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Abstract

For a given induced hereditary property P, a P-coloring of a graph
G is an assignment of one color to each vertex such that the subgraphs
induced by each of the color classes have property P. We consider
the effectiveness of on-line P-coloring algorithms and give the gener-
alizations and extensions of selected results known for on-line proper
coloring algorithms. We prove a linear lower bound for the perfor-
mance guarantee function of any stingy on-line P-coloring algorithm.
In the class of generalized trees, we characterize graphs critical for the
greedy P-coloring. A class of graphs for which a greedy algorithm al-
ways generates optimal P-colorings for the property P = K3-free is
given.
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1. Introduction

In this paper, the concepts from two intensively studied frameworks, i.e., on-
line coloring and generalized coloring of graphs, are combined to investigate
the generalized on-line colorings. Among many generalizations of the clas-
sical graph coloring problem we are interested in on-line P-colorings, where
P is some induced additive hereditary property of graphs. All graphs con-
sidered in this paper are finite and simple, i.e., undirected, loopless and
without multiple edges. We color vertices of graphs using single colors and
deterministic algorithms.
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1.1. On-line coloring

The instances of on-line problems are not given in advance and their succes-
sive parts become known over time. The solution is generated in a request-
answer manner and each answer is based only on the already presented
part of the instance. An on-line algorithm receives the sequence of requests
σ = (σ1, . . . , σn) and processes each request σi as soon as it is received,
however, it has no right to modify an already generated part of the solu-
tion. It is usual to view the classical (proper) on-line coloring as a game
of two adversaries called Presenter and Painter. We assume that Painter
(representing on-line algorithm) does not know the structure of a graph to
be colored. Presenter starts the game and reveals subsequent vertices of
graph G = (V, E) in some order (v1, . . . , vn) which is unknown to Painter.
Vertex vi is presented together with edges Ei ⊆ E(G) adjacent to its already
presented neighbors. Thus the request σi can be written as (vi, Ei). Painter
has to irrevocably assign a permissible color c(vi) to vertex vi as soon as it
is presented. In a sequence of alternate moves the goal of Painter is to use
the smallest number of colors while the strategy of Presenter is to find the
vertex ordering that forces Painter to use as many colors as possible. Pre-
senter wins on G if the number of colors used by Painter is greater than the
chromatic number χ(G). The readers interested in more details are referred
to [3, 5] for surveys on classical on-line colorings.

1.2. P-coloring

A graph property P is a nonempty isomorphism-closed subclass of all finite
simple graphs. We say that a graph G has a property P if G ∈ P. A
property P of graphs is said to be induced hereditary if whenever G ∈ P and
H is a vertex induced subgraph of G, then H ∈ P. A property P is called
additive if for each graph G all of whose components have the property
P it follows that G has the property P, too. All properties investigated
in this paper are additive induced hereditary properties and the set of all
these properties is denoted by Ma, while the set of all minimal forbidden
subgraphs characterizing the property P ∈ Ma can be defined as follows:

C(P) = {G /∈ P : each proper induced subgraph H of G belongs to P}.
For example, edgeless graphs can be defined by C(P) = {K2} while for
forests C(P) = {Cn : n ≥ 3}. For any graph G = (V, E) and arbitrarily cho-
sen hereditary properties P1,P2, . . . ,Pk we define (P1,P2, . . . ,Pk)-partition
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of graph G as a partition (V1, V2, . . . , Vk) of the vertex set V (G) such that
each induced subgraph G[Vi] has the property Pi. In particular, if P1 =
P2 = . . . = Pk = P, then the partition is called P-partition or equivalently
P-coloring of G. Note that P-coloring for C(P) = {K2} is exactly classical,
proper coloring. P-coloring with k colors is called (P, k)-coloring and the
smallest k such that there exists a (P, k)-coloring of G is called P-chromatic
number of graph G, denoted by χP(G). Two vertices u and v are called
P-adjacent if there exists an induced subgraph H ′ such that u, v ∈ V (H ′)
and H ′ ' H ∈ C(P). It is easy to see that each subset Vi of any P-partition
is P-independent, i.e., no two vertices of Vi are P-adjacent. For a deeper
discussion of hereditary properties we refer the reader to [2].

1.3. On-line P-coloring

As in the case of proper on-line coloring the process of P-coloring can be
treated as a game of Presenter and Painter. The rules to follow are the
same but a generalization of the winning criteria and permissibility of colors.
Painter wins on G if no more than χP(G) colors are used. Color p is called
permissible for vertex vi if its assignment to vi results in a P-coloring of
the graph induced by {v1, . . . , vi}. In other words, subgraph G[Vp ∪ {vi}],
induced by vi and all vertices colored p, has the property P or equivalently
Vp ∪ {vi} is P-independent. As many other on-line problems, on-line P-
coloring can be described using the request-answer pattern. Namely,

Problem [ On-line P-coloring ]
Request : given σi = (vi, Ei), assign color to vi.
Answer : assignment of a permissible color to vertex vi.

Goal : minimize the number of colors used.

In the general case Presenter seems to be more powerful than Painter. See
the following example where Painter colors vertices greedily, i.e., always uses
the smallest possible color.

Example 1.1. Let the property P be given by C(P) = {K3}. Con-
sider the sequence of requests σ = (σ1, . . . , σ7) such that σ1 = (v1, ∅),
σi = (vi, {vi−1vi}) for i = 2, 3, 4 and σ5 = (v5, {v1v5}, {v2v5}), while for
σ6 and σ7 the vertices are presented with the edges adjacent to v3, v4, v5

and v2, v3, v5, v6 respectively. Greedy strategy of Painter results in the color
assignment c such that c(v1) = . . . = c(v4) = 1 (note that {v1, . . . , v4} is
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P-independent), c(v5) = c(v6) = 2 (to avoid monochromatic K3) and finally
c(v7) = 3. Presenter wins since χP(G) is equal to 2.

Greediness is one of the most popular approaches to the classical on-line
graph coloring and has gained popularity mainly because of its simplicity and
reasonable effectiveness. As demonstrated in the example, the principle of
the smallest color assignment may be useful for P-coloring and the algorithm
following this rule will be referred to as First-Fit(P) or FF(P) for short.
More formally it can be presented as follows:

Algorithm First-Fit (P);
BEGIN
1 INITIALIZE (V (G):=∅, E(G):=∅, i:=0 );
2 REPEAT
3 i := i + 1;
3 READ(σi(vi, Ei));
4 V (G) := V (G)∪{vi};
5 E(G) := E(G)∪Ei;
6 k := 1;
7 WHILE vi.color is not assigned DO
8 IF G[Vk ∪ {vi}] ∈ P
9 THEN vi.color := k
10 ELSE k := k + 1;
11 UNTIL end of σ;
END.

A graph coloring algorithm is called stingy if for each vertex it tries to assign
one of the already used colors (not necessarily the smallest one). Note that
FF(P) ∈ SA, where SA denotes the family of all stingy on-line algorithms.

The family S = {S1, . . . , Sp} of subgraphs forcing at v ∈ V (G) is defined as
a subset of {H ′ : H ′ ≤ G, v ∈ V (H ′), H ′ is isomorphic to some H ∈ C(P)}
such that for any two distinct Si,Sj we have V (Si) ∩ V (Sj) = {v}.

Property 1.1. Let (V1, V2 . . . , Vk) be (P, k)-coloring of G generated by algo-
rithm A ∈ SA. Then for each i = 2, . . . , k there exists a family of subgraphs
forcing at some vertex vi ∈ Vi.

We say that color c surrounds vertex v if there exists a subset U of ver-
tices already colored c such that G[U ∪ {v}] ' H for some H ∈ C(P).
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Note that each vertex vi mentioned in Property 1.1 is surrounded by colors
1, . . . , i − 1 and every stingy algorithm uses a new (still unused) color only
if all previously used colors surround vi.

Property 1.2. Let (V1, V2 . . . , Vk) be (P, k)-coloring of G generated by
FF(P). If v is arbitrarily chosen vertex such that c(v) ≥ 2, then each color
1, 2, . . . , c(v)− 1 surrounds v.

It follows that for each vertex v such that c(v) ≥ 2 there exists the family
{S1, . . . , Sc(v)−1} of subgraphs forcing at v.

A graph G with the fixed ordering of a vertex set is called the on-line
presentation of G. If we take all possible on-line presentations of G, then
the maximum number of colors used by A on G is called the on-line P-
chromatic number of graph G for algorithm A and it is denoted χPA (G).
Extending the scope we define the on-line P-chromatic number of graph G
for the family A of on-line algorithms as the minimum of χPA (G) taken over
all algorithms A ∈ A. In symbols

χPA(G) = minA∈A χPA (G).

It is not hard to see that the following inequalities hold:

χP(G) ≤ χPA(G) ≤ χPA (G).

We say that an on-line P-coloring algorithm A is effective for a family of
graphs G, if there exists a function f(χP) such that all graphs G ∈ G satisfy
χPA (G) ≤ f(χP(G)).

2. On-Line P-Coloring of P-Trees

The concept of P-tree is a natural generalization of the classical tree notion.

Definition 2.1. Graph K1 and every graph H ∈ C(P) is a P-tree. More-
over, if T and T ′ are P-trees, then T ¦ T ′ is a P-tree, where ¦ denotes
identification of any two vertices u ∈ V (T ) and u′ ∈ V (T ′).

The analysis of P-colorings for P-trees strongly relies on the properties of
forcing P-trees. The family T of forcing P-trees is partitioned into subfam-
ilies called levels. The k-th level is denoted by Tk, while T(i,k) is used to
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denote the i-th forcing P-tree of level Tk. The partition follows naturally
from the following construction:

Every forcing P-tree T(i,k) can be described by recursively defined sequences
H(i,k) and R(i,k) and we can use T(i,k)(P,H(i,k),R(i,k)) instead of T(i,k) when
special emphasis on its structure is required. Let H(i,k−1), k > 1 be isomor-
phic to some H ∈ C(P) and let t = |V (H(i,k−1))|. Accordingly, H(i,k) =
(H(i,k−1),H(j1,k−1), . . . ,H(jt,k−1)) and R(i,k) = (R(i,k−1),R(j1,k−1), . . . ,
R(jt,k−1)), where R(i,k−1) is a subset of V (T(i,k)). We assume that for k = 1
there is only one forcing P-tree T(1,1)(P,H(1,1),R(1,1)) ' K1 where H(1,1) =
(H(1,0), ()) and R(1,1) = (R(1,0), ()), whereas H(1,0) ' K1, R(1,0) = V (T(1,1))
and () denotes an empty sequence. For k ≥ 2 the forcing P-tree T(i,k) of
level Tk is constructed as follows:

(1) Let H(i,k−1) be isomorphic to any graph from C(P) and let V (H(i,k−1)) =
{u1, . . . , ut}.

(2) Take t vertex-disjoint graphs T(i1,k−1), . . . , T(it,k−1) such that each of
them is isomorphic to some graph from Tk−1, however T(ip,k−1) '
T(iq ,k−1) is allowed for any 1 ≤ ip, iq ≤ t.

(3) Create R(i,k−1) = {r1, . . . , rt} taking exactly one vertex from the set
R(ip,k−2) of each graph T(ip,k−1) selected in the step (2).

(4) Add an edge for any pair of vertices rp, rq ∈ R(i,k−1) if and only if
upuq ∈ E(H(i,k−1)).

Note that the result of the step (3) may not be unique and that the final
result depends on the labeling of V (H(i,k−1)). See Figure 1 for an example
of the construction. For proper coloring there is exactly one forcing P-tree
T(1,k) for each level Tk and in this case the construction gives canonical trees
defined by Gyárfás and Lehel in [4].

Let T(i,k) be one of the forcing P-trees for some property P ∈ Ma. Assume x
to be a vertex whose family of the forcing subgraphs S = {S1, S2, . . . , Sk−1}
has a maximum order and let vertices of Sj be labeled {x, vj

1, v
j
2, . . . , v

j
pj−1},

where pj = |V (Sj)|.

Lemma 2.1. For each vertex x ∈ R(i,k−1), k ≥ 2 there exists a family S of
subgraphs forcing at x such that the removal of x and all edges of the subgraph
T(i,k)[

⋃k−1
j=1 V (Sj)] from T(i,k) results in the graph having

∑k−1
j=1(pj−1) compo-

nents F 1
1 , F 1

2 , . . . , F 1
p1−1, . . . , F

j
1 , F j

2 , . . . , F j
pj−1, . . . , F

k−1
1 , F k−1

2 , . . . , F k−1
pk−1−1,
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each F j
p being isomorphic to some forcing P-tree from Tj and such that each
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Figure 1. Selected forcing P-trees for C(P) = {P3}.

Proof. The existence of S follows immediately from the construction of
forcing P-trees. It is enough to see that for each j = 1, . . . , k − 1 removing
from T(i,k) the edges of subgraph Sj results in a graph having pj − 1 compo-
nents, each isomorphic to some forcing P-tree of level j and one component
containing vertex x. See Figure 2 for the example of T(1,4) forcing P-tree
for the property given by C(P) = {P4, K3}. Note that V (S3) = R(1,3) =
{x, v3

1, v
3
2, v

3
3}, V (S2) = R(1,2) = {x, v2

1, v
2
2}, V (S1) = R(1,1) = {x, v1

1, v
1
2, v

1
3},

R(1,0) = {x}.

Theorem 2.1. Let P ∈ Ma and let T(i,k) be any forcing P-tree of level k.
Then for every algorithm A ∈ SA we have χPA (T(i,k)) ≥ k.

Proof. We have to prove that for any algorithm A ∈ SA and each vertex
y ∈ R(i,k−1) there exists an on-line presentation of T(i,k) forcing A to use
color k for y. The required ordering of the vertices follows directly from the
construction of forcing P-trees. Let y be the first vertex in order. Then for
each level j = k, . . . , 2 include all still unprocessed vertices from R(p,j−1) of
each forcing subtree of level j. The subset of all vertices processed for the
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Figure 2. Forcing P-tree of 4-th level for C(P) = {P4,K3}.

same value of j is called the layer. Ordering of the vertices within a layer
is irrelevant. Finally, reverse the ordering. It is not hard to see that any
stingy algorithm A colors vertices of the first layer using the same color.
Assume that for layers j = 1, . . . , k − 2 the ordering forces any stingy A to
use color j for all vertices of layer j. Note that each vertex x of layer k − 1
belongs to the set R(p,k−1) of some forcing P-tree of level k and, according
to Lemma 2.1, there exists the family {S1, . . . , Sk−1} of subgraphs forcing
at x. Moreover, each vertex vj

p ∈ V (Sj)\{x}, j ≤ k − 2 belongs to the
layer j and because of the layer by layer presentation is already colored j.
Therefore each vertex of layer k− 1 is surrounded by colors 1, . . . , k− 2 and
any on-line algorithm is forced to assign them colors not smaller than k− 1.
However, since each layer is P-independent, any stingy algorithm A will use
color k − 1 for all of its vertices and color k for the last vertex y.

Theorem 2.2. Let P ∈ Ma and let T be an arbitrary P-tree. Then
χPFF(T ) > k if and only if T contains an induced subgraph isomorphic to
one of the forcing P-trees of level Tk+1.

Proof. (⇐) If T contains a subgraph isomorphic to some T(i,k+1) ∈ Tk+1,
then by Theorem 2.1 we have χPFF(T(i,k+1)) > k, hence χPFF(T ) > k.

(⇒) It is easy to check that the theorem holds for k = 1. Let k ≥ 1
and assume that whenever χPFF(T ) > k − 1, then T contains a subgraph
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isomorphic to some T(i,k) ∈ Tk. Let χPFF(T ) > k. Then there exists an on-
line presentation of T such that FF(P) assigns color k + 1 to some vertex
x ∈ V (T ). By Property 1.2 there exists the family {S1, . . . , Sk} of subgraphs
forcing at x such that the colors of all vertices vj

p ∈ V (Sj)\{x}, j = 1, . . . , k

are equal to j. If edges of the subgraph induced by
⋃k

j=1 V (Sj) were removed
then we would have a disconnected graph such that each component T j

p ,
j = 1, . . . , k, p = 1, . . . , pj−1 would contain exactly one vertex vj

p colored j.
Consequently, χPFF(T j

p ) > j − 1 and T j
p contains a subgraph Hj

p isomorphic
to some forcing P-tree T(q,j) of level Tj . As we see from the construction of
forcing P-trees and the proof of Theorem 2.1 each vertex vj

p ∈ R(q,j−1) of
the appropriate T(q,j), j = 1, . . . , k. Hence T contains the subgraph induced
by

⋃k
j=1

⋃pj−1
p=1 V (Hj

p) ∪ {x} being isomorphic to one of the forcing P-trees
of level Tk+1.

Theorem 2.3. Let P ∈ Ma. Then for any P-tree T we have χPSA(T ) =
χPFF(T ).

Proof. Let k be the largest integer such that there exists a subgraph
of T isomorphic to some forcing P-tree T(i,k). By Theorem 2.1 for every
A ∈ SA we have χPA (T(i,k)) ≥ k. Since T contains no subgraph isomorphic
to forcing P-tree of level k + 1, by Theorem 2.2 it follows that χPFF(T ) ≤
k. Consequently, χPA (T(i,k)) ≥ χPFF(T ). On the other hand, since T(i,k) is
an induced subgraph of T , we have χPA (T ) ≥ χPA (T(i,k)). It follows that
χPA (T ) ≥ χPFF(T ) and according to the minimum in the definition of χPA we
get χPSA(T ) = χPFF(T ).

It is known that there exist properties P ∈ Ma such that for any graph G
we have χPOL(G) = χPFF(G), where OL stands for the family of all on-line
algorithms (see [4] for the results obtained for proper coloring). It seems that
nontrivial results for OL are very hard to prove in the scope of all P ∈ Ma.
On the other hand, interesting problems arise for classes of algorithms and
specific presentation strategies. The proof of the next theorem relies on
a very natural strategy of graph presentation and the problem is whether
there exist algorithms forced by this presentation but resist layer by layer
presentation given in the proof of Theorem 2.1.

Theorem 2.4. Let P ∈ Ma. Then for any forcing P-tree T(i,k) of level k

we have χPFF(T(i,k)) ≥ k.
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Proof. Let x ∈ R(i,k−1). We give the strategy of Presenter forcing FF(P)
to use color k for x. According to Lemma 2.1 at every level of recursion, the
procedure Presentation finds the family S forcing at x and subgraphs Hj

p

induced by the vertices of components F j
p .

Algorithm Presentation (T(i,k), x);
BEGIN
1 Find family S of subgraphs forcing at x and subgraphs Hj

p ;
2 FOR p := 1 TO p1 − 1 DO

Present the vertices of subgraph H1
p ;

3 FOR each subgraph Hj
p , j ≥ 2 DO

Presentation (Hj
p , vj

p);
4 Present vertex x;
END.

It is easy to see that Presentation works fine for k = 1, 2. Let us assume
that k ≥ 2 and that for j = 1, . . . , k − 1 it forces FF(P) to use color j at
vertex x of each forcing P-tree of level j. Independently of the order, all
vertices of H1

p are colored 1. Since each Hj
p is isomorphic to some forcing

P-tree of level j, vertex vj
p of Hj

p is colored j. Hence for each j = 1, . . . , k−1
all vertices of V (Sj)\{x} are colored j and since all of them are P-neighbors
of x, Painter is forced to use color k for x.

3. Effectiveness of Stingy On-Line Algorithms

Since for any property P ∈ Ma there exists some (P, 2)-coloring of every P-
tree, it follows from Theorem 2.1 that for any A ∈ SA the difference between
the worst and optimum solution values χPA (G) − χP(G) may be arbitrarily
large. This implies the following corollary:

Corollary 3.1. Let P ∈ Ma. Then there does not exist any effective stingy
on-line P-coloring algorithm.

The performance guarantee function ρ for algorithm A is defined as follows:

ρPA (n) = max{χPA (G)/χP(G) : G is a graph of order n}.
The lower bound of the performance guarantee function for the algorithms
from OL and proper coloring, was given by Bean [1]. For the stingy
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algorithms Bean’s result can be easily extended for any property P ∈ Ma.
The extended lower bound is

ρPA (n) ≥ logαn

2
,

where α = min{|V (H)| : H ∈ C(P)}. The bound follows directly from
Theorem 2.1 which in fact states that for any integer k > 0 there exists
a P-tree T(i,k) of order αk−1 and its on-line presentation which forces any
stingy A to use at least k colors. However, the aforementioned bound, being
in fact an easy consequence of the results presented in the preceding section,
can be significantly improved.

Theorem 3.1. Let P ∈ Ma and let α = min{|V (H)| : H ∈ C(P)}. For
any integer k > 0 there exists a graph Gk of order (2k− 1)(α− 1) such that
for any A ∈ SA we have χPA (Gk) ≥ k.

Proof. A graph Gk = (V, E) is any graph that satisfies the following
conditions:

(a) V (Gk) can be partitioned into 2k − 1 subsets (B1
1 , B1

2 , . . . , B1
k, B2

1 ,
B2

2 , . . . , B2
k−1) each inducing a subgraph isomorphic to some H − x,

where H ∈ C(P) and x is arbitrary vertex of H.
(b) Both

⋃k
i=1 B1

i and
⋃k−1

j=1 B2
j are P-independent.

(c) For every v ∈ B1
i , i = 2, . . . , k each subgraph induced by {v} ∪ B2

j ,
j > i is isomorphic to some H ∈ C(P).

(d) For every u ∈ B2
j , j = 2, . . . , k− 1 each subgraph induced by {u} ∪B1

i ,
i > j is isomorphic to some H ∈ C(P).

Since B1
1 ∪ B2

1 is P-independent, any stingy A will assign the same color
to all of its vertices. Let us assume that for i = 1, . . . , k − 2 all vertices of
B1

i and B2
i have been colored using color i. Since each vertex v ∈ B1

k−1 is
P-adjacent to all vertices of the sets B2

j , j = 1, . . . , k − 2 (it is surrounded
by colors 1, . . . , k − 2), any stingy A will assign it color k − 1. Similarly,
each u ∈ B2

k−1 will be colored k− 1 and finally, each v ∈ B1
k will get color k.

The graphs Gk are easily shown to be off-line (P, 2)-colorable (see condition
(b)), hence for any A ∈ SA we have

ρPA (n) >
n

4(α− 1)
.
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4. Optimal Greedy P-Coloring

Despite of all these rather pessimistic results there exist families of graphs
for which FF(P) always gives optimal P-colorings.

Let F∗ be the family of graphs whose vertex sets can be partitioned into two
subsets C and I such that C induces a complete subgraph K3 while I is K3-
free and for every v ∈ C there exist x, y ∈ I such that G[{x, v, y}] ' K3. Let
us define a partially ordered set (F∗,≤) with respect to ordering relation
≤ of being an induced subgraph. We write F for the set of all minimal
elements of F∗, with the excluded graph K5, i.e., F = min(F∗,≤)\{K5}.

Lemma 4.1. Let G = (V, E) be an F-free graph whose vertex set V (G) can
be partitioned into K and I such that the subgraph induced by K is complete,
while I is K3-free. Moreover, if each v ∈ K has P-neighbors x, y ∈ I such
that G[{x, v, y}] ' K3, then there exists a pair of vertices x, y ∈ I such that
G[K ∪ {x, y}] is complete.

Proof. Let x, y be adjacent vertices from I and let A = {u : u ∈
K, G[{x, u, y}] ' K3}. Since lemma is obvious for A = K, suppose A 6= K
and let B = K\A. Assume that the lemma is true for a subgraph induced
by B and all vertices from I which are P-adjacent with any vertex from B.
It follows that there exist u, v ∈ I such that G[{u, z, v}] ' K3, for every
z ∈ B. If there existed a ∈ A and b ∈ B such that G[{u, a, v}] 6= K3 and
G[{x, b, y}] 6= K3 we would have an induced subgraph of G isomorphic to
one of the graphs from F . Hence either G[K ∪ {x, y}] or G[K ∪ {u, v}] is
complete.

Theorem 4.1. If a property P ∈ Ma is given by C(P) = {K3}, then
algorithm FF(P) gives an optimal P-coloring of any F-free graph.

Proof. Let (V1, . . . , Vk) be (P, k)-coloring of graph G = (V, E) generated
by algorithm FF(P). If FF(P) assigned color k to vertex v, then by Property
1.2 there exist vertices u1, u2 ∈ Vk−1 such that G[{u1, v, u2}] ' K3. Let p
be any color such that 2 ≤ p < k and let vertices {v, u1, u2, . . . , u2(k−p)}
induce the clique Q of order 2(k − p) + 1, P-colored using colors p, . . . , k
(note that χP(Kn) = dn/2e). By Property 1.2 for each vertex w of Q
there exist x, y ∈ Vp−1 such that G[{x,w, y}] ' K3. Lemma 4.1 applied to
the vertices of Q and Vp−1 implies the existence of x, y ∈ Vp−1 such that
{v, u1 . . . , u2(k−p), x, y} induces K2(k−p)+3.
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A slight modification of the assumptions of Theorem 4.1 leads to a stronger
version which, by similar arguments, can be proved for all properties P ∈
Ma. However, it should be pointed out that for some properties family F
is infinite.
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