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Abstract

A graph G of order n is called arbitrarily vertex decomposable if for
each sequence (n1, . . . , nk) of positive integers such that

∑k
i=1 ni = n,

there exists a partition (V1, . . . , Vk) of vertex set of G such that for
every i ∈ {1, . . . , k} the set Vi induces a connected subgraph of G
on ni vertices. We consider arbitrarily vertex decomposable unicyclic
graphs with dominating cycle. We also characterize all such graphs
with at most four hanging vertices such that exactly two of them have
a common neighbour.
Keywords: arbitrarily vertex decomposable graph, dominating cycle.
2000 Mathematics Subject Classification: 05C35, 05C38, 05C99.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). Let |V (G)| = n.
A sequence τ = (n1, . . . , nk) of positive integers is called admissible for G
if n1 + . . . + nk = n. We shall write ((n1)s1 , . . . , (nl)sl) for the sequence
(n1, . . . , n1︸ ︷︷ ︸

s1

, . . . , nl, . . . , nl︸ ︷︷ ︸
sl

). If τ = (n1, . . . , nk) is an admissible sequence

for the graph G and there exists a partition (V1, . . . , Vk) of the vertex set
V (G) such that for each i ∈ {1, . . . , k} the subgraph G[Vi] induced by Vi is
a connected graph on ni vertices, then τ is called G-realizable or realizable
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in G and the sequence (V1, . . . , Vk) is said to be a G-realization of τ or a
realization of τ in G. Each set Vi will be called a τ -part of a realization of
τ in G. A graph G is called arbitrarily vertex decomposable (avd for short)
if each admissible sequence for G is realizable in G.

Arbitrarily vertex decomposable graphs have been investigated in sev-
eral papers ([1] – [5] for example). The problem originated from some appli-
cations to computer networks ([1]). It is obvious that every traceable graph
is avd since every path is avd.

Figure 1. Sun(a1, . . . , ar)

A sun with r single rays is a graph of order n ≥ 2r with r hanging vertices
v1,. . . ,vr whose deletion yields a cycle Cn−r, and each vertex ui adjacent
to vi is of degree three. Each hanging edge uivi is called a single ray. If
the sequence of vertices ui is situated on the cycle Cn−r in such a way
that there are exactly ai ≥ 0 vertices, each of degree two, between ui and
ui+1, i = 1, . . . , r (the indices taken modulo r), then this sun is denoted by
Sun(a1, . . . , ar) and is unique up to isomorphism (Figure 1).

For every i ∈ {1, . . . , r}, the single ray uivi can be replaced by a multi-
ple ray in the following way. After removing the vertex vi we add vertices
v1
i ,. . . ,v

j
i and edges uiv

1
i ,. . . ,uiv

j
i and obtain the ray {uiv

1
i , . . . , uiv

j
i } of mul-

tiplicity j ≥ 1. Note that for every sun the unique cycle is dominating. By
Sun′(a1, . . . , ar) we will denote a sun with one double ray {u1v

1
1, u1v

2
1} and

r − 1 single rays u2v2,. . . ,urvr.
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In [5] the authors characterized all avd suns with at most three single rays.
Every sun with one single ray is arbitrarily vertex decomposable since it is
traceable.

Theorem 1. A graph Sun(a, b) is arbitrarily vertex decomposable if and on-
ly if at most one of the numbers a and b is odd. Moreover, Sun(a, b) of order
n is not avd if and only if ((2)

n
2 ) is the unique admissible and non-realizable

sequence.

Theorem 2. A graph Sun(a, b, c) is not arbitrarily vertex decomposable if
and only if at least one of the following three conditions is fulfilled:

(1) at least two of the numbers a, b, c are odd,
(2) a ≡ b ≡ c ≡ 0(mod 3),
(3) a ≡ b ≡ c ≡ 2(mod 3).

These results have been used to prove Ore-type conditions for a graph to be
avd ([6]).

It turned out that for suns with single rays realisations of l-good se-
quences are interesting. Let τ = (n1, . . . , nk) be an admissible sequence for
a graph G of order n. An element ni of τ is called good if either ni = 1 or
ni is even. For l ≥ 0, the sequence τ is called l-good if τ contains at least
min(l, k) good elements.

Theorem 3. Every (r − 2)-good sequence is realizable in a graph Sun(a1,
. . . , ar), r ≥ 2, if and only if at most one of the numbers a1,. . . ,ar is odd.

Let S be a sun such that S has a ray of multiplicity at least 3 or S has
at least two double rays. Then the sequences (2, . . . , 2) for even order or
(1, 2, . . . , 2) for odd order are admissible and not realizable in S. Hence S
is not avd. According to the above remark we will consider only suns with
one double ray. Section 2 concerns the realization of l-good sequences with
one double ray and r − 1 single rays. In Section 3 we characterize all avd
suns with one double and at most two single rays.

Given an admissible sequence τ = (n1, . . . , nk) for a graph G of order n,
we will use the following convention to describe a realization (V1, . . . , Vk) of
τ in G. We choose an ordering s = (v1, . . . , vn) of the vertex set of G. Then
we define the τ -parts according to the sequence s, that is V1 = {v1, . . . , vn1},
V2 = {vn1+1, . . . , vn1+n2} and so on.
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2. Realizations of l-Good Sequences

Theorem 4. Every (r − 2)-good sequence is realizable in a graph Sun′(a1,
. . . , ar), r ≥ 2, if and only if the following conditions hold:

(1) the numbers a1,. . . ,ar are even,
(2) there exists j ∈ {1, . . . , r} such that aj 6≡ 2(mod 3),
(3) a1 6≡ 2(mod 3) or ar 6≡ 2(mod 3) or there exists j ∈ {2, . . . , r− 1} such

that aj 6≡ 0(mod 3).

Proof. Let n denote the order of the graph G = Sun′(a1, . . . , ar) (Figure 2).

Figure 2. Sun′(a1, . . . , ar)

Necessity. If at least one of the numbers a1,. . . ,ar is odd then the se-
quence (1, (2)

n−1
2 ) for odd n or the sequence ((2)

n
2 ) for even n is (r − 2)-

good and not realizable in Sun′(a1, . . . , ar). Sequences of k elements: (t1,
. . . , tr−2, (3)k−r+2) where ti ∈ {1, 4} for i = 1, . . . , r−2 or ((2)r−2, (3)k−r+2)
are (r− 2)-good but not realizable when aj ≡ 2(mod 3) for j ∈ {1, . . . , r} or
when a1 ≡ ar ≡ 2(mod 3), aj ≡ 0(mod 3) for j ∈ {2, . . . , r−1}, respectively.

Sufficiency. By condition (1), the order n is odd. Let τ = (n1, . . . , nk)
be an (r − 2)-good sequence. Since n is odd, there is an odd number of
odd elements in τ . Let n1,. . . ,nk1 be odd elements for some k1 ≥ 1 and
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nk1+1,. . . ,nk be even elements. Let us assume that n1 ≥ . . . ≥ nk1 and
nk1+1 ≥ . . . ≥ nk. We define sequence (V1, . . . , Vk) of τ -parts according to

s = (v1
1, u1, v

2
1, x

1
1, . . . , x

1
a1

, u2, v2, x
2
1, . . . , x

2
a2

, . . . , ur, vr, x
r
1, . . . , x

r
ar

).

If all elements of τ are good, that is if every odd element is equal to 1, it is
easy to observe that this construction gives a realization of τ in G. Hence
we can assume that n1 ≥ 3. Suppose that in this case the construction does
not give a realization of τ in G. Let i1 denote the smallest i ∈ {1, . . . , k}
such that the subgraph G[Vi] is disconnected. Since n1 ≥ 3, vertices v1

1, u1,
v2
1 belong to V1. It follows that uj1 ∈ Vi1−1 and vj1 ∈ Vi1 for some j1 such

that 2 ≤ j1 ≤ r. Observe that since the number of elements following uj1 in
s is odd, the integers ni1−1 and ni1 are odd. Since a1 is even and n1 is odd,
i1 − 1 > 1. It is clear that ni1 ≥ 3 and hence ni1−1 ≥ 3. We consider few
possibilities.

Case A. There are at least r − 1 good elements in τ or j1 ∈ {3, . . . , r}
or ar = 0.

If the last element nk is even, then we modify the ordering of elements
in τ , obtain τ = (n1, . . . , ni1−2, nk, ni1−1, . . . , nk−1) and define new sequence
of τ -parts according to s. If the last element nk = nk1 is equal to 1, then we
modify the ordering of elements in τ , obtain τ = (n1, . . . , ni1−1, nk, ni1 , . . . ,
nk−1) and define new sequence of τ -parts according to s. It is easily seen
that in both cases vertices v1

1, u1, v2
1 belong to V1 and for each j = 2, . . . , j1

both vertices uj , vj belong to connected τ -parts. Then we find the first
disconnected subgraph G[Vi2 ] and repeat the above modification of the se-
quence τ by moving either its last even element before the element ni2−1

or its last element equal to 1 before the element ni2 . Then we define the
sequence of τ -parts according to the modified τ .

The number of necessary modifications is at most r − 1. Hence if there
are at least r− 1 good elements of τ , then we obtain a realization of τ in G.
If ar = 0, then it is easy to observe that j1 ≤ r − 1. Therefore if ar = 0 or
j1 ≥ 3, then the number of necessary modifications is not greater than the
least possible number r − 2 of good elements of τ . Hence we finally obtain
a realization of τ in G.

Case B. There are exactly r − 2 good elements in τ and j1 = 2 and
ar ≥ 2.
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We use the same procedure as in Case A but we define sequence of τ -parts
according to the sequence of vertices

s1 = (v2
1, u1, v

1
1, x

r
ar

, . . . , xr
1, ur, vr, . . . , x

2
a2

, . . . , x2
1, u2, v2, x

1
a1

, . . . , x1
1).

If a1 = 0, then we obtain a realization of τ in G. Hence we can assume that
a1 ≥ 2.

Subcase B.1. n1 ≥ 5.
We start our procedure partitioning the set V (G) according to the following
sequence of vertices

s2 = (xr
ar−1, x

r
ar

, v1
1, u1, v

2
1, x

1
1, . . . , x

1
a1

, u2, v2,

x2
1, . . . , x

2
a2

, . . . , ur, vr, x
r
1, . . . , x

r
ar−2).

Thus, vertices of the double ray v1
1, u1, v2

1 ∈ V1 and, since ni1 ≥ 3, vertices of
the first single ray u2, v2 ∈ Vi1 . Then we proceed in the same way as in Case
A. Observe that at each step the first disconnected subgraph corresponds
to odd element nil ≥ 3 of the current sequence τ . The element nil−1 is odd
and at least 3, too. Since the number of necessary modifications is at most
r − 2, we obtain a realization of τ in G.

Subcase B.2. n1 = 3.
It follows that a1 ≡ 2(mod 3) and, analogously ar ≡ 2(mod 3).

B.2.a. nk1+1 ≥ 6.
We start our procedure with another ordering τ = (nk1+1, n1, . . . , nk1 ,
nk1+2, . . . , nk). If nk1+1− 4 ≥ a1 or nk1+1 6≡ 1(mod 3) then we partition the
set V (G) according to the sequence

s3 = (xr
ar

, v1
1, u1, v

2
1, x

1
1, . . . , x

1
a1

, u2, v2, x
2
1, . . . , x

2
a2

, . . . , ur, vr, x
r
1, . . . , x

r
ar−1).

If nk1+1 − 4 < a1 and nk1+1 ≡ 1(mod 3) then we partition the set V (G)
according to the sequence s2. Thus, vertices of double ray v1

1, u1, v2
1 ∈ Vk1+1.

Since a1,. . . ,ar are even, in both cases, there are no j ∈ {2, . . . , r} such
that vj ∈ Vk1+1 and uj 6∈ Vk1+1. Observe that in both cases vertices u2 and
v2 belong to the same τ -part.

Then we proceed again in the same way as in Case A and at each step
for the first disconnected subgraph G[Vil ] there are two odd numbers nil−1,
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nil of current sequence τ such that nil−1 = nil = 3. The number of necessary
modifications is at most r − 2 and we can move r − 3 good elements. Let
us suppose that we have moved r − 3 good elements and we find the first
disconnected subgraph G[Vir−2 ] with jr−2 = r. Then the number of elements
following ur in s3 is equal to 2 modulo 3, the number of elements following
ur in s2 is equal to 1 modulo 3 and, in both cases, every element of modified
τ following nir−2−1 is equal to 3, which is impossible. Hence, in fact, the
number of necessary modifications is at most r−3 and we obtain a realization
of τ in G.

B.2.b. nk1+1 ∈ {4, 2} or there are no even elements in τ (k1 = k).
Then the sequence τ is of the form ((3)l1 , (1)l2 , (4)l3 , (2)l4), where l1 ≥ 1, l2,
l3, l4 ≥ 0 and l2 + l3 + l4 = r − 2. We start our procedure of partitioning
the set V (G) according to the sequence s.

We proceed in the same way as in Case A and at each step for the first
disconnected subgraph G[Vil ], there are two numbers nil−1, nil of current
sequence τ such that nil−1 = nil = 3. If during our procedure we need at
most r − 2 modifications then we obtain a realization of τ in G. Hence we
may assume that the number of necessary modifications in the procedure is
equal to r − 1. In the first step j1 = 2. We modify the ordering of elements
in τ , obtain τ = (n1, . . . , ni1−2, nk, ni1−1, . . . , nk−1) and define new sequence
of τ -parts according to s. The next step is for j2 = 3. Let us suppose that
nk = 2. Then a2 ≡ 0(mod 3). If either nk1+1 = 4 or nk1 = 1, then we return
to the first step with j1 = 2. We modify the ordering of elements in τ ,
obtain either τ = (n1, . . . , ni1−2, nk1+1, ni1−1, . . . , nk1 , nk1+2, . . . , nk) or τ =
(n1, . . . , ni1−1, nk1 , ni1 , . . . , nk1−1, nk1+1, . . . , nk), respectively. Thus vertices
of rays u2v2, u3v3 belong to certain connected subgraphs induced by τ -parts
of G. Moreover, we will need at most r−3 modifications. Hence we obtain a
realization of τ in G. We may suppose that τ = ((3)k−r+2, (2)r−2). Since we
need r−1 modifications, ai ≡ 0(mod 3) for i ∈ {2, . . . , r−1}, contrary to the
condition (3). Therefore we may assume that τ = ((3)k−r+2, t1, . . . , tr−2),
ti ∈ {1, 4} for i = 1, . . . , r − 2. Since we need r − 1 modifications, ai ≡
2(mod 3) for i ∈ {1, . . . , r}, contrary to the condition (2).

The next corollary follows immediately from the above proof.

Corollary 5. Every (r − 1)-good sequence is realizable in a graph Sun′(a1,
. . . , ar), r ≥ 2, if and only if the numbers a1, . . . , ar are even.
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3. Arbitrarily Vertex Decomposable Suns with One Double
and at Most Two Single Rays

Observation 6. A graph Sun′(a) is arbitrarily vertex decomposable if and
only if the number a is even.

Proof. Let n denote the order of Sun′(a).
Necessity. For odd a the sequence ((2)

n
2 ) is admissible and non-realizable.

Sufficiency. Let τ = (n1, . . . , nk) be an admissible sequence for Sun′(a).
Since n is odd, there is an odd element ni0 in τ . With another ordering τ =
(ni0 , n1, . . . , ni0−1, ni0+1, . . . , nk) we define the sequence of τ -parts according
to s = (v1

1, u1, v
2
1, x

1
1, . . . , x

1
a) and obtain a realization of τ in Sun′(a).

The next observation follows immediately from Theorem 4 for r = 2 since
every admissible sequence is 0-good.

Observation 7. A graph Sun′(a, b) is arbitrarily vertex decomposable if
and only if the following conditions hold:

(1) the numbers a, b are even,
(2) a 6≡ 2(mod 3) or b 6≡ 2(mod 3).

Theorem 8. A graph Sun′(a, b, c) is arbitrarily vertex decomposable if and
only if the following conditions hold:

(1) the numbers a, b, c are even,
(2) a 6≡ 2(mod 3) or b ≡ 1(mod 3) or c 6≡ 2(mod 3),
(3) [a 6≡ 2(mod 3) and c 6≡ 2(mod 3)] or (a + b + c) 6≡ 2(mod 3).

Proof. Let n denote the order of G = Sun′(a, b, c). If Sun′(a, b, c) is
arbitrarily vertex decomposable, Theorem 4 implies (1) and (2). If the
condition (3) does not hold, then the sequence ((3)

n
3 ) is admissible and non-

realizable. By Theorem 4 for r = 3 it is enough to prove that if conditions
(1), (2) and (3) hold, then every admissible sequence without good elements
is realizable in G. Let τ = (n1, . . . , nk) be an admissible sequence of odd
elements greater then 1. We assume that n1 ≥ . . . ≥ nk ≥ 3. We define the
sequence of τ -parts according to

s4 = (v1
1, u1, v

2
1, x

1
1, . . . , x

1
a, u2, v2, x

2
1, . . . , x

2
b , u3, v3, x

3
1, . . . , x

3
c).
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The induced subgraphs G[Vi] are connected for all i or one of the following
two cases occurs.

Case A. There is i0 ∈ {1, . . . , k − 1} such that u2 ∈ Vi0 and v2 ∈ Vi0+1.
Then a ≥ 2, since a is even. If τ = ((3)

n
3 ), then a ≡ 2(mod 3) and n =

a+b+c+7 ≡ 0(mod 3), contrary to (3). Hence we may assume that n1 ≥ 5.
If c = 0, then we define the sequence of τ -parts according to

s5 = (v3, u3, v
1
1, u1, v

2
1, x

1
1, . . . , x

1
a, u2, v2, x

2
1, . . . , x

2
b)

and obtain a realization of τ in G.
Hence we may assume that c ≥ 2. We define the sequence of τ -parts

according to

s6 = (x3
c , v

1
1, u1, v

2
1, x

1
1, . . . , x

1
a, u2, v2, x

2
1, . . . , x

2
b , u3, v3, x

3
1, . . . , x

3
c−1).

This construction gives a realization of τ , unless there exists an i1 such that
u3 ∈ Vi1 and v3 ∈ Vi1+1. In such a case we define the sequence of τ -parts
according to

s7 = (x3
c−1, x

3
c , v

1
1, u1, v

2
1, x

1
1, . . . , x

1
a, u2, v2, x

2
1, . . . , x

2
b , u3, v3, x

3
1, . . . , x

3
c−2).

Therefore every induced subgraph G[Vi] is connected for i ∈ {1, . . . , k}.

Case B. The vertices u2 and v2 belong to the same τ -part but there is
i0 such that u3 ∈ Vi0 and v3 ∈ Vi0+1.

Then c ≥ 2. If τ = ((3)
n
3 ), then c ≡ 2(mod 3) and n = a + b + c + 7 ≡

0(mod 3), contrary to (3). Hence we may assume that n1 ≥ 5. We define the
sequence of τ -parts according to s6. This construction gives a realization
of τ in G or there exists an i1 such that u2 ∈ Vi1 and v2 ∈ Vi1+1. In the
latter case b ≥ 2, since otherwise the induced subgraphs G[Vi] corresponding
to s6 are all connected. We define the sequence of τ -parts according to s7.
Therefore, since u1, v1

1, v2
1 ∈ V1, u2, v2 ∈ Vi1+1 and u3, v3 ∈ Vi0+1, we obtain

a realization of τ in G.
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