Discussiones Mathematicae Graph Theory 26 (2006) 343–349

13th WORKSHOP '3in1' GRAPHS 2004 Krynica, November 11-13, 2004

PROBLEM PRESENTED AT THE WORKSHOP IN KRYNICA 2004

This is a problem by Michael Kubesa, Technical University Ostrava, presented by Dalibor Froncek.

Let K_{2n} be a complete graph and T a tree, both with 2n vertices. A *T*-factorization of K_{2n} is a collection of edge disjoint spanning subgraphs (i.e., factors) T_1, T_2, \ldots, T_n of K_{2n} , all isomorphic to T. Every edge of K_{2n} then appears in exactly one copy of T.

M. Kubesa asked the following question: Suppose that there exists a T-factorization of K_{2n} . Is it then true that the vertex set of T can be decomposed into two subsets, X and Y, such that

- (1) |X| = |Y| = n,
- (2) $\sum_{x \in X} \deg(x) = \sum_{y \in Y} \deg(y)$?

Notice that the sets X, Y in general are *not* the partite sets of the bipartition of T.