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Abstract

In this paper a concept Q-Ramsey Class of graphs is introduced,
where Q is a class of bipartite graphs. It is a generalization of well-
known concept of Ramsey Class of graphs. Some Q-Ramsey Classes
of graphs are presented (Theorem 1 and 2). We proved that T 2, the
class of all outerplanar graphs, is not D1-Ramsey Class (Theorem 3).
This results leads us to the concept of acyclic reducible bounds for a
hereditary property P. For T 2 we found two bounds (Theorem 4). An
improvement, in some sense, of that in Theorem 5 is given.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges.
For a graph G = (V, E) and U ⊆ V , G[U ] denotes the subgraph of G induced
by vertices of U .

A k-colouring of a graph G is a mapping f from the set of vertices of G
to the set of k colours such that adjacent vertices receive distinct colours. An
acyclic k-colouring of a graph G is a k-colouring of G satisfying the subgraph
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induced by every pair of colour classes has no cycle. The minimum k such
that G has an acyclic k-colouring is called the acyclic chromatic number of
G, denoted by χa(G).

Similarly, for a class P of graphs, the acyclic chromatic number of P,
denoted by χa(P), is defined as the maximum χa(G) over all graphs G ∈ P.

This number has been studied extensively over past thirty years. Several
authors have been able to determine χa(P) for some classes P of graphs
such as graphs of maximum degree 3, considered by Grűnbaum in [10] and
of maximum degree 4, studied by Burstein in [7]. The acyclic chromatic
number of planar graphs was found by Borodin in 1979, see [3] for details.
Planar graphs with ”large” girth, outerplanar and 1-planar graphs also were
considered, see for instance [4, 5], etc.

In nineties Sopena at al., have begun their studies on acyclic colourings
of graphs with respect to hereditary properties of graphs. Namely, they have
considered outerplanar, planar graphs and graphs with bounded degree, see
[1, 2]. To precise this notion, we need some definitions. We follow [6].

Let I denote the class of all finite simple graphs. A property of graphs is
any nonempty class of graphs from I, which is closed under isomorphisms.
A property P of graphs is called hereditary if it is closed under subgraphs,
i.e., if H ⊆ G and G ∈ P imply H ∈ P. A property P is called additive if for
each graph G all of whose components have the property P it follows that
G ∈ P, too. By La we denote the set of all additive hereditary properties of
graphs. We list some additive hereditary properties:
O = {G ∈ I : E(G) = ∅},
Ok = {G ∈ I : χ(G) ≤ k},
T2 = the class of all outerplanar graphs,
D1 = the class of all acyclic graphs.

A hereditary property P can be uniquely determined by the set of minimal
forbidden subgraphs which can be defined as follows:

F (P) = {G ∈ I : G /∈ P, but each proper subgraph H of G belongs to P}.
Let F be a family of graphs, Forb(F) is defined to be the property of all
graphs having no subgraph isomorphic to any graph of F . Thus, P =
Forb(F (P)).

Let P1,P2, . . . ,Pk be hereditary properties of graphs. A (P1,P2, . . . ,
Pk)-colouring of a graph G is a mapping f from the set of vertices of G to
a set of k colours such that for every colour i, the subgraph induced by the
i-coloured vertices has property Pi.
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Suppose F is a nonempty family of connected bipartite graphs, each with
at least 2 vertices.

A (P1,P2, . . . ,Pk)-colouring of a graph G is said to be F-free if for every
two distinct colours i and j, the subgraph induced by all the edges linking
an i-coloured vertex and a j-coloured vertex does not contain a subgraph
isomorphic to any graph F in F . These F-free (P1,P2, . . . ,Pk)-colourings
are a natural generalization of acyclic colourings if F = {C2p : p ≥ 2},
star-forest colourings if F = {P4}, and so on.

We assume that F is a minimal set of forbidden subgraphs for a property
Q, i.e., F = F (Q).

A property R = P1 ◦Q
P2 ◦Q

· · ·◦
Q
Pn is defined as the set of all graphs having

an F (Q)-free (P1,P2, . . . ,Pn)-colouring.
If Q = D1 then we use the notation R = P1 ¯P2 ¯ · · · ¯ Pn.
A partition of V (G) generated by an F-free (P1, . . . ,Pk)-colouring of G

is called an F-free (P1, . . . ,Pk)-partition. An F-free (P1, . . . , Pk)-colouring,
where P i = I for i = 1, ..., k, will be called briefly an F-free colouring. If
F consists of a single graph F , then it will be called an F -free colouring
(partition) for short.

For definitions and notations not presented here, we refer to [6, 9].

2. Ramsey Classes of Graphs

A hereditary property P is called a Q-Ramsey Class if for every G ∈ P there
is an H ∈ P such that H→

Q
G, i.e., for every F (Q)-free bicolouring of H there

is a monochromatic subgraph isomorphic to G.
It is easy to see that if P is a Q-Ramsey Class and Q′ ⊆ Q, then P is

a Q′-Ramsey Class.

Proposition 1. Let k ≥ 2. Then Ok is a D1-Ramsey Class.

Proof. Let G ∈ Ok and α(G) = α. It is easy to see that the graph
H = Kk×(α+2), the complete k-partite balanced (i.e., each colour class has
the same cardinality α + 2) graph satisfies the requirements of Theorem.

Theorem 1. Let F be a connected bipartite graph and Q =Forb(F ). Then
Ok is a Q-Ramsey Class for k ≥ 2.

Proof. Let F be a given connected bipartite graph and let F be a subgraph
of Kr,s with r ≤ s, and let G ∈ Ok. Consider a graph H = Kk×n, where
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n ≥ s + α(G) + 1. Suppose that {X, Y } is an F -free bipartition of H. It
implies that one of sets X, Y , say X, has at most s elements in each colour
class Vi of H. Similarly, each colour class Vi of H has at least α(G) elements
in Y , thus G is a subgraph of H[Y ].

Let k be a positive integer. A k-clique is a complete graph of order k. A
k-tree is a graph defined inductively as follows: A k-clique is a k-tree. If G
is a k-tree, and K is a subgraph of G isomorphic to a k-clique, then a graph
obtained from G by adding a new vertex and joining it by new edges to all
vertices of K is a k-tree. Any subgraph of a k-tree is a partial k-tree. The
tree-width of a graph G is zero if G is edgeless; otherwise it is a smallest
integer k such that G is a partial k-tree, and will be denoted by tw(G).
Nontrivial forests have tree-width 1, while every graph has some tree-width.

Let us denote by

T Wk = {G ∈ I : tw(G) ≤ k}.

According to G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, see [8],
we recall the notion of ”large” k-trees.

Let k be a positive integer. We will define some classes of k-trees, each
with a level function λ defined on its vertices. Let the level of a subgraph
of a graph with a level function be the maximum level of its vertices. Let
T (k, 0, 0) be the k-clique, and each of its vertices have level zero. Let l, r
be non-negative integers. We will proceed by induction on l. The k-tree
T (k, l, r) and its level function are obtained from k-tree T = T (k, l − 1, r)
(or T = T (k, 0, 0) if l = 1) and its level function by the following: For each
k-clique K of T that has level l − 1, add r new vertices, join each of them
to all vertices of K, and declare the new vertices to be at level l. For a new
vertex v added, let K(v) denote this k-clique K of level l − 1.

Proposition 2 [8]. The graph T (k, l, r) is a k-tree and every k-tree is a
subgraph of T (k, l, r), for some l, r.

Theorem 2. Let k ≥ 2. Then T Wk is a D1-Ramsey Class.

Proof. Let G ∈ T Wk. By Proposition 2 it follows that G ⊆ T (k, l, r) for
some integers l, r. Let H = T (k, p, s), s, p > 1. We claim that if p and s are
large enough, then in every acyclic bicolouring f with a bipartition {U1, U2}
of V (H), H[U1] ⊇ T (k, l, r) or H[U2] ⊇ T (k, l, r).
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Firstly, let us observe that if J is any k-clique in H then J has at least k−1
monochromatic vertices, say |V (J)∩U1| ≥ k− 1, in any acyclic bicolouring
f of H.

Secondly, if a k-clique J of level j < p has exactly one vertex in U2 then
there is a monochromatic k-clique J ′ of the level j + 1 with V (J ′) ⊆ U1.

Since we choose p much larger than l therefore, without loss of generality,
assume that k-clique K of the level zero is monochromatic, say V (K) ⊆ U1.

Now let x be the vertex of level one in H and K(x) = K ⊆ U1. If
x ∈ U2 then y ∈ U1 for all vertices y 6= x of level one. Therefore all, except
at most one, k-cliques of level one have vertices in U1. Now, if we consider a
vertex x′ of level two, with K(x′) ⊆ U1, we get that all, except at most one,
k-cliques of level two, having common vertices with K(x′) have vertices in
U1, and so on. If s is large enough then T (k, l, r) ⊆ H[U1].

Now we consider the property T2 which is a proper subclass of T W2. For
T2 we have the following results.

Theorem 3. T2 is not a D1-Ramsey Class.

To prove Theorem 3 we need some notations and lemmas.
Let G = {Al : Al = T (2, l, 1), l > 0, A0 = T (2, 0, 0)}. It is easy to see

that G is a family of maximal outerplanar graphs with a level function and
Al ⊂ Al+1 for all l.

Lemma 1. If G ∈ T2 then there is an integer k ≥ 0 such that G ⊆ Ak.

Proof. Clearly, it is enough to consider only maximal outerplanar graphs
G with at least 3 vertices. The proof is by induction on the number of
vertices of G. If |V (G)| = 3 then G is isomorphic to A1. Assume that
for all maximal outerplanar graphs with less than n vertices, n ≥ 3, the
lemma is true. Consider a maximal outerplanar graph G with n vertices.
Let x ∈ V (G) such that degG(x) = 2 and G′ = G − x. Applying the
induction hypothesis to G′ we get Ak ∈ G such that G′ ⊆ Ak. If G 6⊆ Ak

then we construct a graph Ak+1 from Ak. Since degGx = 2 it is clear that
G ⊆ Ak+1.

Lemma 2.
T2 ⊆ O ¯ Forb(G1).
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Figure 1. Graph G1

Proof. From Lemma 1 it follows that it is enough to consider only graphs
A0, A1, . . . , An, . . . from the family G. The proof is by induction on n. Obvi-
ously, the lemma is true if n = 0, 1, 2. We consider the graph An and An+1,
for n ≥ 3, assuming that f is an acyclic colouring of An, with a biparti-
tion {U1, U2} of V (An), such that U1 (the set of red vertices) is indepen-
dent and An[U2] (the subgraph induced by blue vertices) has the property
R = Forb(G1). We use f to construct an acyclic colouring f ′ of An+1, with
a bipartition {U ′

1, U
′
2} of V (An+1), such that U ′

1 (the set of red vertices) is
independent and An+1[U ′

2] (the subgraph induced by blue vertices) has the
property R. First, let f ′(v) = f(v) for all vertices in An+1 of level less than
n + 1.

Let x, y be a pair of uncoloured vertices of the level n + 1 in An+1. Let
us assume, without loss of generality, that x is adjacent to a and b, and y
is adjacent to b and c such that they form a triangle in An. It is clear that
a, b, c have level less than n+1 and form a triangle in An, and f ′ has already
coloured them.

To colour the vertices of the level n + 1 we apply the following rules.

Rule 1. If one of the vertices a, b, c is red, then both x and y should be
blue.

Rule 2. If a, b, c are blue, then x should be red and y should be blue.

From the construction of the graph An+1 it follows that:
(1) If C is a cycle in An+1 containing x (respectively y), then C contains

also either the path (x, b, y) or (x, b, c) (either the path (y, b, x) or (y, b, a)
respectively);

(2) If G is a subgraph of An+1 containing x (respectively y), then G
contains also a, b, c and y (respectively x).

Colouring rules and (1) implies that the obtained colouring is acyclic.
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Similarly, by the rules and (2) we see that blue vertices induce in An+1 a
graph with the property R and red vertices are independent.

It is clear that if we apply these colouring rules to each such a pair of
vertices of the level n + 1, we will obtain a required colouring of Ak+1.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We only need to find an outerplanar graph F such
that for an arbitrary outerplanar graph H there is an acyclic bipartition
{U1, U2} of V (H), with U1 being independent and H[U2] 6⊇ F . Clearly,
Lemma 2 yields the graph G1 (Figure 1), which satisfies the requirements
of Theorem.

3. Acyclic Reducible Bounds

In this section we give some acyclic reducible bounds for the class of outer-
planar graphs. We start with a few definitions.

An additive hereditary property R is said to be acyclic reducible in
La if there are nontrivial additive hereditary properties P1,P2 such that
R = P1 ¯ P2 and acyclic irreducible in La, otherwise.

Obviously, the smallest acyclic reducible property in La is the property
O(2) = D1.

Theorem 4.
T2 ⊆ O ¯ Forb(G1, G2),

T2 ⊆ O ¯ Forb(G1, G3).

Proof. We will proof only the first inclusion, the second one can be proved
similarly. As in the proof of Lemma 2, we use Lemma 1 to restrict our
attention only to graphs A0, A1, . . . , An, . . . from G. The proof is by induc-
tion on n. Obviously, it holds for n = 0, 1, 2. We consider the graph An

and An+1, for n ≥ 3, assuming that f is an acyclic colouring of An, with
a bipartition {U1, U2} of V (An), such that U1 (the set of red vertices) is
independent and An[U2] (the subgraph induced by blue vertices) has the
property R = Forb(G1, G2). We use f to construct an acyclic colouring f ′

of An+1, with a bipartition {U ′
1, U

′
2} of V (An+1), such that U ′

1 (the set of
red vertices) is independent and An+1[U ′

2] (the subgraph induced by blue
vertices) has the property R. First, let f ′(v) = f(v) for all vertices in An+1

of level less than n + 1.
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Figure 2. Graphs G1, G2 and G3.

Let x, y be a pair of uncoloured vertices of the level n + 1 in An+1. Let us
assume that x is adjacent to a and b, and y is adjacent to b and c such that
the vertices a, b, c form a triangle in An and are coloured.

Now we denote some vertices of An. Let e 6= b be a unique vertex
adjacent to both a and c, let d be be the vertex different from c adjacent to
both a and e (it is a unique vertex in An with these properties), and let h
be a vertex different from a adjacent to both c and e (it is only one such a
vertex in An).

It is clear that b has level n. The level of one from {a, c} is equal to
n− 1, say c; then the level of a is less than or equal to n− 2.

To colour the vertices of the level n + 1 we apply the following rules.

Rule 1. If one of the vertices a, b, c is red, then both x and y should be
blue.

Rule 2. If a, b, c are blue, then

(a) if f ′(e) = red, then f ′(x) = f ′(y) = blue.
(b) if f ′(e) = blue, then

(b1) if f ′(d) = red, then f ′(x) = red and f ′(y) = blue;
(b2) if f ′(d) = blue, then f ′(x) = blue and f ′(y) = red.

(Notice that the case f ′(d) = f ′(h) = blue is impossible, in such case all
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vertices {a, b, c, e, d, h} would be coloured blue and a graph induced by this
set in An would be isomorphic to G1.)

From the construction of the graph An+1 it follows that:
(1) If C is a cycle in An+1 containing x (respectively y), then C contains

also either the path (x, b, y) or (x, b, c) (either the path (y, b, x) or (y, b, a)
respectively);

(2) If F is a subgraph of An+1 isomorphic to G1, containing x or y, then
V (F ) = {x, y, a, b, c, e};

(3) If F is a subgraph of An+1 isomorphic to G2, containing x (respec-
tively y), then V (F ) = {x, a, b, c, e, h} (respectively V (F ) = {y, a, b, c, d, e}).
Colouring rules and (1) implies that the obtained colouring is acyclic. From
(2) and (3) we see that blue vertices induce in An+1 a graph with the prop-
erty R. Red vertices are independent, which is clear from the colouring
rules.

If we apply the colouring rules to each such a pair of vertices of level
n + 1, then we obtain an acyclic colouring of An+1.

A maximal outerplanar graph G with at least 3 vertices is called a 2-path
of order n = 2p, if G consist of two paths P1 = (x1, x2, . . . , xp), P2 =
(y1, y2, . . . , yp) and additional edges: xiyi, i = 1, . . . , p and xjyj+1 for j =
1, . . . , p − 1. For an odd n = 2p − 1 a 2-path H is defined as H = G − xp,
where G is 2-path of even order.

A maximal outerplanar graph G with at least 3 vertices is called a fan of
order n, if G is obtained from a star K1,n−1 by joining all vertices of degree
one by a path.

Additionally we assume that the graph K1 and K2 is a trivial 2-path
and a trivial fan. For each n ≤ 5 there is exactly one (up to isomorphism)
maximal outerplanar graph of order n which is a 2-path and a fan.

Lemma 3. Let G be a maximal outerplanar graph of order n ≥ 3. Then
(a) G is a fan if and only if neither G1 ⊆ G nor G2 ⊆ G.
(b) G is a 2-path if and only if neither G1 ⊆ G nor G3 ⊆ G.

Proof. (a) The fact that any fan contains neither G1 nor G2 follows im-
mediately by the definition. For the converse, we employ induction on n,
the order of G. Clearly, for n ≤ 6 it is true. Assume every graph with fewer
than n ≥ 7 vertices is a fan, and suppose G has order n and does not contain
a subgraph isomorphic to Gi, i = 1, 2. Let x be the vertex of degree 2 in G.
By the inductive hypothesis, G′ = G− x is a fan of order n− 1 ≥ 6. Let y
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be the unique vertex of maximum degree in G′. If x is not adjacent to y in
G, then G contains G1 or G2. If x is adjacent to y in G, then G is a fan.

(b) Again, it is easy to see that any 2-path contains neither G1 nor G3.
It follows immediately by the definition. For the converse, we use again
induction on n. Clearly, for n ≤ 6 it is true. Let us assume that every graph
with fewer than n ≥ 7 vertices is a 2-path, and suppose G has order n and
does not contain a subgraph isomorphic to Gi, i = 1, 3. It is easy to see,
that if G has a vertex of degree greater than 4, then by the maximality of G
we get that G contains a subgraph isomorphic to G3. Hence we can assume
that all vertices of G are of degree at most 4. Let x be the vertex of degree
2 in G. The graph G′ = G − x is a maximal outerplanar graph with less
than n vertices, then by the inductive hypothesis, G′ is a 2-path. It is clear
that G′ has only four vertices of degree less than 4 and x has to be adjacent
in G to exactly two of them. From maximality of G we get that x and its
neighbours induce a triangle in G i.e., G is a 2-path.

Let us recall that a block of a given graph G is defined to be a maximal
connected subgraph of G without a cutvertex.

A fan (2-path) tree is a connected graph G every block of each is a fan
(2-path).

Let us define the property FT (PT ) as the family of all fan (2-path)
trees and their subgraphs. Each property is additive hereditary and a proper
subfamily of all outerplanar graphs.

From the definition of FT it follows that G1 and G2 do not belong to
FT . Similarly, G1 and G3 do not belong to PT . It implies the following
corollary.

Corollary 1.
FT ⊆ Forb(G1, G2),

PT ⊆ Forb(G1, G3).

Because of above Corollary, the next theorem gives a little better than in
Theorem 4 two acyclic reducible bounds for outerplanar graphs.

Theorem 5.
T 2⊆O ¯FT ,

T 2⊆O ¯ PT .
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Proof. We will prove only the first bound, the second one can be proved
similarly. By Lemma 1, it is enough to show that each graph of the family
G has the property O¯FT . On the contrary, suppose that there is a graph
G ∈ G such that in every acyclic bipartition {U1, U2} of V (G), with U1 being
independent, G[U2] has a subgraph isomorphic to a graph from T 2 − FT .
Let F be its block which is not a fan. Since any maximal outerplanar graph
of order ≤ 5 is a fan, thus F has order at least 6. Lemma 3 implies that
F contains a subgraph isomorphic to G1 or to G2. This fact contradicts
Theorem 4.
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