ON ARBITRARILY VERTEX DECOMPOSABLE UNICYCLIC GRAPHS WITH DOMINATING CYCLE

Sylwia Cichacz and Irmina A. Ziolo
Faculty of Applied Mathematics
AGH University of Science and Technology
Al. A. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: cichacz@agh.edu.pl
e-mail: ziolo@agh.edu.pl

Abstract

A graph G of order n is called arbitrarily vertex decomposable if for each sequence $\left(n_{1}, \ldots, n_{k}\right)$ of positive integers such that $\sum_{i=1}^{k} n_{i}=n$, there exists a partition $\left(V_{1}, \ldots, V_{k}\right)$ of vertex set of G such that for every $i \in\{1, \ldots, k\}$ the set V_{i} induces a connected subgraph of G on n_{i} vertices. We consider arbitrarily vertex decomposable unicyclic graphs with dominating cycle. We also characterize all such graphs with at most four hanging vertices such that exactly two of them have a common neighbour.

Keywords: arbitrarily vertex decomposable graph, dominating cycle. 2000 Mathematics Subject Classification: 05C35, 05C38, 05C99.

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Let $|V(G)|=n$. A sequence $\tau=\left(n_{1}, \ldots, n_{k}\right)$ of positive integers is called admissible for G if $n_{1}+\ldots+n_{k}=n$. We shall write $\left(\left(n_{1}\right)^{s_{1}}, \ldots,\left(n_{l}\right)^{s_{l}}\right)$ for the sequence $(\underbrace{\left(n_{1}, \ldots, n_{1}\right.}_{s_{1}}, \ldots, \underbrace{n_{l}, \ldots, n_{l}}_{s_{l}})$. If $\tau=\left(n_{1}, \ldots, n_{k}\right)$ is an admissible sequence for the graph G and there exists a partition $\left(V_{1}, \ldots, V_{k}\right)$ of the vertex set $V(G)$ such that for each $i \in\{1, \ldots, k\}$ the subgraph $G\left[V_{i}\right]$ induced by V_{i} is a connected graph on n_{i} vertices, then τ is called G-realizable or realizable
in G and the sequence $\left(V_{1}, \ldots, V_{k}\right)$ is said to be a G-realization of τ or a realization of τ in G. Each set V_{i} will be called a τ-part of a realization of τ in G. A graph G is called arbitrarily vertex decomposable (avd for short) if each admissible sequence for G is realizable in G.

Arbitrarily vertex decomposable graphs have been investigated in several papers ([1] - [5] for example). The problem originated from some applications to computer networks ([1]). It is obvious that every traceable graph is avd since every path is avd.

Figure 1. $\operatorname{Sun}\left(a_{1}, \ldots, a_{r}\right)$
A sun with r single rays is a graph of order $n \geq 2 r$ with r hanging vertices v_{1}, \ldots, v_{r} whose deletion yields a cycle C_{n-r}, and each vertex u_{i} adjacent to v_{i} is of degree three. Each hanging edge $u_{i} v_{i}$ is called a single ray. If the sequence of vertices u_{i} is situated on the cycle C_{n-r} in such a way that there are exactly $a_{i} \geq 0$ vertices, each of degree two, between u_{i} and $u_{i+1}, i=1, \ldots, r$ (the indices taken modulo r), then this sun is denoted by $\operatorname{Sun}\left(a_{1}, \ldots, a_{r}\right)$ and is unique up to isomorphism (Figure 1).

For every $i \in\{1, \ldots, r\}$, the single ray $u_{i} v_{i}$ can be replaced by a multiple ray in the following way. After removing the vertex v_{i} we add vertices $v_{i}^{1}, \ldots, v_{i}^{j}$ and edges $u_{i} v_{i}^{1}, \ldots, u_{i} v_{i}^{j}$ and obtain the ray $\left\{u_{i} v_{i}^{1}, \ldots, u_{i} v_{i}^{j}\right\}$ of multiplicity $j \geq 1$. Note that for every sun the unique cycle is dominating. By $\operatorname{Sun}^{\prime}\left(a_{1}, \ldots, a_{r}\right)$ we will denote a sun with one double ray $\left\{u_{1} v_{1}^{1}, u_{1} v_{1}^{2}\right\}$ and $r-1$ single rays $u_{2} v_{2}, \ldots, u_{r} v_{r}$.

In [5] the authors characterized all avd suns with at most three single rays. Every sun with one single ray is arbitrarily vertex decomposable since it is traceable.

Theorem 1. A graph $\operatorname{Sun}(a, b)$ is arbitrarily vertex decomposable if and only if at most one of the numbers a and b is odd. Moreover, $\operatorname{Sun}(a, b)$ of order n is not avd if and only if $\left((2)^{\frac{n}{2}}\right)$ is the unique admissible and non-realizable sequence.

Theorem 2. A graph $\operatorname{Sun}(a, b, c)$ is not arbitrarily vertex decomposable if and only if at least one of the following three conditions is fulfilled:
(1) at least two of the numbers a, b, c are odd,
(2) $a \equiv b \equiv c \equiv 0(\bmod 3)$,
(3) $a \equiv b \equiv c \equiv 2(\bmod 3)$.

These results have been used to prove Ore-type conditions for a graph to be $\operatorname{avd}([6])$.

It turned out that for suns with single rays realisations of l-good sequences are interesting. Let $\tau=\left(n_{1}, \ldots, n_{k}\right)$ be an admissible sequence for a graph G of order n. An element n_{i} of τ is called good if either $n_{i}=1$ or n_{i} is even. For $l \geq 0$, the sequence τ is called l-good if τ contains at least $\min (l, k)$ good elements.

Theorem 3. Every $(r-2)$-good sequence is realizable in a graph $\operatorname{Sun}\left(a_{1}\right.$, $\left.\ldots, a_{r}\right), r \geq 2$, if and only if at most one of the numbers a_{1}, \ldots, a_{r} is odd.

Let S be a sun such that S has a ray of multiplicity at least 3 or S has at least two double rays. Then the sequences $(2, \ldots, 2)$ for even order or $(1,2, \ldots, 2)$ for odd order are admissible and not realizable in S. Hence S is not avd. According to the above remark we will consider only suns with one double ray. Section 2 concerns the realization of l-good sequences with one double ray and $r-1$ single rays. In Section 3 we characterize all avd suns with one double and at most two single rays.

Given an admissible sequence $\tau=\left(n_{1}, \ldots, n_{k}\right)$ for a graph G of order n, we will use the following convention to describe a realization $\left(V_{1}, \ldots, V_{k}\right)$ of τ in G. We choose an ordering $s=\left(v_{1}, \ldots, v_{n}\right)$ of the vertex set of G. Then we define the τ-parts according to the sequence s, that is $V_{1}=\left\{v_{1}, \ldots, v_{n_{1}}\right\}$, $V_{2}=\left\{v_{n_{1}+1}, \ldots, v_{n_{1}+n_{2}}\right\}$ and so on.

2. Realizations of l-Good Sequences

Theorem 4. Every $(r-2)$-good sequence is realizable in a graph $\operatorname{Sun}^{\prime}\left(a_{1}\right.$, $\left.\ldots, a_{r}\right), r \geq 2$, if and only if the following conditions hold:
(1) the numbers a_{1}, \ldots, a_{r} are even,
(2) there exists $j \in\{1, \ldots, r\}$ such that $a_{j} \not \equiv 2(\bmod 3)$,
(3) $a_{1} \not \equiv 2(\bmod 3)$ or $a_{r} \not \equiv 2(\bmod 3)$ or there exists $j \in\{2, \ldots, r-1\}$ such that $a_{j} \not \equiv 0(\bmod 3)$.

Proof. Let n denote the order of the graph $G=\operatorname{Sun}^{\prime}\left(a_{1}, \ldots, a_{r}\right)$ (Figure 2).

Figure 2. $\operatorname{Sun}^{\prime}\left(a_{1}, \ldots, a_{r}\right)$

Necessity. If at least one of the numbers a_{1}, \ldots, a_{r} is odd then the sequence $\left(1,(2)^{\frac{n-1}{2}}\right)$ for odd n or the sequence $\left((2)^{\frac{n}{2}}\right)$ for even n is $(r-2)$ good and not realizable in $\operatorname{Sun}^{\prime}\left(a_{1}, \ldots, a_{r}\right)$. Sequences of k elements: $\left(t_{1}\right.$, $\left.\ldots, t_{r-2},(3)^{k-r+2}\right)$ where $t_{i} \in\{1,4\}$ for $i=1, \ldots, r-2$ or $\left((2)^{r-2},(3)^{k-r+2}\right)$ are $(r-2)$-good but not realizable when $a_{j} \equiv 2(\bmod 3)$ for $j \in\{1, \ldots, r\}$ or when $a_{1} \equiv a_{r} \equiv 2(\bmod 3), a_{j} \equiv 0(\bmod 3)$ for $j \in\{2, \ldots, r-1\}$, respectively.

Sufficiency. By condition (1), the order n is odd. Let $\tau=\left(n_{1}, \ldots, n_{k}\right)$ be an $(r-2)$-good sequence. Since n is odd, there is an odd number of odd elements in τ. Let $n_{1}, \ldots, n_{k_{1}}$ be odd elements for some $k_{1} \geq 1$ and
$n_{k_{1}+1}, \ldots, n_{k}$ be even elements. Let us assume that $n_{1} \geq \ldots \geq n_{k_{1}}$ and $n_{k_{1}+1} \geq \ldots \geq n_{k}$. We define sequence (V_{1}, \ldots, V_{k}) of τ-parts according to

$$
s=\left(v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a_{1}}^{1}, u_{2}, v_{2}, x_{1}^{2}, \ldots, x_{a_{2}}^{2}, \ldots, u_{r}, v_{r}, x_{1}^{r}, \ldots, x_{a_{r}}^{r}\right) .
$$

If all elements of τ are good, that is if every odd element is equal to 1 , it is easy to observe that this construction gives a realization of τ in G. Hence we can assume that $n_{1} \geq 3$. Suppose that in this case the construction does not give a realization of τ in G. Let i_{1} denote the smallest $i \in\{1, \ldots, k\}$ such that the subgraph $G\left[V_{i}\right]$ is disconnected. Since $n_{1} \geq 3$, vertices v_{1}^{1}, u_{1}, v_{1}^{2} belong to V_{1}. It follows that $u_{j_{1}} \in V_{i_{1}-1}$ and $v_{j_{1}} \in V_{i_{1}}$ for some j_{1} such that $2 \leq j_{1} \leq r$. Observe that since the number of elements following $u_{j_{1}}$ in s is odd, the integers $n_{i_{1}-1}$ and $n_{i_{1}}$ are odd. Since a_{1} is even and n_{1} is odd, $i_{1}-1>1$. It is clear that $n_{i_{1}} \geq 3$ and hence $n_{i_{1}-1} \geq 3$. We consider few possibilities.

Case A. There are at least $r-1$ good elements in τ or $j_{1} \in\{3, \ldots, r\}$ or $a_{r}=0$.

If the last element n_{k} is even, then we modify the ordering of elements in τ, obtain $\tau=\left(n_{1}, \ldots, n_{i_{1}-2}, n_{k}, n_{i_{1}-1}, \ldots, n_{k-1}\right)$ and define new sequence of τ-parts according to s. If the last element $n_{k}=n_{k_{1}}$ is equal to 1 , then we modify the ordering of elements in τ, obtain $\tau=\left(n_{1}, \ldots, n_{i_{1}-1}, n_{k}, n_{i_{1}}, \ldots\right.$, n_{k-1}) and define new sequence of τ-parts according to s. It is easily seen that in both cases vertices $v_{1}^{1}, u_{1}, v_{1}^{2}$ belong to V_{1} and for each $j=2, \ldots, j_{1}$ both vertices u_{j}, v_{j} belong to connected τ-parts. Then we find the first disconnected subgraph $G\left[V_{i_{2}}\right]$ and repeat the above modification of the sequence τ by moving either its last even element before the element $n_{i_{2}-1}$ or its last element equal to 1 before the element $n_{i_{2}}$. Then we define the sequence of τ-parts according to the modified τ.

The number of necessary modifications is at most $r-1$. Hence if there are at least $r-1$ good elements of τ, then we obtain a realization of τ in G. If $a_{r}=0$, then it is easy to observe that $j_{1} \leq r-1$. Therefore if $a_{r}=0$ or $j_{1} \geq 3$, then the number of necessary modifications is not greater than the least possible number $r-2$ of good elements of τ. Hence we finally obtain a realization of τ in G.

Case B. There are exactly $r-2$ good elements in τ and $j_{1}=2$ and $a_{r} \geq 2$.

We use the same procedure as in Case A but we define sequence of τ-parts according to the sequence of vertices

$$
s^{1}=\left(v_{1}^{2}, u_{1}, v_{1}^{1}, x_{a_{r}}^{r}, \ldots, x_{1}^{r}, u_{r}, v_{r}, \ldots, x_{a_{2}}^{2}, \ldots, x_{1}^{2}, u_{2}, v_{2}, x_{a_{1}}^{1}, \ldots, x_{1}^{1}\right) .
$$

If $a_{1}=0$, then we obtain a realization of τ in G. Hence we can assume that $a_{1} \geq 2$.

Subcase B.1. $n_{1} \geq 5$.
We start our procedure partitioning the set $V(G)$ according to the following sequence of vertices

$$
\begin{aligned}
s^{2}= & \left(x_{a_{r}-1}^{r}, x_{a_{r}}^{r}, v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a_{1}}^{1}, u_{2}, v_{2},\right. \\
& \left.x_{1}^{2}, \ldots, x_{a_{2}}^{2}, \ldots, u_{r}, v_{r}, x_{1}^{r}, \ldots, x_{a_{r}-2}^{r}\right) .
\end{aligned}
$$

Thus, vertices of the double ray $v_{1}^{1}, u_{1}, v_{1}^{2} \in V_{1}$ and, since $n_{i_{1}} \geq 3$, vertices of the first single ray $u_{2}, v_{2} \in V_{i_{1}}$. Then we proceed in the same way as in Case A. Observe that at each step the first disconnected subgraph corresponds to odd element $n_{i_{l}} \geq 3$ of the current sequence τ. The element $n_{i_{l}-1}$ is odd and at least 3 , too. Since the number of necessary modifications is at most $r-2$, we obtain a realization of τ in G.

Subcase B.2. $n_{1}=3$.
It follows that $a_{1} \equiv 2(\bmod 3)$ and, analogously $a_{r} \equiv 2(\bmod 3)$.
B.2.a. $n_{k_{1}+1} \geq 6$.

We start our procedure with another ordering $\tau=\left(n_{k_{1}+1}, n_{1}, \ldots, n_{k_{1}}\right.$, $\left.n_{k_{1}+2}, \ldots, n_{k}\right)$. If $n_{k_{1}+1}-4 \geq a_{1}$ or $n_{k_{1}+1} \not \equiv 1(\bmod 3)$ then we partition the set $V(G)$ according to the sequence
$s^{3}=\left(x_{a_{r}}^{r}, v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a_{1}}^{1}, u_{2}, v_{2}, x_{1}^{2}, \ldots, x_{a_{2}}^{2}, \ldots, u_{r}, v_{r}, x_{1}^{r}, \ldots, x_{a_{r}-1}^{r}\right)$.
If $n_{k_{1}+1}-4<a_{1}$ and $n_{k_{1}+1} \equiv 1(\bmod 3)$ then we partition the set $V(G)$ according to the sequence s^{2}. Thus, vertices of double ray $v_{1}^{1}, u_{1}, v_{1}^{2} \in V_{k_{1}+1}$.

Since a_{1}, \ldots, a_{r} are even, in both cases, there are no $j \in\{2, \ldots, r\}$ such that $v_{j} \in V_{k_{1}+1}$ and $u_{j} \notin V_{k_{1}+1}$. Observe that in both cases vertices u_{2} and v_{2} belong to the same τ-part.

Then we proceed again in the same way as in Case A and at each step for the first disconnected subgraph $G\left[V_{i_{l}}\right]$ there are two odd numbers $n_{i_{l}-1}$,
$n_{i_{l}}$ of current sequence τ such that $n_{i_{l}-1}=n_{i_{l}}=3$. The number of necessary modifications is at most $r-2$ and we can move $r-3$ good elements. Let us suppose that we have moved $r-3$ good elements and we find the first disconnected subgraph $G\left[V_{i_{r-2}}\right]$ with $j_{r-2}=r$. Then the number of elements following u_{r} in s^{3} is equal to 2 modulo 3 , the number of elements following u_{r} in s^{2} is equal to 1 modulo 3 and, in both cases, every element of modified τ following $n_{i_{r-2}-1}$ is equal to 3 , which is impossible. Hence, in fact, the number of necessary modifications is at most $r-3$ and we obtain a realization of τ in G.
B.2.b. $n_{k_{1}+1} \in\{4,2\}$ or there are no even elements in $\tau\left(k_{1}=k\right)$.

Then the sequence τ is of the form $\left((3)^{l_{1}},(1)^{l_{2}},(4)^{l_{3}},(2)^{l_{4}}\right)$, where $l_{1} \geq 1, l_{2}$, $l_{3}, l_{4} \geq 0$ and $l_{2}+l_{3}+l_{4}=r-2$. We start our procedure of partitioning the set $V(G)$ according to the sequence s.

We proceed in the same way as in Case A and at each step for the first disconnected subgraph $G\left[V_{i_{l}}\right]$, there are two numbers $n_{i_{l}-1}, n_{i_{l}}$ of current sequence τ such that $n_{i_{l}-1}=n_{i_{l}}=3$. If during our procedure we need at most $r-2$ modifications then we obtain a realization of τ in G. Hence we may assume that the number of necessary modifications in the procedure is equal to $r-1$. In the first step $j_{1}=2$. We modify the ordering of elements in τ, obtain $\tau=\left(n_{1}, \ldots, n_{i_{1}-2}, n_{k}, n_{i_{1}-1}, \ldots, n_{k-1}\right)$ and define new sequence of τ-parts according to s. The next step is for $j_{2}=3$. Let us suppose that $n_{k}=2$. Then $a_{2} \equiv 0(\bmod 3)$. If either $n_{k_{1}+1}=4$ or $n_{k_{1}}=1$, then we return to the first step with $j_{1}=2$. We modify the ordering of elements in τ, obtain either $\tau=\left(n_{1}, \ldots, n_{i_{1}-2}, n_{k_{1}+1}, n_{i_{1}-1}, \ldots, n_{k_{1}}, n_{k_{1}+2}, \ldots, n_{k}\right)$ or $\tau=$ $\left(n_{1}, \ldots, n_{i_{1}-1}, n_{k_{1}}, n_{i_{1}}, \ldots, n_{k_{1}-1}, n_{k_{1}+1}, \ldots, n_{k}\right)$, respectively. Thus vertices of rays $u_{2} v_{2}, u_{3} v_{3}$ belong to certain connected subgraphs induced by τ-parts of G. Moreover, we will need at most $r-3$ modifications. Hence we obtain a realization of τ in G. We may suppose that $\tau=\left((3)^{k-r+2},(2)^{r-2}\right)$. Since we need $r-1$ modifications, $a_{i} \equiv 0(\bmod 3)$ for $i \in\{2, \ldots, r-1\}$, contrary to the condition (3). Therefore we may assume that $\tau=\left((3)^{k-r+2}, t_{1}, \ldots, t_{r-2}\right)$, $t_{i} \in\{1,4\}$ for $i=1, \ldots, r-2$. Since we need $r-1$ modifications, $a_{i} \equiv$ $2(\bmod 3)$ for $i \in\{1, \ldots, r\}$, contrary to the condition (2).
The next corollary follows immediately from the above proof.
Corollary 5. Every $(r-1)$-good sequence is realizable in a graph $\operatorname{Sun}^{\prime}\left(a_{1}\right.$, $\left.\ldots, a_{r}\right), r \geq 2$, if and only if the numbers a_{1}, \ldots, a_{r} are even.

3. Arbitrarily Vertex Decomposable Suns with One Double and at Most Two Single Rays

Observation 6. A graph $\operatorname{Sun}^{\prime}(a)$ is arbitrarily vertex decomposable if and only if the number a is even.

Proof. Let n denote the order of $\operatorname{Sun}^{\prime}(a)$.
Necessity. For odd a the sequence $\left((2)^{\frac{n}{2}}\right)$ is admissible and non-realizable.
Sufficiency. Let $\tau=\left(n_{1}, \ldots, n_{k}\right)$ be an admissible sequence for $\operatorname{Sun}^{\prime}(a)$. Since n is odd, there is an odd element $n_{i_{0}}$ in τ. With another ordering $\tau=$ $\left(n_{i_{0}}, n_{1}, \ldots, n_{i_{0}-1}, n_{i_{0}+1}, \ldots, n_{k}\right)$ we define the sequence of τ-parts according to $s=\left(v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a}^{1}\right)$ and obtain a realization of τ in $\operatorname{Sun}^{\prime}(a)$.

The next observation follows immediately from Theorem 4 for $r=2$ since every admissible sequence is 0 -good.

Observation 7. A graph $\operatorname{Sun}^{\prime}(a, b)$ is arbitrarily vertex decomposable if and only if the following conditions hold:
(1) the numbers a, b are even,
(2) $a \not \equiv 2(\bmod 3)$ or $b \not \equiv 2(\bmod 3)$.

Theorem 8. A graph $S u n^{\prime}(a, b, c)$ is arbitrarily vertex decomposable if and only if the following conditions hold:
(1) the numbers a, b, c are even,
(2) $a \not \equiv 2(\bmod 3)$ or $b \equiv 1(\bmod 3)$ or $c \not \equiv 2(\bmod 3)$,
(3) $[a \not \equiv 2(\bmod 3)$ and $c \not \equiv 2(\bmod 3)]$ or $(a+b+c) \not \equiv 2(\bmod 3)$.

Proof. Let n denote the order of $G=\operatorname{Sun}^{\prime}(a, b, c)$. If $\operatorname{Sun}^{\prime}(a, b, c)$ is arbitrarily vertex decomposable, Theorem 4 implies (1) and (2). If the condition (3) does not hold, then the sequence ((3) $\left.)^{\frac{n}{3}}\right)$ is admissible and nonrealizable. By Theorem 4 for $r=3$ it is enough to prove that if conditions (1), (2) and (3) hold, then every admissible sequence without good elements is realizable in G. Let $\tau=\left(n_{1}, \ldots, n_{k}\right)$ be an admissible sequence of odd elements greater then 1 . We assume that $n_{1} \geq \ldots \geq n_{k} \geq 3$. We define the sequence of τ-parts according to

$$
s^{4}=\left(v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a}^{1}, u_{2}, v_{2}, x_{1}^{2}, \ldots, x_{b}^{2}, u_{3}, v_{3}, x_{1}^{3}, \ldots, x_{c}^{3}\right) .
$$

The induced subgraphs $G\left[V_{i}\right]$ are connected for all i or one of the following two cases occurs.

Case A. There is $i_{0} \in\{1, \ldots, k-1\}$ such that $u_{2} \in V_{i_{0}}$ and $v_{2} \in V_{i_{0}+1}$. Then $a \geq 2$, since a is even. If $\tau=\left((3)^{\frac{n}{3}}\right)$, then $a \equiv 2(\bmod 3)$ and $n=$ $a+b+c+7 \equiv 0(\bmod 3)$, contrary to (3). Hence we may assume that $n_{1} \geq 5$. If $c=0$, then we define the sequence of τ-parts according to

$$
s^{5}=\left(v_{3}, u_{3}, v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a}^{1}, u_{2}, v_{2}, x_{1}^{2}, \ldots, x_{b}^{2}\right)
$$

and obtain a realization of τ in G.
Hence we may assume that $c \geq 2$. We define the sequence of τ-parts according to

$$
s^{6}=\left(x_{c}^{3}, v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a}^{1}, u_{2}, v_{2}, x_{1}^{2}, \ldots, x_{b}^{2}, u_{3}, v_{3}, x_{1}^{3}, \ldots, x_{c-1}^{3}\right) .
$$

This construction gives a realization of τ, unless there exists an i_{1} such that $u_{3} \in V_{i_{1}}$ and $v_{3} \in V_{i_{1}+1}$. In such a case we define the sequence of τ-parts according to

$$
s^{7}=\left(x_{c-1}^{3}, x_{c}^{3}, v_{1}^{1}, u_{1}, v_{1}^{2}, x_{1}^{1}, \ldots, x_{a}^{1}, u_{2}, v_{2}, x_{1}^{2}, \ldots, x_{b}^{2}, u_{3}, v_{3}, x_{1}^{3}, \ldots, x_{c-2}^{3}\right) .
$$

Therefore every induced subgraph $G\left[V_{i}\right]$ is connected for $i \in\{1, \ldots, k\}$.
Case B. The vertices u_{2} and v_{2} belong to the same τ-part but there is i_{0} such that $u_{3} \in V_{i_{0}}$ and $v_{3} \in V_{i_{0}+1}$.

Then $c \geq 2$. If $\tau=\left((3)^{\frac{n}{3}}\right)$, then $c \equiv 2(\bmod 3)$ and $n=a+b+c+7 \equiv$ $0(\bmod 3)$, contrary to (3). Hence we may assume that $n_{1} \geq 5$. We define the sequence of τ-parts according to s^{6}. This construction gives a realization of τ in G or there exists an i_{1} such that $u_{2} \in V_{i_{1}}$ and $v_{2} \in V_{i_{1}+1}$. In the latter case $b \geq 2$, since otherwise the induced subgraphs $G\left[V_{i}\right]$ corresponding to s^{6} are all connected. We define the sequence of τ-parts according to s^{7}. Therefore, since $u_{1}, v_{1}^{1}, v_{1}^{2} \in V_{1}, u_{2}, v_{2} \in V_{i_{1}+1}$ and $u_{3}, v_{3} \in V_{i_{0}+1}$, we obtain a realization of τ in G.

Acknowledgements

The research was partially supported by AGH-University of Science and Technology grant 1142004.

References

[1] D. Barth, O. Baudon and J. Puech, Networks sharing: a polynomial algorithm for Tripodes, Discrete Appl. Math. 119 (2002) 205-216.
[2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006) 469-477.
[3] S. Cichacz, A. Görlich, A. Marczyk, J. Przybyło and M. Woźniak, Arbitrarily vertex decomposable caterpillars with four or five leaves, Preprint MD-010 (2005), http://www.ii.uj.edu.pl/preMD/, to appear.
[4] M. Hornák and M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003) 49-62.
[5] R. Kalinowski, M. Pilśniak, M. Woźniak and I.A. Zioło, Arbitrarily vertex decomposable suns with few rays, preprint (2005), http://www.ii.uj.edu.pl/preMD/.
[6] A. Marczyk, Ore-type condition for arbitrarily vertex decomposable graphs, preprint (2005).

