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Abstract

In a graph, by definition, the weight of a (proper) coloring with
positive integers is the sum of the colors. The chromatic sum is the
minimum weight, taken over all the proper colorings. The minimum
number of colors in a coloring of minimum weight is the cost chromatic
number or strength of the graph. We derive general upper bounds for
the strength, in terms of a new parameter of representations by edge
intersections of hypergraphs.
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1. Introduction

Though even the traditional notion of proper coloring and minimum proper
coloring yields many complex problems, in the last decades a lot of modified
versions and generalizations of them were defined. One is the so-called
strength of graphs. (See the definitions in the Preliminary Section.) This
concept was invented by Kubicka [4], in connection with VLSI problems.
The paper [9] deals also with the latter subject. Some basic properties of
the chromatic sum have been described by Thomassen et al. [1] and by

∗Research supported in part by the Hungarian Scientific Research Fund, OTKA grant
no. T-049613.

†Also affiliated with the Department of Computer Science, University of Veszprém.
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Kubicka and Schwenk [5]. Its behavior in trees has been investigated by the
second author [10] and by Gionfriddo et al. [3]. In particular, the former
paper describes a condition in terms of (induced) minors. Vizing’s theorem
and Vizing’s conjecture are also related to the subject. The monograph [8]
contains important results in this direction. For various open problems in
the area, see e.g. [11].

In this work we give some upper and lower bounds for the strength,
using a hypergraph parameter that we introduce here. As an intermediate
step, we obtain new estimates on the Grundy number of graphs.

2. Preliminaries

A coloring of a graph G = (V,E) with |V | = n is a mapping f : V →
{1, 2, . . . , n} such that for all uv ∈ E, f(u) 6= f(v). The color classes
are the vertices having the same f value. The weight w(f) of a coloring
f is

∑
v∈V f(v). Thus, the minimum possible weight of a coloring with

color classes C1, C2, . . . , Ck, in non-decreasing order of their cardinalities, is
k|C1| + (k − 1)|C2| + . . . + |Ck|. The chromatic sum Σ(G) of a graph G is
the minimum weight of a coloring in G. If w(f) = Σ(G), then we call f
minimal.

For a graph G, the minimum number of colors in a coloring of minimum
weight is called the strength of G and is denoted by s(G).

A Grundy coloring is an ordered coloring (where the color classes have
indices) in which, for every color class, each vertex of that class has some
neighbor in every color class of smaller index. Let us consider every coloring
as an ordered one like above. Then the following assertion is obvious.

Lemma 1. Every coloring of minimum weight is a Grundy coloring.

Let Γ(G) denote the largest number of colors in a Grundy coloring of G.
The lemma above immediately implies

(∗) s(G) ≤ Γ(G)

for every graph G.
Next, let us introduce some new concepts on hypergraphs.

Definitions. Given a hypergraph F and a hyperedge F , a subset B ⊆ F is
a guard set of F if every hyperedge, intersecting F but not contained in F
intersects B, too.
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Remark. A hyperedge may have several guard sets and multiple hyperedges
may occur.

Notation. We call the intersection graph of the hypergraph F briefly its
line graph and denote it by LF .

Definition. A hypergraph is c-small if all of its hyperedges have some
guard set of size at most c. A graph G is c-representable if there exists a
c-small hypergraph F such that LF = G. The minimum of c such that G is
c-representable is called the representation number of G and is denoted by
c(G).

Some notation. D(G) denotes the maximum degree in the graph G. The
clique number and the (ordinary) chromatic number of the graph G will be
denoted by ω(G) and χ(G), respectively. A graph is called ∆-free if it does
not contain 3 pairwise adjacent vertices. For a vertex v, N(v) is the open
neighborhood of v, i.e., the set of all vertices adjacent to v.

Definition. A graph is an interval graph if it is the intersection graph of a
system of intervals on a line. A graph is chordal if all of its cycles of length
more than 3 has at least one chord.

3. A General Upper Bound

Remark. c(G) = 0 can occur only when every component of G is a clique.
This means ω(G) = χ(G) = s(G) = Γ(G).

Theorem 1. Let ω(G) = ω and let G be c-representable. Then for c ≥ 2

(1) s(G) ≤ Γ(G) ≤ (c/2)ω2.

For c = 1, we have s(G) ≤ Γ(G) ≤ (ω2 + ω)/2.

Proof. We shall prove both upper bounds for Γ(G). This will be sufficient,
by (∗).

Let F be a c-small hypergraph, representing G.
Let the color classes C1, C2, . . . , Ck be labeled so that the sequence in

the reverse order is a Grundy coloring. Let us pick a vertex v1 of C1 and
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a neighbor of v1 from every other color class (by definition, they exist).
Let W1 be the hyperedge representing v1 in F , and let B1 be a minimum
guard set of W1. The neighbors chosen above are represented by hyperedges
intersecting W1. Let us denote by Fi the hyperedge representing a vertex in
Ci, adjacent to v1.

Our next goal is to find an i for which Fi is contained in W1. By the
definition of a guard set, each Fi not contained in W1 intersects B1 in some
point b. But the set of hyperedges containing b represents a clique in G, thus
their number is at most ω. Since |B1| ≤ c, the number of hyperedges, not
contained in W1 but intersecting it is at most c (ω−1). Consequently, if the
number of classes is large, then we find an Fi which is contained in W1; in
the remaining part of the proof, we call it W2. Furthermore, i can be chosen
to be small, namely i ≤ 2 + c (ω − 1) is possible. Similarly, there exists a
hyperedge W3, contained in W2, representing a vertex in a color class Cj ,
with j ≤ i+1+c (ω−2). The reason of the latter bound is that the number
of hyperedges Fj , containing a vertex in a guard set of W2, with j > i, is at
most ω − 2, since together with W1 and W2, they form a clique in G.

We continue the process, and we get a series of hyperedges W1 ⊇ W2 ⊇
W3 ⊇ . . . ⊇ Wω such that the index of the corresponding color class increases
by at most 1 + c (ω − `) where the hyperedge just investigated is W`. If
the graph had one color class more, we would get a contradiction, because
the last represented vertex vω has some neighbor in the next color class, a
hyperedge would intersect Wω and thus all the Wi, consequently it would
form a clique of size ω + 1 in G.

Thus, the number of color classes is at most
1 + (ω − 1) + c [(ω − 1) + (ω − 2) + . . . + 2 + 1] ≤ (c/2)ω2 − ((c− 2)/2)ω.
For c ≥ 2, we get Γ(G) ≤ (c/2)ω2. For c=1, we get Γ(G) ≤ (ω2 + ω)/2.

We have proved Theorem 1.

4. Applications of the Upper Bound

Corollary 1. If G is an interval graph with ω(G) = ω, then s(G) ≤ Γ(G)
≤ ω2.

Proof. In an interval representation by closed intervals on the set of inte-
gers, the set {a, b} is a guard set of the interval [a, b]. Thus, every interval
graph is 2-representable.
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It is known that every chordal graph is isomorphic to the vertex-intersection
graph of subtrees of a tree.

Corollary 2. Chordal graphs G with ω(G) = ω representable by subtrees of
a tree with at most c endpoints satisfy s(G) ≤ Γ(G) ≤ (c/2)ω2.

Proof. A c-small guard set of a subtree T is formed by the endpoints
of T , together with those internal points which have at least one neighbor
outside T .

Finally, a trivial consequence of Theorem 1:

Corollary 3. If G is the line graph of a hypergraph with rank at most c
(i.e., each hyperedge has at most c vertices), and ω(G) = ω, then s(G) ≤
Γ(G) ≤ (c/2)ω2.

Proof. Each hyperedge is a guard set of itself.

5. Evaluation of the Upper Bound

5.1. Triangle-free graphs

One may ask how sharp the upper bound in Theorem 1 is. At least for
ω = 2, we can give some answer to this question.

Let us define the following number.

s(c, ω) := max {s(G) : c(G) ≤ c, ω(G) ≤ ω}.
From Theorem 1 we know that for c ≥ 2, s(c, ω) ≤ (c/2)ω2. If ω = 2, we
get

(2) s(c, 2) ≤ 2c.

The (ordinary) chromatic number is trivially a lower bound for the strength.
On the chromatic number, the following result is valid, see [8, page 124].

For D, g arbitrarily large there exist D-regular graphs with girth at least
g and chromatic number at least

(3) (1 + o(1))D/2 ln D.

By o(1), we mean here a function tending to zero (possibly from below)
when D tends to infinity. From (3), we shall deduce a lower bound on
s(c, 2). Namely,
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Theorem 2. For arbitrarily large c,

(4) s(c, 2) ≥ (1 + o(1))c/2 ln c.

Here o(1) is meant with respect to c. For the proof, first we verify some
simple statements.

Definition. Let x, y be two adjacent vertices. If N(x)−{y} ⊇ N(y)−{x},
we say that x majorates y.

Lemma 2. Suppose that in a graph H, the vertex x has c independent neigh-
bors such that none of them is majorated by x. Then c(H) ≥ c.

Proof. Let us represent x by the hyperedge X, with an arbitrary guard
set U . Let y be a neighbor among the c independent ones, represented by
a hyperedge Y . We state that Y intersects U . The set Y intersects X, by
the definition of intersection graph. Furthermore, Y ⊆ X would contradict
the fact that x does not majorate y. So, Y 6⊆ X and by the definition of a
guard set, Y intersects U .

Thus, U intersects all the hyperedges, representing the c independent
neighbors. They are pairwise disjoint and consequently, |U | ≥ c.

Proposition 1. In a regular ∆-free connected graph G 6= K2, c(G) =
D(G).

Proof of c(G) ≤ D(G) for all graphs. This will be done by a well-known
construction. Let the vertex set of the hypergraph H = HG be the edge set
E(G) of G. For all v ∈ V (G), we pick a hyperedge F = Fv, consisting of
the edges incident with v. Obviously, G is the intersection graph of H, and
H is D(G)-small.

For proving c(G) ≥ D(G), we need Lemma 2 as an auxiliary assertion.

Proof of c(G) ≥ D(G) for ∆-free regular graphs. Let us take any
vertex x of G. If x does not majorate any of its neighbors then we are done
since its neighbors are independent from the ∆-freeness and so the Lemma
implies c(G) ≥ D(G). Otherwise, let y be a majorated neighbor. Regularity
implies that N(x)− y = N(y)− x. But, by ∆-freeness, the only case when
this can occur is when the whole graph is the edge xy which was excluded.
Proposition 1 is proved.

Because of s(G) ≥ χ(G), if we apply (3), we have
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Corollary 4. For arbitrarily large c,

(1 + o(1))c/2 ln c ≤ s(c, 2) ≤ 2c.

Remarks. 1. Corollary 4 means that our upper bound is “not far from the
truth”, at least in the case of ω = 2. For larger ω, we do not know lower
bounds which would be similarly close to the upper bound. In particular,
currently, the upper bound on s(c, ω) is quadratic, while the the lower bound
is linear in ω.

2. The lower bound is also true for Γ, by (∗).
3. The condition “regular ∆-free” in Proposition 1 can be weakened

as follows: There exists a vertex v of maximum degree such that N(v) is
independent and every vertex in N(v) has degree at least 2.

4. As proved in [6], the stronger form of Brooks’s theorem is also true:
s(G) ≤ D(G), apart from a few exceptional graphs G. This upper bound
is in fact independent from ours, as shown by the graphs which consist of a
clique of size ω and some very large stars with their centers in the clique.
Such graphs can be shown to have guard number one, thus the maximum
degree can be arbitrarily large even if cω2 is bounded.
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376 G. Bacsó and Zs. Tuza

[8] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method
(Springer, 2002).

[9] T. Szkaliczki, Routing with minimum wire length in the Dogleg-free Manhattan
Model, SIAM Journal on Computing 29 (1999) 274-287.

[10] Zs. Tuza, Contractions and minimal k-colorability, Graphs and Combinatorics
6 (1990) 51–59.

[11] Zs. Tuza, Problems and results on graph and hypergraph colorings, Le Mate-
matiche 45 (1990) 219–238.

Received 1 December 2005
Revised 19 June 2006

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

