Discussiones Mathematicae Graph Theory 26 (2006) 413–418

A NOTE ON JOINS OF ADDITIVE HEREDITARY GRAPH PROPERTIES

EWA DRGAS-BURCHARDT

Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra Prof. Z. Szafrana 4a, 65–516 Zielona Góra, Poland

e-mail: E.Drgas-Burchardt@wmie.uz.zgora.pl

Abstract

Let L^a denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set (L^a, \subseteq) is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in (L^a, \subseteq) has a finite or infinite family of minimal forbidden subgraphs.

Keywords: hereditary property, lattice of additive hereditary graph properties, minimal forbidden subgraph family, join in the lattice.

2000 Mathematics Subject Classification: 05C75, 05C15, 05C35.

1. INTRODUCTION AND PRELIMINARIES

Let us denote by \mathcal{I} the class of all finite simple graphs possessing at least one vertex. A property \mathcal{P} (of graphs) is any nonempty isomorphic closed subclass of \mathcal{I} . A property \mathcal{P} is called *hereditary* if it is closed to subgraphs and \mathcal{P} is called *additive* if it is closed with respect to disjoint union of graphs.

For example, some well-known additive hereditary graph properties are given in the list below.

 $\mathcal{O} = \{ G \in \mathcal{I} : E(G) = \emptyset \},\$ $\mathcal{O}_k = \{ G \in \mathcal{I} : \text{each component of } G \text{ has at most } k+1 \text{ vertices} \},\$ $\mathcal{D}_1 = \{ G \in \mathcal{I} : G \text{ does not contain cycles} \},\$ $\mathcal{I}_k = \{ G \in \mathcal{I} : G \text{ does not contain } K_{k+2} \}.$ If \mathcal{P} is a hereditary property, then the set of *minimal forbidden subgraphs* of \mathcal{P} is defined as follows:

 $\mathbf{F}(\mathcal{P}) = \{ G \in \mathcal{I} : G \notin \mathcal{P} \text{ but for each proper subgraph } H \text{ of } G, H \in \mathcal{P} \}.$ For instance, $\mathbf{F}(\mathcal{O}_k) = \{ G \in \mathcal{I} : G \text{ is a tree on } k+2 \text{ vertices} \}.$

To investigate the structure of an additive hereditary property \mathcal{P} it is enough to find the family $\mathbf{F}(\mathcal{P})$, because \mathcal{P} is uniquely determined by this family [5].

Let L^a stand for a set of all additive hereditary graph properties. It is known that L^a partially ordered by the set inclusion is a lattice. To denote it we will use the notation (L^a, \subseteq) . A property \mathcal{P} is called \wedge -reducible in (L^a, \subseteq) (\vee -reducible in (L^a, \subseteq)) if there exist properties $\mathcal{P}_1, \mathcal{P}_2 \in L^a$ both different from \mathcal{P} such that $\mathcal{P} = \mathcal{P}_1 \wedge \mathcal{P}_2$ ($\mathcal{P} = \mathcal{P}_1 \vee \mathcal{P}_2$), otherwise \mathcal{P} is called \wedge -irreducible in (L^a, \subseteq) (\vee -irreducible in (L^a, \subseteq)).

A graph G has a property $\mathcal{P}_1 \circ \ldots \circ \mathcal{P}_k$, $\mathcal{P}_1, \ldots, \mathcal{P}_k \in L^a$ if its vertex set V(G) can be partitioned into sets V_1, \ldots, V_k such that V_i is an empty set or the subgraph $G[V_i]$ of G induced by V_i is an element of \mathcal{P}_i , $i = 1, 2, \ldots, k$. Such a partition is said to be $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k)$ -partition. A property \mathcal{P} is called *reducible over* L^a if there exist properties $\mathcal{P}_1, \mathcal{P}_2 \in L^a$, both different from \mathcal{I} such that $\mathcal{P} = \mathcal{P}_1 \circ \mathcal{P}_2$, otherwise \mathcal{P} is called *irreducible over* L^a .

The paper has been motivated by the following observation: if an additive hereditary graph property has finitely many minimal forbidden subgraphs, then it will have a polynomial-time membership test.

The recognition of additive hereditary graph properties possessing a finite family of minimal forbidden subgraphs seems to be a very difficult problem. This property is not monotone with respect to the set inclusion. To see it we consider properties $\mathcal{I}_1, \mathcal{D}_1, \mathcal{O}$. It is clear that $\mathcal{O} \subseteq \mathcal{D}_1 \subseteq \mathcal{I}_1$ and the families of minimal forbidden subgraphs for properties \mathcal{O} and \mathcal{I}_1 are finite unlike the family for the property \mathcal{D}_1 .

Is it possible to say anything about the dependence between families of minimal forbidden subgraphs for properties that one of them is included in the other one? We recall such a result below.

Theorem 1 [3]. Let $\mathcal{P}_1, \mathcal{P}_2 \in L^a$. Then $\mathcal{P}_1 \subseteq \mathcal{P}_2$ if and only if for every $H \in \mathbf{F}(\mathcal{P}_2)$ there exists a graph $H' \in \mathbf{F}(\mathcal{P}_1)$ such that $H' \subseteq H$.

The simple result characterizes the \wedge -irreducible property \mathcal{P} as the property satisfying $\mathbf{F}(\mathcal{P}) = \{G\}$ for a unique connected graph G (see [2]). Moreover, a similar characterization was given for \wedge -irreducible and \vee -irreducible properties ([2]). In 2001 Berger [1] showed that for any additive reducible over L^a

property, the class of minimal forbidden subgraphs is infinite. It was stated in [2] that \lor -reducible properties are not reducible over L^a . In the light of the results presented, it is of interest to look carefully at \lor -reducible properties in order to make a decision about finiteness of their minimal forbidden subgraphs families.

2. Results

In what follows $\overline{\mathcal{P}} = \mathcal{I} \setminus \mathcal{P}$.

Let $\mathcal{P}_1, \mathcal{P}_2 \in L^a$, $\mathcal{P}_i \nsubseteq \mathcal{P}_j, i, j = 1, 2 \ i \neq j$. We define the following sets: $A_{\mathcal{P}_1 \lor \mathcal{P}_2} = \{ G \in \mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2) : G \in (\mathbf{F}(\mathcal{P}_1) \cap \bar{\mathcal{P}}_2) \cup (\mathbf{F}(\mathcal{P}_2) \cap \bar{\mathcal{P}}_1) \},$ $B_{\mathcal{P}_1 \lor \mathcal{P}_2} = \{ G \in \mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2) \setminus A_{\mathcal{P}_1 \lor \mathcal{P}_2} : \text{for every edge } e \in E(G), \ G - e \in \mathcal{P}_1 \cup \mathcal{P}_2 \},$ $C_{\mathcal{P}_1 \lor \mathcal{P}_2} = \{ G \in \mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2) : \text{there exists an edge } e \in E(G) \text{ such that}$ $G - e \in \bar{\mathcal{P}}_1 \cap \bar{\mathcal{P}}_2 \}.$

It is obvious that $\mathbf{F}(\mathcal{P}_1 \vee \mathcal{P}_2) = A_{\mathcal{P}_1 \vee \mathcal{P}_2} \cup B_{\mathcal{P}_1 \vee \mathcal{P}_2} \cup C_{\mathcal{P}_1 \vee \mathcal{P}_2}$ and sets $A_{\mathcal{P}_1 \vee \mathcal{P}_2}$, $B_{\mathcal{P}_1 \vee \mathcal{P}_2}$, $C_{\mathcal{P}_1 \vee \mathcal{P}_2}$ are pairwise disjoint.

In next theorems we denote by $G_1v_1 \xleftarrow{k} v_2G_2$ a graph obtained from disjoint graphs G_1, G_2 by joining the marked vertex v_1 of G_1 and the marked vertex v_2 of G_2 using a path of length k (with k edges).

Lemma 2. Let $\mathcal{P}_1, \mathcal{P}_2 \in L^a$, $\mathcal{P}_i \notin \mathcal{P}_j, i, j = 1, 2, i \neq j$. Then every graph $G \in C_{\mathcal{P}_1 \vee \mathcal{P}_2}$ is of the form $G_1v_1 \xleftarrow{k} v_2G_2$ where $G_1 \in \mathbf{F}(\mathcal{P}_1) \cap \mathcal{P}_2$ and $G_2 \in \mathbf{F}(\mathcal{P}_2) \cap \mathcal{P}_1$.

Proof. Let $G \in C_{\mathcal{P}_1 \vee \mathcal{P}_2}$ and $e \in E(G)$ be an edge guaranteed by the definition of $C_{\mathcal{P}_1 \vee \mathcal{P}_2}$. According to additivity of $\mathcal{P}_1 \vee \mathcal{P}_2$ we know that G is connected. Moreover, $G - e = G_1^* \cup G_2^*$ such that $G_1^* \in \mathcal{P}_1 \cap \overline{\mathcal{P}}_2$ and $G_2^* \in \mathcal{P}_2 \cap \overline{\mathcal{P}}_1$. Thus e is a bridge. It is clear that there exist $G_1 \subseteq G_1^*, G_2 \subseteq G_2^*$ such that $G_i \in \mathcal{P}_i \cap \mathbf{F}(\mathcal{P}_j), i, j = 1, 2, i \neq j$. Assume $e^* \in E(G_i^*) \setminus E(G_i)$. By the fact $G - e^* \in \mathcal{P}_1 \vee \mathcal{P}_2$ it follows that every component of $G_i^* - e^*$ does not contain $G_1 \cup G_2$. Hence, e^* is a bridge and e^* lies on every path joining G_1 and G_2 . The above implies that the only form of G is $G_1v_1 \xleftarrow{k} v_2G_2$ for some $k \in N$ and $v_1 \in V(G_1), v_2 \in V(G_2)$.

Lemma 3. Let $\mathcal{P}_1, \mathcal{P}_2 \in L^a$, $\mathcal{P}_i \notin \mathcal{P}_j, i, j = 1, 2, i \neq j$. If $\mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ is a finite set, then $B_{\mathcal{P}_1 \vee \mathcal{P}_2}$ is a finite set.

Proof. Let $G \in B_{\mathcal{P}_1 \vee \mathcal{P}_2}$ and the assumptions are satisfied. We define sets $E_i(G) = \{e \in E(G) : G - e \in \mathcal{P}_i\}, i = 1, 2$. It is evident that $E(G) = E_1(G) \cup E_2(G)$ (of course it is not necessarily the disjoint sum). Moreover, the subgraph induced by E_i in G has to be the subgraph of each graph from $\mathbf{F}(\mathcal{P}_i)$ contained in G, respectively. This is the argument, which implies that the cardinality of E(G) can be bounded above by the sum $|E(G'_1)| + |E(G'_2)|$, where G'_1, G'_2 are some forbidden subgraphs of $\mathcal{P}_1, \mathcal{P}_2$, respectively. Finiteness of families $\mathbf{F}(\mathcal{P}_i), i = 1, 2$ implies that there exists a constant, which bounds above the number |E(G)|. By additivity of $\mathcal{P}_1 \vee \mathcal{P}_2$ there follows connectivity of elements in $\mathbf{F}(\mathcal{P}_1 \vee \mathcal{P}_2)$ and the lemma follows.

A symbol $\delta(G)$ stands for a minimum vertex degree in G.

Theorem 4. Let $\mathcal{P}_1, \mathcal{P}_2 \in L^a$, $\mathcal{P}_i \notin \mathcal{P}_j, i, j = 1, 2, i \neq j$ and for every graph $G \in \mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ holds $\delta(G) > 1$. Then $\mathbf{F}(\mathcal{P}_1 \vee \mathcal{P}_2)$ is infinite.

Proof. A definition of sets $A_{\mathcal{P}_1 \vee \mathcal{P}_2}, B_{\mathcal{P}_1 \vee \mathcal{P}_2}, C_{\mathcal{P}_1 \vee \mathcal{P}_2}$ and assumptions guarantee for $F \in \mathbf{F}(\mathcal{P} = \mathcal{P}_1 \vee \mathcal{P}_2)$ that $\delta(F) \geq 2$. Suppose to the contrary that the set $\mathbf{F}(\mathcal{P})$ is finite. Because of $\mathcal{P}_i \not\subseteq \mathcal{P}_j, i, j = 1, 2$ there exist two graphs $F_i \in \mathbf{F}(\mathcal{P}_i) \cap \mathcal{P}_j, i \neq j, i, j = 1, 2$. We consider a graph $F_1v_1 \xleftarrow{s} v_2F_2$ with arbitrary vertices $v_1 \in V(F_1), v_2 \in V(F_2)$ and s being greater than the length of the longest path taken over all graphs in $\mathbf{F}(\mathcal{P})$.

It is clear that such a graph has not the property \mathcal{P} . This implies the existence of $F \in \mathbf{F}(\mathcal{P}), F \subseteq F_1v_1 \xleftarrow{s} v_2F_2$. According to $\delta(F) \geq 2$ and $F \nsubseteq F_1, F \nsubseteq F_2$ the only possible form of F is $G_1v_1 \xleftarrow{s} v_2G_2$ with $G_1 \subseteq F_1, G_2 \subseteq F_2$, contrary to the assumption about the longest path for graphs in $\mathbf{F}(\mathcal{P})$.

Let us consider the property $\mathcal{P} = \mathcal{I}_1 \vee \mathcal{O}_2$ and its arbitrary minimal forbidden subgraph F. It is evident that F has to contain at least one tree with four vertices and K_3 as subgraphs. According to additivity of \mathcal{P} , F is connected. It implies $K_3v \xleftarrow{1}{\longrightarrow} vK_1 \subseteq F$. On the other hand, we can immediately check that $K_3v \xleftarrow{1}{\longrightarrow} vK_1 \in \mathbf{F}(\mathcal{P})$. It follows that we found the unique minimal forbidden subgraph of $\mathcal{P} = \mathcal{I}_1 \vee \mathcal{O}_2$. A quite different situation arises for the property $\mathcal{P} = \mathcal{P}_1 \vee \mathcal{P}_2$ defined by $\mathbf{F}(\mathcal{P}_1) = \{C_3v \xleftarrow{1}{\longrightarrow} vK_1\}$ and $\mathbf{F}(\mathcal{P}_2) = \{C_4v \xleftarrow{1}{\longrightarrow} vK_1\}$, respectively. As a simple observation we can write that $\{C_4v \xleftarrow{s}{\longrightarrow} vK_3 : s \in N\} \subseteq \mathbf{F}(\mathcal{P})$ what gives infinitely many minimal forbidden subgraphs of \mathcal{P} . What can we say about a family of minimal forbidden subgraphs for \vee -reducible property \mathcal{P} satisfying $\delta(F) = 1$ for any $F \in \mathbf{F}(\mathcal{P})$? We will give a partial answer to this question in the next theorem.

Theorem 5. Let $\mathcal{P}_1, \mathcal{P}_2 \in L^a$, $\mathcal{P}_i \nsubseteq \mathcal{P}_j, i, j = 1, 2, i \neq j$. If there exists a positive integer k such that $\mathcal{P}_1 \subseteq \mathcal{O}_k$, then $\mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2)$ is finite if and only if $\mathbf{F}(\mathcal{P}_2)$ is finite.

Proof. By the assumption $\mathcal{P}_1 \subseteq \mathcal{O}_k$, for fixed $k \in N$, every component of a graph in $\mathbf{F}(\mathcal{P}_1)$ has a bounded number of vertices. Its connectivity (by additivity of $(\mathcal{P}_1 \vee \mathcal{P}_2)$) implies immediately that $\mathbf{F}(\mathcal{P}_1)$ is finite. Assume that $\mathbf{F}(\mathcal{P}_2)$ is infinite. We observe that $A_{\mathcal{P}_1 \vee \mathcal{P}_2}$ is infinite because every connected graph with k + 2 vertices cannot be in \mathcal{P}_1 . Consequently, the family $\mathbf{F}(\mathcal{P}_1 \vee \mathcal{P}_2)$ is infinite. In the case where $\mathbf{F}(\mathcal{P}_2)$ is finite we have finiteness of $A_{\mathcal{P}_1 \vee \mathcal{P}_2}$, $B_{\mathcal{P}_1 \vee \mathcal{P}_2}$ by the definition and Lemma 3, respectively. Moreover, Lemma 2 guarantees a form of $G \in C_{\mathcal{P}_1 \vee \mathcal{P}_2}$ as $G_1 v_1 \stackrel{n}{\longleftrightarrow} v_2 G_2$, where $G_1 \in \mathbf{F}(\mathcal{P}_1) \cap \mathcal{P}_2$ and $G_2 \in \mathbf{F}(\mathcal{P}_2) \cap \mathcal{P}_1$, $v_1 \in V(G_1), v_2 \in V(G_2)$. It is a simple observation that the parameter n has to be smaller than or equal to k + 1. To deduce it, take the edge e of a path joining G_1 with G_2 , which is close to G_1 , delete it, and observe that if $n \geq k + 2$, then a graph G - e is not an element of $\mathcal{P}_1 \vee \mathcal{P}_2$. Hence, the construction $G_1 v_1 \stackrel{n}{\longleftrightarrow} v_2 G_2$ works only finite times, even if we count the changes of marked vertices in G_1 and G_2 .

Theorem 5 by the assumption $\mathcal{P} \subseteq \mathcal{O}_k$, for a fixed $k \in N$ has assured the existence of at least one tree in $\mathbf{F}(\mathcal{P})$ (see Theorem 1 and the form of $\mathbf{F}(\mathcal{O}_k)$). The assumption $\delta(G) > 1$ for all $G \in \mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ in Theorem 4 excludes such a possibility for both properties $\mathcal{P}_1, \mathcal{P}_2$. Hence, Theorems 4 and 5 actually deal with the disjoint sets of properties.

In some cases, we are able to determine whether the family of minimal forbidden subgraphs of a \lor -reducible property $\mathcal{P}_1 \lor \mathcal{P}_2$ is finite or infinite if we have some knowledge about $\mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$. Precisely, when all graphs in $\mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ are two-connected or without bridges (in general without vertices of degree one), even if the set $\mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ is finite, we have the infinity of $\mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2)$. On the other hand, it is possible to give examples of joins $\mathcal{P}_1 \lor \mathcal{P}_2$ so that $\mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ is finite and $\mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2)$ is finite, too (Theorem 5). Moreover, there exists an example of properties $\mathcal{P}_1, \mathcal{P}_2 \in L^a$ such that each of them possesses an infinite family of minimal forbidden subgraphs but $\mathbf{F}(\mathcal{P}_1 \lor \mathcal{P}_2)$ is finite. Namely, let $\mathcal{P}_1, \mathcal{P}_2$ be properties satisfying the requirement that each component of a graph in \mathcal{P}_1 is a cycle of odd length or a path and each component of a graph in \mathcal{P}_2 is a cycle of even length or a path. Then $\mathbf{F}(\mathcal{P}_1) = \{C_n : n \text{ is even}\} \cup \{K_{1,3}\}, \mathbf{F}(\mathcal{P}_2) = \{C_n : n \text{ is} odd\} \cup \{K_{1,3}\}$ are infinite contrary to $\mathbf{F}(\mathcal{P}_1 \vee \mathcal{P}_2) = \{K_{1,3}\}$.

It seems sufficient to know the form of all elements in $\mathbf{F}(\mathcal{P})$ to describe all possible cases in which a \lor -reducible property \mathcal{P} has a finite number of minimal forbidden subgraphs. Lemmas 2, 3 have given the permissible shape of mentioned sets elements but we are still not able to solve our problem for a \lor -reducible property $\mathcal{P} = \mathcal{P}_1 \lor \mathcal{P}_2$ satisfying the following conditions:

- there exists a graph $F \in \mathbf{F}(\mathcal{P}_1) \cup \mathbf{F}(\mathcal{P}_2)$ with the property $\delta(F) = 1$,
- $\mathcal{P}_1 \not\subseteq \mathcal{O}_k$ and $\mathcal{P}_2 \not\subseteq \mathcal{O}_l$ for any natural k, l.

References

- A.J. Berger, Minimal forbidden subgraphs of reducible graph properties, Discuss. Math. Graph Theory 21 (2001) 111–117.
- [2] A.J. Berger, I. Broere, S.J.T. Moagi and P. Mihók, Meet- and join-irreducibility of additive hereditary properties of graphs, Discrete Math. 251 (2002) 11–18.
- [3] M. Borowiecki and P. Mihók, *Hereditary properties of graphs*, in: V.R. Kulli, ed., Advances in Graph Theory (Vishawa International Publication, Gulbarga, 1991) 41–68.
- [4] I. Broere, M. Frick and G.Semanišin, Maximal graphs with respect to hereditary properties, Discuss. Math. Graph Theory 17 (1997) 51–66.
- [5] D.L. Greenwell, R.L. Hemminger and J. Klerlein, *Forbidden subgraphs*, Proceedings of the 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man., 1973) 389–394.
- [6] J. Jakubík, On the Lattice of Additive Hereditary Properties of Finite Graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73–86.

Received 14 February 2006 Revised 25 September 2006