3,5,9, x\}$. Thus $\{1, x\}$ is blue.

Consequently, to avoid a blue K_{4} on $\{1,7,9, x\},\{7, x\}$ is red, and to avoid a blue K_{4} on $\{0,2,8, x\},\{2, x\}$ is red. Then $\{4, x\}$ and $\{5, x\}$ are blue and $\{3, x\}$ is red. Thus there is only one possible method of coloring the edges joining vertices x and y to the vertices of sets X and $Y:\{0, x(y)\}$, $\{1, x(y)\},\{4, x(y)\},\{5, x(y)\}$ are blue, and $\{2, x(y)\},\{3, x(y)\},\{6, x(y)\}$, $\{7, x(y)\}$ are red. But this forces $\{x, y\}$ to be red, and we obtain a red K_{4} on vertices $\{3,6, x, y\}$, a contradiction.

Subcase 2.2. In this subcase vertices 8 and 9 are joined by two blue edges to different vertices among $\{x, y, z, w, t\}$. Assume $\{8, z\},\{8, t\},\{9, x\}$ and $\{9, y\}$ are blue.

To avoid the blue K_{4} on $\{3,5,9, x\}$, one of the edges $\{3, x\}$ or $\{5, x\}$ is red. Then $\{1, x\}$ is blue, since otherwise there is a red K_{4} on either $\{1,3,8, x\}$ or $\{1,5,8, x\}$. Similarly $\{1, y\}$ is blue.

Next, to avoid the blue K_{4} on $\{1,7,9, x\}$, edge $\{7, x\}$ is red, and similarly, $\{7, y\}$ is red.

To avoid the blue K_{4} on $\{1,9, x, y\}$ edge $\{x, y\}$ is red. But then $\langle\{7,8, x, y\}\rangle$ is a red K_{4}, a contradiction.

Subcase 2.3. We have to consider the subcase when vertices 8 and 9 are joined by blue edges to exactly one common vertex among $\{x, y, z, w, t\}$. Without loss of generality, assume that $\{8, y\},\{8, z\},\{9, x\},\{9, y\}$ are blue and the remaining edges which join vertices 8 and 9 to $\{x, y, z, w, t\}$ are red. Then we immediately have that $\{w, t\}$ is blue.

Suppose $\{1, x\}$ is red. Then, to avoid two red K_{4} 's on $\{1,3,8, x\}$ and $\{1,5,8, x\}$, we obtain that the edges $\{3, x\}$ and $\{5, x\}$ are blue. But then $\langle\{3,5,9, x\}\rangle$ is a blue K_{4}, a contradiction. We conclude that $\{1, x\}$ is blue, $\{7, x\}$ is red and $\{5, x\}$ is blue.

Suppose $\{2, y\}$ is blue. Then, to avoid a blue K_{4} on $\{0,2,8, y\},\{0, y\}$ is red. Similarly, to avoid a blue K_{4} on $\{2,6,8, y\},\{6, y\}$ is red. To avoid a blue
K_{4} on $\{3,5,9, y\},\{5, y\}$ or $\{3, y\}$ is red. If $\{5, y\}$ is red, then $\{0,5,6, y\}$ is a red K_{4}. Thus $\{5, y\}$ is blue, and so $\{3, y\}$ is red. But then $\langle\{0,3,6, y\}\rangle$ is a red K_{4}. Thus $\{2, y\}$ is red.

Suppose $\{4, y\}$ is red. To avoid a red K_{4} on $\{1,2,4, y\}$ it follows that $\{1, y\}$ is blue. To avoid a red K_{4} on $\{2,4,7, y\},\{7, y\}$ is blue. But then $\langle\{1,7,9, y\}\rangle$ is a blue K_{4}, a contradiction. Thus $\{4, y\}$ is blue, and so $\{6, y\}$ is red.

Suppose $\{0, y\}$ is red. To avoid a red K_{4} on $\{0,3,6, y\},\{3, y\}$ is blue. To avoid a red K_{4} on $\{0,5,6, y\}$, it follows that $\{5, y\}$ is blue. But then $\langle\{3,5,9, y\}\rangle$ is a blue K_{4}, a contradiction. Thus $\{0, y\}$ is blue.

Suppose $\{1, y\}$ is red. Then, to avoid a red K_{4} on $\{1,3,6, y\}$, the edge $\{3, y\}$ is blue. To avoid a red K_{4} on $\{1,5,6, y\}$, the edge $\{5, y\}$ is blue. But then $\{3,5,9, y\}$ is a blue K_{4}, which is a contradiction. Thus $\{1, y\}$ is blue.

Suppose $\{5, y\}$ is red. Then, to avoid a red K_{4} on $\{2,5,7, y\}$, it follows that $\{7, y\}$ is blue. But then we obtain a blue K_{4} on $\{1,7,9, y\}$. Thus $\{5, y\}$ is blue.

Suppose $\{6, z\}$ is blue. To avoid a blue K_{4} on $\{4,6,8, z\},\{4, z\}$ is red. To avoid a blue K_{4} on $\{2,6,8, z\}$, the edge $\{2, z\}$ is red. But then $\langle\{2,4,9, z\}\rangle$ is a red K_{4}, a contradiction.

Thus $\{6, z\}$ is red. Finally:

- to avoid a red K_{4} on $\{0,6,9, z\}$, the edge $\{0, z\}$ is blue;
- to avoid a blue K_{4} on $\{0,2,8, z\}$, the edge $\{2, z\}$ is red;
- to avoid a red K_{4} on $\{2,4,9, z\}$, the edge $\{4, z\}$ is blue;
- to avoid a blue K_{4} on $\{3,5,9, y\}$, the edge $\{3, y\}$ is red;
- to avoid a blue K_{4} on $\{1,7,9, y\}$, the edge $\{7, y\}$ is red;
- to avoid a blue K_{4} on $\{3,5,9, x\}$, the edge $\{3, x\}$ is red;
- to avoid a blue K_{4} on $\{5,9, x, y\}$, the edge $\{x, y\}$ is red;
- to avoid a blue K_{4} on $\{0,8, y, z\}$, the edge $\{y, z\}$ is red;
- to avoid a red K_{4} on $\{2,7, x, y\}$, the edge $\{2, x\}$ is blue;
- to avoid a red K_{4} on $\{2,7, y, z\}$, the edge $\{7, z\}$ is blue;
- to avoid a red K_{4} on $\{3,6, x, y\}$, the edge $\{6, x\}$ is blue;
- to avoid a red K_{4} on $\{3,6, y, z\}$, the edge $\{3, z\}$ is blue.

Suppose, to the contrary, that $\{w, x\}$ is red. Then $\{3, w\}$ and $\{7, w\}$ are blue, since otherwise $\langle\{3,8, w, x\}\rangle$ and $\langle\{7,8, w, x\}\rangle$ are blue K_{4} 's.

Suppose $\{w, z\}$ is red. If $\{2, w\}$ is red, then $\{2,9, z, w\}$ is a red K_{4}. If $\{6, w\}$ is red, then $\{6,9, w, z\}$ is a red K_{4}. Thus $\{2, w\}$ and $\{6, w\}$ are blue.

If t sends a blue edge to $\{2,7\}$ and t sends a blue edge to $\{3,6\}$, we obtain a blue K_{4}, and we are done.

Suppose t is joined by red edges to 2 and 7 . Then $\{4, t\},\{5, t\}$ and $\{y, t\}$ are blue, since otherwise there are three red K_{4} 's on $\{2,4,7, t\},\{2,5,7, t\}$ and $\{2,7, y, t\}$. But then we obtain a blue K_{4} on $\{4,5, y, t\}$, a contradiction.

Suppose t is joined by red edges to 3 and 6 . Then $\{y, t\},\{1, t\}$ and $\{0, t\}$ are blue, since otherwise there are three red K_{4} 's: $\{0,3,6, t\},\{1,3,6, t\}$ and $\{3,6, y, t\}$. But then $\langle\{0,1, y, t\}\rangle$ is a blue K_{4}. Thus $\{w, z\}$ is blue. But then, in both cases, $\{3,7, w, z\}$ forms a blue K_{4}, a contradiction. Consequently, $\{w, x\}$ is blue.

Now, by using the same methods to those for the edge $\{w, x\}$, we prove that $\{x, t\}$ is blue. Suppose $\{x, t\}$ is red. Then $\{3, t\}$ and $\{7, t\}$ are blue, since otherwise, $\langle\{3,8, x, t\}\rangle$ and $\langle\{7,8, x, t\}\rangle$ are blue K_{4} 's.

Suppose $\{z, t\}$ is red. If $\{2, t\}$ is red, then $\langle\{2,9, z, t\}\rangle$ is a red K_{4}. If $\{6, t\}$ is red, then $\langle\{6,9, z, t\}\rangle$ is a red K_{4}. Thus $\{2, t\}$ and $\{6, t\}$ are blue.

If $\{2, w\},\{3, w\},\{6, w\}$ and $\{7, w\}$ are blue, then $\{3,7, w, t\},\{2,6, w, t\}$ or $\{2,6, w, x\}$ are a blue K_{4}.

Suppose w is joined by red edges to 2 and 7 . Then $\{4, w\},\{5, w\}$ and $\{y, w\}$ are blue, since otherwise there are three red K_{4} 's on $\{2,4,7, w\}$, $\{2,5,7, w\}$ and $\{2,7, y, w\}$. But then we obtain a blue K_{4} on $\{4,5, y, w\}$, a contradiction.

Suppose w is joined by red edges to 3 and 6 . Then $\{y, w\},\{1, w\}$ and $\{0, w\}$ are blue, since otherwise there are three red K_{4} 's: $\{0,3,6, w\}$, $\{1,3,6, w\}$ and $\{3,6, y, w\}$. But then $\langle\{0,1, y, w\}\rangle$ is a blue K_{4}. Thus $\{z, t\}$ is blue. But then, in both cases, $\{3,7, t, z\}$ forms a blue K_{4}, a contradiction. Hence, $\{x, t\}$ is blue.

Suppose now that $\{z, t\}$ is red. Then $\{2, t\}$ and $\{6, t\}$ are blue, since otherwise $\langle\{2,9, z, t\}\rangle$ and $\langle\{7,8, z, t\}\rangle$ are red K_{4} 's. But then we obtain a blue K_{4} on $\{2,6, t, x\}$. Thus $\{z, t\}$ is blue. Similarly, $\{w, z\}$ is also colored blue. Then, to avoid a blue K_{4} on $\{w, t, x, z\}$, it follows $\{x, z\}$ is red.

Now, let us consider a vertex x and all blue edges incident to it. Since $r(3,4)=9$, we obtain that x is joined by at most one blue edge to one of vertices 0 and 4 .

If $\{0, x\}$ and $\{4, x\}$ are red, then we have a red K_{4} on $\{0,4,7, x\}$.

First, suppose $\{0, x\}$ is blue. To avoid a red K_{4} on vertices $\{1,5,8, w\}$ or $\{1,5,8, t\}$ we may assume without loss of generality that $\{1, w\}$ is blue. Then $\{5, w\}$ and $\{1, t\}$ are red, and $\{5, t\}$ is blue. To avoid a blue K_{4} on vertices $\{0,1, x, w\},\{0, w\}$ is red. Then $\{6, w\}$ is blue, since otherwise there is a red K_{4} on $\{0,6,9, w\}$. Similarly, $\{6, t\}$ is red and $\{0, t\}$ is blue. It is easy to see that $\{2, w\}$ and $\{2, t\}$ are red.

Now, consider a vertex z and all blue edges incident to it. Similarly to x, vertex z is joined by exactly one blue edge either to vertex 1 or to 5 .

If $\{1, z\}$ is blue and $\{5, z\}$ is red, then, since $\{0, w\}$ is red, we obtain that $\{4, w\}$ is blue and $\{4, t\}$ is red. But then we have a red K_{4} on $\{2,4,9, t\}$.

If $\{1, z\}$ is red and $\{5, z\}$ is blue, we also easily obtain a contradiction, so $\{0, x\}$ is red. If $\{4, x\}$ is blue, then by using similar arguments we obtain a contradiction, and the proof of this subcase is complete.

Case 3. In this case we have that $\{3,7\}$ is red and $\{5,7\}$ is blue. To avoid a red K_{4} on $\{0,3,4,7\}$, it follows that $\{0,4\}$ is blue. To avoid a blue K_{4} on $\{0,4,6,8\},\{0,6\}$ is red. If $\{0,2\}$ is blue, then by using similar methods to those in Case 1, we obtain a contradiction. Thus edge $\{0,2\}$ is red and we obtain a coloring isomorphic to that considered in Case 2.

Part 2

Without loss of generality we can assume that $\{1,3\}$ is red. By Observations $1-5$, we obtain that vertices 1 and 3 are joined by blue edges to vertex 9 . Edge $\{5,9\}$ is blue, otherwise a blue K_{4} on $\{0,2,4,8\}$ results. Similarly $\{7,9\}$ is blue, otherwise there is a blue K_{4} on $\{0,2,6,8\}$. To avoid a blue K_{4} on $\{3,5,7,9\},\{5,7\}$ is red. So we obtain two red edges, and all the remaining edges of K_{5} on $\{0,2\},\{0,8\},\{2,8\},\{4,6\},\{4,8\},\{6,8\}$. When we color the remaining edges of K_{5} on $X \cup\{8\}$, we must consider sixteen cases. When $\{0,4\},\{0,6\},\{2,4\},\{2,6\}$ are red, we obtain a coloring which is isomorphic to that considered in Part 1, Case 1 above. In the nine following cases:

1. $\{0,4\},\{0,6\}$ are blue and $\{2,4\},\{2,6\}$ are red,
2. $\{0,4\},\{2,4\}$ are blue and $\{0,6\},\{2,6\}$ are red,
3. $\{0,6\},\{2,6\}$ are blue and $\{0,4\},\{2,4\}$ are red,
4. $\{2,4\},\{2,6\}$ are blue and $\{0,4\},\{0,6\}$ are red,
5. $\{0,4\},\{0,6\},\{2,4\}$ are blue and $\{2,6\}$ is red,
6. $\{0,4\},\{0,6\},\{2,6\}$ are blue and $\{2,4\}$ is red,
7. $\{0,4\},\{2,4\},\{2,6\}$ are blue and $\{0,6\}$ is red,
8. $\{0,6\},\{2,4\},\{2,6\}$ are blue and $\{0,4\}$ is red,
9. $\{0,4\},\{0,6\},\{2,4\}$ and $\{2,6\}$ are blue,
we immediately obtain a contradiction. In the remaining six cases:
10. $\{0,4\},\{0,6\},\{2,4\}$ are red and $\{2,6\}$ is blue,
11. $\{0,4\},\{0,6\},\{2,6\}$ are red and $\{2,4\}$ is blue,
12. $\{0,4\},\{2,4\},\{2,6\}$ are red and $\{0,6\}$ is blue,
13. $\{0,6\},\{2,4\},\{2,6\}$ are red and $\{0,4\}$ is blue,
14. $\{0,6\},\{2,4\}$ are red and $\{0,4\},\{2,6\}$ are blue,
15. $\{0,4\},\{2,6\}$ are red and $\{0,6\},\{2,4\}$ are blue,
similarily to Case 1, we obtain that vertex 9 is joined by a red edge to every vertex in $\{x, y, z, w, t\}$, so the red degree of 9 is at least 10 . This observation completes the proof of Theorem 6.

References

[1] R.C. Brewster, E.J. Cockayne and C.M. Mynhardt, Irredundant Ramsey numbers for graphs, J. Graph Theory 13 (1989) 283-290.
[2] E.J. Cockayne, G. Exoo, J.H. Hattingh and C.M. Mynhardt, The Irredundant Ramsey Number s(4,4), Util. Math. 41 (1992) 119-128.
[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261.
[4] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955) 1-7.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, (1998) (Proposition 3.8, p. 72).
[6] M.A. Henning and O.R. Oellermann, The upper domination Ramsey number $u(3,3,3)$, Discrete Math. 242 (2002) 103-113.
[7] M.A. Henning and O.R. Oellermann, On upper domination Ramsey numbers for graphs, Discrete Math. 274 (2004) 125-135.

