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Abstract

Let G be a finite group, and let 1¢ € S C G. A Cayley di-graph
I' = Cay(G, S) of G relative to S is a di-graph with a vertex set G such
that, for x,y € G, the pair (x,y) is an arc if and only if yz=1 € S.
Further, if S = S~! := {s7!|s € S}, then I' is undirected. T is conected
if and only if G = (s). A Cayley (di)graph I' = Cay(G, S) is called
normal if the right regular representation of G is a normal subgroup of
the automorphism group of I'. A graph I is said to be arc-transitive,
if Aut(T") is transitive on an arc set. Also, a graph T' is s-regular if
Aut(T") acts regularly on the set of s-arcs.

In this paper, we first give a complete classification for arc-transitive
Cayley graphs of valency five on finite Abelian groups. Moreover, we
classify s-regular Cayley graph with valency five on an abelian group
for each s > 1.
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1. INTRODUCTION

For a group G, and a subset S of G such that 1g ¢ S, a Cayley graph
Cay(G, S) of G relative to S is defined as a graph with a vertex set G
and edge set F consisting of those ordered pairs (z,y) from G for which
yr~1 € S. If S is symmetric, that is, if S~! = {s7! : s € S} is equal to S,
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then (z,y) is an edge if and only if (y, x) is an edge, and Cay(G, S) is said to
be undirected. For a finite, simple and undirect graph I', we use V(I"), E(T"),
and Aut(I") to denote its vertex set, edge set and full automorphism group
respectively is said to be vertex-transitive and edge-transitive, if Aut(I")
acts transitively on V(T'), and E(T'), respectively. Moreover, for a positive
integer s, an s-arc of I is an (s + 1)-tuple (vy,va,...,vs) of vertices such
that {v;—1,v;} € E(I') for 1 < i < s and if s > 2, then v;—; # v;41 for
1<i<s—1. Wecall T s-arc-transitive, if Aut(T") acts transitively on V(T")
and on the set of s-arcs; and I is called an s-transitive graph if I' is s-arc-
transitive but not (s 4 1)-arc-transitive. For the case s = 1, we simply use
A(T') to denote its 1-arc set and call 1-arc-transitive graphs arc-transitive.
An arc-transitive graph I is said to be s-regular if for any two s-arcs in I,
there is a unique automorphism of I' mapping one to the other. Also, an
arc-transitive graph I is said to be one regular if [Aut(T")| = |A(T)|.

In [11] Ming-Yao Xu and Jing Xu classified all arc-transitive Cayley
graphs of valency at most four on Abelian groups and in [12], M.Y. Xu
classified all one-regular circulant graphs of valency 4. Ming-Yao Xu, Hyo-
Seob Sim and Young- Gheel Baik [13] classified all arc-transitive circulant
graphs and digraphs of order p™, where p is an odd prime. For the case
m = 1, that is, for the group G = Z,, C.Y. Chao [5] gave such a classification
for undirected case in 1971. In 1972 Berggen [4] simplified Chao’s proof; also
Chao and Wells [6] did the same thing for the directed case in 1973. On
the other hand, Alspach Conder, Marusic [1] classified all 2-arc-transitive
circulant graphs. The purpose of this paper is to investigate arc-transitive
Cayley graphs of valency five on an Abelian group, that is, the arc-transitive
graphs whose automorphism groups have an Abelian regular subgroup.

The groups- and graph-theoretic notation and terminology are standard;
see [1, 2, 7, 10], for example.

We will denote the semi-directed product of group H by K with H.K.

Theorem 1.1. Let G be an Abelian group and let S be a subset of G such
that 1 € S. Suppose that T' = Cay(G, S) is a connected undirected Cayley
graph of group G on S.

(a) Let T' be non-normal. Then all arc-transitive Cayley graphs T' with
valency five are as follows:
(1) G = Zyx Z3 = (a) x (b) x {¢) x {d), S = {a,a!,b,c,d}, T =
Ky x Q4 = Q5, Aut(T") = SqwrSs.
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(2) G=2Z2xZy = {a)x(b)x{c), S ={a,a,b,b7L c}, T =CyxQ3 =
Qs5, Aut(T") = SowrsSs.

(3) G = Zy x Z2 = (a) x (b) x (c), S = {a,a”!,b,c,a’bc}, T = QF,
Aut(T) = S4.55.

(4) G = Zg = (a), S ={a,a?,a® a* d’}, T = C3[Ks] = K¢, Aut(I') =

Se-
(5) G = Zip = (a), S = {a,a3,a",a% a®}, T = Ksj5, Aut(l') =
SswrSs.

(6) G = Zgx Zy = {a)x (b), S = {a,a™ !, a*b,a=2b,b}, I = K¢ — 6K,
Aut(F) = 56 X SQ.
(b) Let T be normal. Then T is arc-transitive if one of the following holds:
(1) G = Z§ = (a) x (b) x {c) x {d), S = {a,b,c,d,abcd}, T = QF,
Aut(T') = S3.S5.
(2) G =273 = (a) x (b) x (c) x (d) x (), S = {a,b,c,d,e}, and T = Qs,
Aut(T") = SawrSs.

The rest of this paper is organized as follows. In Section 2, we give some
preliminaries and in Section 3, we prove Theorem 1.1. In the last section, we
will classify s-regular Cayley graphs with valency five on an Abelian group
for each s > 1.

2. PRIMARY ANALYSIS

For a graph T', we denote the automorphism group of I' by Aut(I"). The
following propositions are basic.

Proposition 2.1. Let I' = Cay(G, S) be a Cayley graph of G on S.

(1) Aut(T") contains the right reqular representation G, so T is vertex- tran-
sitive.

(2) T is connected if and only if G = (S).

(3) T is undirected if and only if S™' = S.

Let T' = Cay(G, S) be a Cayley graph of G on S, and let
Aut(G, S) = {a € Aut(G)|S = S}.

Obviously, Aut(I') > GAut(G, S) write A = Aut(I"). We have,
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Proposition 2.2 [8, 11].
(1) Na(G) = G.Aut(G, S).
(2) A= G.Aut(G,S) is equivalent to G < A.

Proposition 2.3 [9]. A graph T is arc-transitive if it is vertex-transitive and
the stabilizer G, of a vertex u acts transitively on the neighborhood I'1(u) of
win I

Definition 2.4. A Cayley graph I' = Cay(G, S) is called normal if G <
Aut(T).

Proposition 2.5. Let I' = Cay(G, S) be a normal Cayley graph on G rela-
tive to S, Then I is arc-transitive if and only if Aut(G,S) acts transitively
on the neighborhood I'1(1) of 1 in T

For the normality of Cayley graphs of valency five on Abelian groups we
have the following:

Theorem 2.6 [3]. Let I' = Cay(G,S) be a connected undirected Cayley
graph of an Abelian group G on S with valency 5. Then I' is normal except
when one of the following cases holds:

(1) G =Z5 = {a) x (b) x {c) x (d), S = {a,b,c,d,abc} and T = Ko x Ky4.
(2) G =2y x Z3 = {a) x (b) x {c),S ={a,a,a® b,c} and T = Cy x Ky.
(3) G =Zyx Z3 = {(a)yx (b) x {c), S = {a,a™!,b,c,a’b} and T = Ko x Ky 4.
(4) () x {c) x (d),S = {a,a™ ', b,c,d} and T =

(5) G = Zgx Z3 = {(a) x (b) x (c),S = {a,a1,a’,b,c} and T = K33 x Cy.

(6) G = Zn x Z3 = (a) x (b) x (c) withm > 3,5 = {a,a"t,ab,a"1b,c}
and I = K2 X Cm[2K1]

(1) G = Zypm x Z3 = {a) x (b) withm > 3,8 = {a,a”!,a®" "1 a®™*1 b}
and T' = K2 X Cm[QKl]

(8) G = Z10=(a),S ={a%a* a% a® a®} and T = Ky x K.
(9) G=ZyyXxZy = (a> X <b>,S = {a,a_l,a3,a7,b},F =Ky x (K575—5K2).

(10) G = Zp x Zs = (@) x (b) with m > 3,8 = {a,a=1,b,b"16%} and
I'= Cm X K4.
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(11) G = Zy x Zg = {a) x (b) with m > 3,5 = {a,a”1,b,b71, 63} and
I'= Cm X K373.

(12) G = Zy X Zy X Zo = {a) x (b) x (c) with m >3,S = {a,a',b,b7 !, c}
and I' = Cy, X Q3.

(13) G = Z3 = {a) x (b) x {c), S = {a,b,c,ab,ac} and I = K5[2K>).

(14) G = Zy x Zy = (a) x (b),S = {a,a™1,b,a% a*b} and T = K3[2K>)].

(15) G = Zy x Z2 = (a) x (b) x (c),S = {a,a”',b,c,a’bc} and T = Q}.

(16) G = Zay = (a) with m > 3,5 = {a,a" ', a™* ! a™ 1 a™} and T =
Cm[KQ]-

(17) G = Zoy x Zo = {(a) x (b) with m > 2,5 = {a,a"*,ab,a™'b,b} and
T = O [ K.

(18) G = Zoy x Zo = (a) x (b) with m > 2,8 = {a,a”!,ab,a"'ba™} and
I'=CY,[2K1].

(19) G = Z1o = {(a), S = {a,a3,a",a°,a®} and T = Kj 5.

(20) G = Zgx Zz = {(a) x (b), S = {a,a™t,a%b,a=2b,b} and T = K6 —6K>.

(21) G = Zoy x Zy = {(a) x {b) with m > 2,8 = {a,a™1,b,b7L, a™b?} and
I' = Qg X Cm

(22) G = Zgm = (a) with m odd and m > 3,5 = {a% a2, a™, a"™, a®"}
and T' = K373 Xe Cm

(23) G = Zgm X Zy = (a) x (b) withm > 2,5 = {a,a” !, ba™, ba"™, ba®>"}
and I = K373 Xe Cgm.

Let X and Y be two graphs. The direct product X x Y is defined as a
graph with a vertex set V(X xY) = V(X) x V(Y) such that for any vertex
u=[z1,y1] and v = [x2,y2] in V(X xY), [u,v] is an edge in X x Y whenever
xry = x2 and [y1,y2] € E(Y) or y1 = y2 and [z1,22] € E(X). Two graphs
are called relatively prime if they have no nontrivial common direct factor.
The lexicographic product X[Y] is defined as a graph vertex set V(X[Y]) =
V(X) x V(Y) such that for any two vertices u = [z1,y1] and v = [x2,y2]
in V(X[Y]), [u,v] is an edge in X[Y] whenever [z, z2] € E(X) or 1 = x2
and [y1,y2] € E(Y). Let V(Y) = {y1,92,...,yn}. Then there is a natural
embedding nX in X[Y], where for 1 < i < n, the ith copy of X is a
subgraph induced on the vertex subset {(z,v;)|z € V(X)} in X[Y]. The
deleted lexicographic product X[Y] — nX is a graph obtained by deleting
all the edges of (this natural embedding of) nX from X[Y].
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Let T" be a graph and « a permutation of V(I'), and C,, a circuit of length
n. The twisted product I' x4 Cy, of I' by C,, with respect to « is defined by

VI %o Cy) = V(D) x V(Cy) = {(2,4) |z € V(T),i =0,1,...,n— 1},
BT xa Cy) = {[(2,i), (z,i+1)]jz € V(T),i=0,1,...,n— 2}
UA{l(z,n—1), (=% 0)] |z € V(I')}

U {[(x,7), (y,9)]|[z,y] € E(T),i=0,1,...,n—1}.

Now we introduce some graphs which appear in our main theorem. The
graph Q¢ denotes a graph obtained by connecting all long diagonals of 4-
cube @4, that is, connecting all vertex u and v in @4 such that d(u,v) = 4.
The graph K, ,, X Cy, is a twisted product of K, ,, by C,, such that cis a
cycle permutation on each part of the complete bipartite graph K, ,,. The
graph Q3 x4 C), is a twisted product of Q3 by C), such that d transposes
each pair elements on long diagonals of Q3. The graph C¢, [2K7] is defined
by:

V(C3,,[2K1]) = V(Com[2K1)),
E(C3,2K1]) = E(Com[2K1])
U {[(zi,v5), (@itm,y;)] | i =0,1,...,m—1,j =1,2},

where V(Coy,) = {x0, 21, ..., 2o9m-1} and V(2K1) = {y1,y2}-

3. THE PROOF OF THEOREM

In this section, our objective is to show all arc-transitive Cayley graphs of
Abelian groups with valency five.

First, we want to show that some cases of Theorem 2.5 are satisfied by
Theorem 1.1.

In the following cases we shall assume G = Aut(I).

In the cases (1) and (3), let V(K2) = {y1,y2} and let V(K44) =
{21, 29,3, T4, T}, Ty, Tq, 2y} such that (:cl,x;) € E(Kyy) for 1 <i,j < 4.
We obtain that f & Gy, ,,) such that f(y2,71) = (yl,xl)/]), so by Proposi-
tion 2.3 T" is not arc-transitive.
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In the cases (2) and (10), let V(Cy,) = {1,2,3,...,m} and let V(K,) =
{71, 22,73, 74}. We also obtain that f ¢ G5 ;) such that f(2,74) = (3, 21),
so by Proposition 2.3 I is not arc-transitive.

In the cases (5) and (11), let V(K33) = {21, %2, 23,7, Ty, x5} and let
V(Cs) = {y1,y2,y3,y4}. We have (a;z,x;) € E(Kz3), for 1 <i,j <4, and
(Y, yi+1) € E(Cy). We obtain f & G, ) such that f(@,y1) = (x1,2), so
by Proposition 2.3 I" is not arc-transitive.

In the cases (6) and (7), I' = Ky x Cp,[2K]] contains two copies X and
Y from Cm [2K1] Let V(X ) = {z1, 22, ..., Tm; Y1, Y2, ..., Ym and V(Y) =
{ml, a:2, cen m; yl, y2, e ym such that vertices x1, x2, . .., T, form a circuit
on a copy of X. We find that f ¢ G(,,) such that f(x) = zy, so by
Proposition 2.3, I' is not arc-transitive.

In the case (8), we obtained that for m > 4, Ky x K,, is not arc-
transitive. Neither is the graph Ko x Ky 4.

In the case (9), let V(K55 — 5K3) = {xl,xQ,...,x5,:):/1,:r/2,...,:v;},
V(K3) = {y1, 92} such that (z;,2;) € E(K55 — 5K3) for i # j,1 <i,j <5.
We find that f & Gy, 1)
2.3 I is not arc-transitive.

In the cases (12) for [m # 4] and (21), let V(Cy,) = {0,2,3,. -1}
and Q3 contain two circuits C4,C41 with set of vertices V(C4) = {xl,xg,
z3,x4} and V(C}) = {y1,¥2,y3,ya}, respectively. In addition (z;,z;) €
E(Q3) for 1 <7 < 4. We obtained that f & G, o) such that f(z},0) =
(x1,0), so by Proposition 2.3 T is not arc-transitive.

In the cases (13) and (14), let V(K2) = {z,y} and V(2K>) = {1, 2,3, 4},
and also F(2K3) contain two edges (1,2), (3,4). We find that f & G, 1) such
that f(x,1) = (y,2), so by Proposition 2.3 I" is not arc-transitive.

In the case (16) for [m # 3], let V(Cy,) = {1,2,...,m} and V(K3) =
{z,y}. We find that f & Aut(T") such that f([(2,y ),(S,x)}) [(3,2), (3,y)].

The case (17) is also the special case of (16), since 2m # 3.

In the case (18), we find that f & G, 4,) such that f(z1,y2) = (¥m, y2),
so by Proposition 2.3 I is not arc-transitive.

In the cases (22) and (23), let V( 'm) = {0,1,...,m — 1}, V(K33) =
{1, x9, 23, 2], Ty, 24} and also (z;,z J) € F(K33) for 1 <i,j5 < 3. We find
that f € G(,, o) such that f(x},0) = (21,1), so by Proposition 2.3 T is not
arc-transitive.

In the case (4), I' = Ky x Q4 ~ Cy x @3 and Q3 is arc-transitive, then
by combination of functions we conclude that I' is arc-transitive.

y such that f(y1, ) = (x1,y2), so by Proposition
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In the cases of (6) and (7) the case (12) for [m = 4] is similarly the case (4).

In the case (15), we will obtain similarly graph I' = Q4.

In the case (16), for m = 3 we have I' ~ K.

The case (19) is obvious and in the case (20), I' = K¢ — 6K2, and we
will obtain the same result in graph Kgg. Thus we complete the proof of
Theorem 1.1(a).

For the normal case, since | S |= 5,5 contains at least one element of
order 2. Since Aut(G,S) is transitive on S all five elements in S are of
order 2. Then we have one of the following cases:

(1) G =273 =(a) x (b) x (c), S ={a,b,c,ab,ac}, T = K3[2K].

(2) G = Z5 = (a) x (b) x {c) x (d), S = {a,b,ec,d,abc}, T = Ko x Ky 4.
(3) G =25 ={(a) x (b) x (c) x (d), S = {a,b,c,d,ab}, T = K4 x Cy.
(4) G =75 = (a) x (b) x {c) x {(d), S = {a,b,c,d,abcd}, T = QF.

(5) G =725 = (a) x (b) x {c) x {d) x {e), S = {a,b,c,d, e}, T = Qs.

Note that graphs of the case (1) and (2) are non-normal. In the case (2) of
non-normal graphs we showed that graph I' = Ky x Cy is not arc-transitive,
and in the case (10) of non-normal graphs we showed that I' = Q¢ is arc-
transitive. In the final non-normal case we obtained that the graph Q5 is

arc-transitive.

4. s-REGULAR CAYLEY GRAPH WITH VALENCY FIVE ON ABELIAN
GROUPS

Let I' = Cay(G,S) be a Cayley graph on G with respect to S and let
A = Aut(I"). Denote by A; the stabilizer of identity 1 of G in A and by
Aut(G, S) the subgroup of A fixing S setwise. Then we have:

Theorem 4.1 [14, Proposition 1.5]. T is normal if and only if A1 =
Aut(G, 5).

By noting that all Cayley graphs are vertex-transitive, one can easily prove
the following lemma.

Lemma 4.2. All s-reqular (s > 1) Cayley graphs are connected.

The following theorem gives a classification of s-regular Cayley graphs with
valency five on Abelian groups for each s > 1.
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Theorem 4.3. Let I' be an s-reqular Cayley graph with valency five on an
Abelian group for some s > 1. Then s =2 or 3. Furthermore, I' is 2-reqular
if and only if T is isomorphic to Q4, or Qs, or Kg, or K¢ — 6K>2; and is
3-regular if and only if I' is isomorphic to the complete bipartite graph Ks 5.

Proof. Let G be an Abelian group. Assume that I' = Cay(G,S) is an
s-regular Cayley graph with valency five for some s > 1. Then by Lemma
4.2 T' is connected. By Theorem 1.1, the only non-normal arc-transitive
Cayley graphs Cay(G,S) are the I'y = Q5, ['s = Q4, T's = Kg, I'y = Ks 5,
and I's = K¢ — 6K2. The graphs I'1, I'g, I'3, and I'5 are 2-regular and the
graph I'y is 3-regular. Thus, we assume the I' = Cay(G, S) is normal from
now on. Since I' is of valency 5, S = S~! contains at least one involution
in G. As I is arc-transitive, so the group Aut(G,S) acts transitive on S.
Hence S consists of five involutions. Since S generates the group G, we
have G = Z3, or G = Z3, or G = Z3. By Theorem 1.1, the only normal
arc-transitive Cayley graphs Cay(G, S) with valency 5 are

(1) G =273 = (a) x (b) x (c) x {d), S = {a,b,c,d,abed}, T = Q4.
(2) G =25 ={a) x (b) x (c) x (d) x {e), S ={a,b,c,d,e}, and I = Qs,

and each of them is 2-regular.
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