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Abstract

Let La denote a set of additive hereditary graph properties. It is a
known fact that a partially ordered set (La,⊆) is a complete distribu-
tive lattice. We present results when a join of two additive hereditary
graph properties in (La,⊆) has a finite or infinite family of minimal
forbidden subgraphs.
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1. Introduction and Preliminaries

Let us denote by I the class of all finite simple graphs possessing at least
one vertex. A property P (of graphs) is any nonempty isomorphic closed
subclass of I. A property P is called hereditary if it is closed to subgraphs
and P is called additive if it is closed with respect to disjoint union of graphs.

For example, some well-known additive hereditary graph properties are
given in the list below.
O = {G ∈ I : E(G) = ∅},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
D1 = {G ∈ I : G does not contain cycles},
Ik = {G ∈ I : G does not contain Kk+2}.
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If P is a hereditary property, then the set of minimal forbidden subgraphs
of P is defined as follows:

F(P) = {G ∈ I : G /∈ P but for each proper subgraph H of G, H ∈ P}.
For instance, F(Ok) = {G ∈ I : G is a tree on k + 2 vertices}.

To investigate the structure of an additive hereditary property P it is
enough to find the family F(P), because P is uniquely determined by this
family [5].

Let La stand for a set of all additive hereditary graph properties. It is
known that La partially ordered by the set inclusion is a lattice. To denote
it we will use the notation (La,⊆). A property P is called ∧-reducible in
(La,⊆) (∨-reducible in (La,⊆)) if there exist properties P1,P2 ∈ La both
different from P such that P = P1∧P2 (P = P1∨P2), otherwise P is called
∧-irreducible in (La,⊆) (∨-irreducible in (La,⊆)).

A graph G has a property P1 ◦ . . . ◦Pk, P1, . . . ,Pk ∈ La if its vertex set
V (G) can be partitioned into sets V1, . . . , Vk such that Vi is an empty set
or the subgraph G[Vi] of G induced by Vi is an element of Pi, i = 1, 2, . . . k.
Such a partition is said to be (P1, P2, . . . , Pk)-partition. A property P is
called reducible over La if there exist properties P1,P2 ∈ La, both different
from I such that P = P1 ◦ P2, otherwise P is called irreducible over La.

The paper has been motivated by the following observation: if an ad-
ditive hereditary graph property has finitely many minimal forbidden sub-
graphs, then it will have a polynomial-time membership test.

The recognition of additive hereditary graph properties possessing a
finite family of minimal forbidden subgraphs seems to be a very difficult
problem. This property is not monotone with respect to the set inclusion.
To see it we consider properties I1,D1,O. It is clear that O ⊆ D1 ⊆ I1

and the families of minimal forbidden subgraphs for properties O and I1 are
finite unlike the family for the property D1.

Is it possible to say anything about the dependence between families of
minimal forbidden subgraphs for properties that one of them is included in
the other one? We recall such a result below.

Theorem 1 [3]. Let P1,P2 ∈ La. Then P1 ⊆ P2 if and only if for every
H ∈ F(P2) there exists a graph H ′ ∈ F(P1) such that H ′ ⊆ H.

The simple result characterizes the ∧-irreducible property P as the property
satisfying F(P) = {G} for a unique connected graph G (see [2]). Moreover, a
similar characterization was given for ∧-irreducible and ∨-irreducible prop-
erties ([2]). In 2001 Berger [1] showed that for any additive reducible over La
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property, the class of minimal forbidden subgraphs is infinite. It was stated
in [2] that ∨-reducible properties are not reducible over La. In the light of
the results presented, it is of interest to look carefully at ∨-reducible proper-
ties in order to make a decision about finiteness of their minimal forbidden
subgraphs families.

2. Results

In what follows P̄ = I \ P.
Let P1,P2 ∈ La, Pi * Pj, i, j = 1, 2 i 6= j. We define the following sets:

AP1∨P2 = {G ∈ F(P1 ∨ P2) : G ∈ (F(P1) ∩ P̄2) ∪ (F(P2) ∩ P̄1)},
BP1∨P2 = {G ∈ F(P1 ∨ P2) \AP1∨P2 : for every edge e ∈ E(G), G− e ∈

P1 ∪ P2},
CP1∨P2 = {G ∈ F(P1 ∨ P2): there exists an edge e ∈ E(G) such that

G− e ∈ P̄1 ∩ P̄2}.
It is obvious that F(P1 ∨P2) = AP1∨P2 ∪BP1∨P2 ∪CP1∨P2 and sets AP1∨P2 ,
BP1∨P2 , CP1∨P2 are pairwise disjoint.

In next theorems we denote by G1v1
k←→ v2G2 a graph obtained from

disjoint graphs G1, G2 by joining the marked vertex v1 of G1 and the marked
vertex v2 of G2 using a path of length k (with k edges).

Lemma 2. Let P1,P2 ∈ La, Pi * Pj, i, j = 1, 2, i 6= j. Then every graph

G ∈ CP1∨P2 is of the form G1v1
k←→ v2G2 where G1 ∈ F(P1) ∩ P2 and

G2 ∈ F(P2) ∩ P1.

Proof. Let G ∈ CP1∨P2 and e ∈ E(G) be an edge guaranteed by the
definition of CP1∨P2 . According to additivity of P1 ∨ P2 we know that G is
connected. Moreover, G − e = G∗

1 ∪ G∗
2 such that G∗

1 ∈ P1 ∩ P̄2 and G∗
2 ∈

P2 ∩ P̄1. Thus e is a bridge. It is clear that there exist G1 ⊆ G∗
1, G2 ⊆ G∗

2

such that Gi ∈ Pi ∩ F(Pj), i, j = 1, 2, i 6= j. Assume e∗ ∈ E(G∗
i ) \ E(Gi).

By the fact G−e∗ ∈ P1∨P2 it follows that every component of G∗
i −e∗ does

not contain G1 ∪G2. Hence, e∗ is a bridge and e∗ lies on every path joining
G1 and G2. The above implies that the only form of G is G1v1

k←→ v2G2

for some k ∈ N and v1 ∈ V (G1), v2 ∈ V (G2).

Lemma 3. Let P1,P2 ∈ La, Pi * Pj, i, j = 1, 2, i 6= j. If F(P1) ∪ F(P2) is
a finite set, then BP1∨P2 is a finite set.
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Proof. Let G ∈ BP1∨P2 and the assumptions are satisfied. We define sets
Ei(G) = {e ∈ E(G) : G − e ∈ Pi}, i = 1, 2. It is evident that E(G) =
E1(G) ∪ E2(G) (of course it is not necessarily the disjoint sum). Moreover,
the subgraph induced by Ei in G has to be the subgraph of each graph from
F(Pi) contained in G, respectively. This is the argument, which implies
that the cardinality of E(G) can be bounded above by the sum |E(G′

1)| +
|E(G′

2)|, where G′
1, G′

2 are some forbidden subgraphs of P1, P2, respectively.
Finiteness of families F(Pi), i = 1, 2 implies that there exists a constant,
which bounds above the number |E(G)|. By additivity of P1 ∨ P2 there
follows connectivity of elements in F(P1 ∨ P2) and the lemma follows.

A symbol δ(G) stands for a minimum vertex degree in G.

Theorem 4. Let P1,P2 ∈ La, Pi * Pj, i, j = 1, 2, i 6= j and for every graph
G ∈ F(P1) ∪ F(P2) holds δ(G) > 1. Then F(P1 ∨ P2) is infinite.

Proof. A definition of sets AP1∨P2 ,BP1∨P2 , CP1∨P2 and assumptions guar-
antee for F ∈ F(P = P1 ∨ P2) that δ(F ) ≥ 2. Suppose to the contrary that
the set F(P) is finite. Because of Pi * Pj, i, j = 1, 2 there exist two graphs
Fi ∈ F(Pi) ∩ Pj , i 6= j, i, j = 1, 2. We consider a graph F1v1

s←→ v2F2

with arbitrary vertices v1 ∈ V (F1), v2 ∈ V (F2) and s being greater than the
length of the longest path taken over all graphs in F(P).

It is clear that such a graph has not the property P. This implies
the existence of F ∈ F(P), F ⊆ F1v1

s←→ v2F2. According to δ(F ) ≥ 2
and F * F1, F * F2 the only possible form of F is G1v1

s←→ v2G2 with
G1 ⊆ F1, G2 ⊆ F2, contrary to the assumption about the longest path for
graphs in F(P).

Let us consider the property P = I1∨O2 and its arbitrary minimal forbidden
subgraph F . It is evident that F has to contain at least one tree with four
vertices and K3 as subgraphs. According to additivity of P, F is connected.
It implies K3v

1←→ vK1 ⊆ F . On the other hand, we can immediately
check that K3v

1←→ vK1 ∈ F(P). It follows that we found the unique
minimal forbidden subgraph of P = I1 ∨ O2. A quite different situation
arises for the property P = P1 ∨ P2 defined by F(P1) = {C3v

1←→ vK1}
and F(P2) = {C4v

1←→ vK1}, respectively. As a simple observation we can
write that {C4v

s←→ vK3 : s ∈ N} ⊆ F(P) what gives infinitely many
minimal forbidden subgraphs of P.
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What can we say about a family of minimal forbidden subgraphs for ∨-
reducible property P satisfying δ(F ) = 1 for any F ∈ F(P)? We will give a
partial answer to this question in the next theorem.

Theorem 5. Let P1,P2 ∈ La, Pi * Pj, i, j = 1, 2, i 6= j. If there exists a
positive integer k such that P1 ⊆ Ok, then F(P1 ∨ P2) is finite if and only
if F(P2) is finite.

Proof. By the assumption P1 ⊆ Ok, for fixed k ∈ N , every component of
a graph in F(P1) has a bounded number of vertices. Its connectivity (by
additivity of (P1 ∨ P2)) implies immediately that F(P1) is finite. Assume
that F(P2) is infinite. We observe that AP1∨P2 is infinite because every
connected graph with k + 2 vertices cannot be in P1. Consequently, the
family F(P1 ∨ P2) is infinite. In the case where F(P2) is finite we have
finiteness of AP1∨P2 , BP1∨P2 by the definition and Lemma 3, respectively.
Moreover, Lemma 2 guarantees a form of G ∈ CP1∨P2 as G1v1

n←→ v2G2,
where G1 ∈ F(P1)∩P2 and G2 ∈ F(P2)∩P1, v1 ∈ V (G1), v2 ∈ V (G2). It is
a simple observation that the parameter n has to be smaller than or equal
to k + 1. To deduce it, take the edge e of a path joining G1 with G2, which
is close to G1, delete it, and observe that if n ≥ k + 2, then a graph G− e is
not an element of P1 ∨ P2. Hence, the construction G1v1

n←→ v2G2 works
only finite times, even if we count the changes of marked vertices in G1

and G2.

Theorem 5 by the assumption P ⊆ Ok, for a fixed k ∈ N has assured
the existence of at least one tree in F(P) (see Theorem 1 and the form of
F(Ok)). The assumption δ(G) > 1 for all G ∈ F(P1) ∪ F(P2) in Theorem
4 excludes such a possibility for both properties P1,P2. Hence, Theorems 4
and 5 actually deal with the disjoint sets of properties.

In some cases, we are able to determine whether the family of minimal
forbidden subgraphs of a ∨-reducible property P1 ∨P2 is finite or infinite if
we have some knowledge about F(P1) ∪ F(P2). Precisely, when all graphs
in F(P1) ∪ F(P2) are two-connected or without bridges (in general without
vertices of degree one), even if the set F(P1) ∪ F(P2) is finite, we have the
infinity of F(P1 ∨P2). On the other hand, it is possible to give examples of
joins P1 ∨ P2 so that F(P1) ∪ F(P2) is finite and F(P1 ∨ P2) is finite, too
(Theorem 5). Moreover, there exists an example of properties P1,P2 ∈ La

such that each of them possesses an infinite family of minimal forbidden
subgraphs but F(P1∨P2) is finite. Namely, let P1,P2 be properties satisfying
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the requirement that each component of a graph in P1 is a cycle of odd length
or a path and each component of a graph in P2 is a cycle of even length
or a path. Then F(P1) = {Cn : n is even} ∪ {K1,3}, F(P2) = {Cn : n is
odd} ∪ {K1,3} are infinite contrary to F(P1 ∨ P2) = {K1,3}.

It seems sufficient to know the form of all elements in F(P) to describe
all possible cases in which a ∨-reducible property P has a finite number of
minimal forbidden subgraphs. Lemmas 2, 3 have given the permissible shape
of mentioned sets elements but we are still not able to solve our problem for
a ∨-reducible property P = P1 ∨ P2 satisfying the following conditions:

• there exists a graph F ∈ F(P1) ∪ F(P2) with the property δ(F ) = 1,
• P1 * Ok and P2 * Ol for any natural k, l.
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