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Abstract

The well-known Chvátal-Erdős theorem states that if the stability
number α of a graph G is not greater than its connectivity then G is
hamiltonian. In 1974 Erdős showed that if, additionally, the order of
the graph is sufficiently large with respect to α, then G is pancyclic.
His proof is based on the properties of cycle-complete graph Ramsey
numbers. In this paper we show that a similar result can be easily
proved by applying only classical Ramsey numbers.
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1. Introduction

We use Bondy and Murty’s book [5] for terminology and notation not defined
here and consider finite, undirected and simple graphs only. For a graph G
we denote by V = V (G) its vertex-set and by E = E(G) its set of edges.
The symbols α = α(G) and κ = κ(G) stand for the stability number and
the connectivity of G. By Cp we denote a p-cycle of G, i.e., a cycle of length
p. The order of G will be denoted by n. A graph of order n is said to be
pancyclic if it contains cycles of every length p with 3 ≤ p ≤ n.

In 1971 Bondy [2] suggested the famous ”metaconjecture”:
almost all nontrivial sufficient conditions for a graph to be hamiltonian also
imply that it is pancyclic except for maybe a simple family of exceptional
graphs.

There are various conditions for hamiltonicity that were examined in
light of this conjecture, see [16]. Recall now the well-known Chvátal-Erdős
[8] theorem.

Theorem 1. Every k-connected graph on n ≥ 3 vertices with stability num-
ber α ≤ k is hamiltonian.

There is a large family of triangle-free graphs (see for example the survey
[7]) that satisfy the Chvátal-Erdős condition (α(G) ≤ κ(G)), thus they are
not pancyclic. This family contains the complete bipartite graphs as well as
the Andrásfai graphs Gi = Ci

3i+2, i ≥ 1, i.e., each Gi is the complement of
the i-th power of the cycle C3i+2. For example G1 = C5 and G8 is a cycle
on 8 vertices with the longest chords. The lexicographic product Gi[K̄s]
(s ≥ 1) is a triangle-free r = s(i + 1)-regular graph with stability number
α = r, connectivity r and order 3α − s ≤ 3α − 1, so it also satisfies the
Chvátal-Erdös condition and is not pancyclic.

There are several articles that investigate the set of cycle lengths in
graphs satisfying this condition. We cite below some results of importance
for us. Amar, Fournier and Germa [1]) proved the following.

Theorem 2 (Amar, Fournier and Germa [1]). Let G be a k-connected graph
of stability α ≤ k and of order n. If G 6= Kk,k and G 6= C5, then G has a
Cn−1.

The next result due to Lou [13] was conjectured by Amar, Germa and
Fournier [1].
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Theorem 3. If a triangle-free graph G satisfies α(G) ≤ κ(G), then G has
cycles of all length between four and the order of G, unless G = Kr,r or
G = C5.

But if α(G) < κ(G) then G has to contain a C3. Taking into account this
observation Jackson and Ordaz [12] formulated the following conjecture.

Conjecture 1. Let G be a k-connected graph with stability number α. If
α < k, then G is pancyclic.

There are few results about this conjecture. By results due to Amar,
Fournier and Germa [1] and Chakroun, Sotteau [9] the conjecture is valid
for every graph G with α(G) ≤ 3 while Marczyk and Saclé [14] proved it for
any graph G satisfying α(G) ≤ 4.

The most beautiful result related to both Bondy’s ”metaconjecture” and
the Jackson-Ordaz conjecture is due to Erdős [11]. Applying the properties
of cycle-complete graph Ramsey numbers [4] he proved the following result
which had been conjectured by Zarins.

Theorem 4. Every hamiltonian graph with the stability number less than p
and the order greater than 4p4 is pancyclic.

Note that the Erdős’ proof is not complete and has a small gap which is
filled in Section 2.

From the last result and the Chvátal-Erdős theorem we get at once the
following corollary.

Corollary 1. If the stability number α of a graph G does not exceed its
connectivity and the order of G is greater than 4(α+1)4, then G is pancyclic.

The purpose of this paper is to present a simple proof of a similar result
which use only the classical Ramsey numbers R(l,m), i.e., to show the pan-
cyclicity of every graph satisfying the Chvátal-Erdős condition and having
sufficiently large order in relation to α. Our proof is quite different and
simpler than that of Erdős though our bound is not as good as that of
Corollary 1. Let us recall the simplest version of the Ramsey theorem [15].

Theorem 5. For every pair l,m ≥ 2 of integers there exists an integer
r(l, m) such that each graph of order n ≥ r(l, m) contains a clique on l
vertices or a stable set of cardinality m.
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The Ramsey number R(l,m) is defined to be the smallest number r(l, m)
with this property. Our main result reads as follows:

Theorem A. Let G be k-connected graph with stability number α. If α ≤ k
and the order of G is at least 2R(4α, α + 1), then G is pancyclic.

In the last theorem the order of the graph G satisfying the hypothesis is very
large and our Theorem is weaker than Corollary 1, however we feel that the
bound 2R(4α, α+1) can be considerably lowered (see Section 2). The proof
of Theorem A is given in Section 4.

2. Some Remarks on the Theorem by Erdős

It is surprising, but true, that the beautiful theorem by Erdős (Theorem 4)
was forgotten for a long period. For example, it was not mentioned in the
survey [12]. Consequently, we obtained our main result of the present paper
without any knowledge of this theorem.

In his proof Erdős used the Ramsey number R(Cm,Kp) i.e., the smallest
number such that each graph of order n ≥ R(Cm,Kp) contains a cycle of
length m or a stable set of cardinality p. A theorem of Bondy and Erdős
[4] states that R(Cm,Kp) = (m − 1)(p − 1) + 1 for m ≥ p2 − 2. Thus,
if p2 − 2 ≤ m ≤ n

p then n ≥ (m − 1)(p − 1) + 1 and any graph of order
n contains a cycle Cm for p2 − 2 ≤ m ≤ n

p (provided p2 − 2 ≤ n
p ). For

n
p < m < n Erdős gave an original proof. However, he forgot to write down
the case 3 ≤ m ≤ p2 − 3. The existence of Cm belonging to this interval
follows easily from another result of Bondy and Erdős published in the same
paper: R(Cm,Kp) ≤ mp2 for all m and p. Indeed, if m ≤ p2 − 3, then
mp2 ≤ p4− 3p2 < 4p4 < n, so if the stability number is at most p− 1, a Cm

exists in G.
In his paper Erdős conjectured that the same conclusion holds if we

replace the bound 4p4 by Cp2, where C is a constant (sufficiently large). He
also wrote that a simple example shows that it certainly fails for n < p2

4 ,
but did not present it in the article. Consider now another example. Take
p−1 disjoint copies A1, . . . , Ap−1 of the complete graph K2p−4, where p ≥ 3.
Choose two vertices xi, yi in each copy Ai and add p− 1 independent edges
xiyi+1 (indices are taken modulo p − 1). It can be easily seen that the
stability number of this hamiltonian graph is p − 1 and there exist cycles
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Cm for every m except m = 2p− 3, therefore, we cannot lower the bound of
the theorem of Erdős below the number (p− 1)(2p− 4) = 2p2 − 6p + 4.

However, for graphs satisfying the Chvátal-Erdős condition perhaps the
following is true: there exist two constants c and C, c < 2, such that every
graph G with α(G) = α = κ(G) and |V (G)| > Cαc is pancyclic ([6, 10]).
The graphs Gi[K̄s] show that such the constant c must be at least one.

3. Notation

Let C be a cycle of G and a a vertex of C. We shall denote by
→
C the cycle

C with a given orientation, by a+ = a+1 the successor of a on
→
C and by

a− = a−1 its predecessor. We write a++ for (a+)+, a+k for (a+(k−1))+ and
a−k for (a−(k−1))−.

Let a and b be two vertices of C. By a
→
C b we denote the set of

consecutive vertices of C from a to b (a and b included) in the direction
specified by the orientation of C. It will be called the segment of

→
C from

a to b. The orientation of C defines the natural relation of order in a
→
C b

(denoted by ≺). When a = b the symbol a
→
C b means the one-vertex subset

{a} of V (C).
Throughout the paper the indices of a cycle C = x1, x2, . . . , xp are to

be taken modulo p.
Suppose A is a subset of V (G− C). The symbol NC(A) stands for the

set {y ∈ V (C)| there is a vertex x ∈ A such that xy ∈ E(G)}. We write
NC(x) for A = {x} and we denote by dC(x) the number | NC(x) |.

Let P = x1, x2, . . . , xr be an oriented path in G. The symbol
←
P stands

for the path obtained by reversing the order of P , i.e.,
←
P= xr, xr−1, . . . , x1.

Consider another path Q = y1, y2, . . . , yp of G such that y1 = xr. If Q
is vertex-disjoint (except for xr) from P , then by P, Q we mean the path
x1, x2, . . . , xr, y2, . . . , yp.

4. Proof of Theorem A

Suppose that G is a k-connected graph of stability number α ≤ k such that
n ≥ 2R(4α, α + 1), where n is the order of G. Obviously we may assume
α ≥ 2, n ≥ 2 · 28 = 56 and, since n > 2α, G is not bipartite.

1. First we shall show that G contains a Cp for each p > n
2 − 2. Observe

that, by Chvátal-Erdős theorem and Theorem 2, this statement is evident
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for p = n and p = n − 1. Suppose G contains a cycle Cp with p > n
2 .

We shall prove that it contains also a Cp−2. Indeed, since p > n
2 ≥ R(4α,

α + 1), and the graph 〈Cp〉 induced by Cp has no stable set of cardina-
lity α + 1, it follows from Ramsey theorem that it contains a clique, say
K, having 4α vertices. Let

→
Cp denote the cycle Cp with a given orien-

tation and let x1, x2, . . . , x4α be the vertices of K appearing on
→
Cp in or-

der of their indices. Clearly, for every l = 1, 2, . . . , 2α (indices are taken
modulo 4α) the vertices x2l and x2l+2 are separated by at least one ver-
tex on Cp. Consider now the set = x++

2 , x++
4 , x++

6 , . . . , x++
2l , . . . , x++

4α of
2α > α + 1 vertices. Since the stability number of 〈Cp〉 is at most α, there
is in 〈Cp〉 an edge of the form x++

2i x++
2j (i 6= j). Therefore, the following

cycle x++
2i , x+3

2i , . . . , x2j , x2i, x
−
2i, . . . , x

+3
2j , x++

2j , x++
2i (we allow that the paths

x++
2i , x+3

2i , . . . , x2j and x2i, x
−
2i, . . . , x

+3
2j , x++

2j are trivial) has p−2 vertices and
our claim is proved.

Now, using the fact that Cn and Cn−1 exist, it is a simple matter to
prove recursively that G contains a Cp for p > n

2 − 2.

2. Now we shall show that G contains a cycle on p vertices for every p such
that 3 ≤ p ≤ n

2 − 2. It is evident for 3 ≤ p ≤ 4α because n > R(4α, α + 1)
and G has no stable set of cardinality α + 1, so it follows from Ramsey’s
theorem that it contains a clique on 4α vertices.

Suppose G has a Cp for some p satisfying p ≤ n
2 − 4α. We claim that it

contains also a cycle on p + 4α− 2 vertices. Indeed, the order of the graph
G− Cp is equal to n− p > n/2. By Ramsey’s theorem it contains a clique,
say K, on 4α vertices. Since α ≤ k, it follows by Menger’s theorem that
we can choose r = min(α, p) vertex-disjoint paths, say P1, P2, . . . , Pr, that
join Cp with K. Denote by xi ∈ V (Cp) and yi ∈ V (K) the end-vertices
of Pi (i = 1, 2, . . . , r). The vertex xi will be called starting vertex of Pi

(i = 1, . . . , r). Since the stability number of G is equal to α we may assume

that the length of every path Pi is less than or equal to 2α − 1. Let
→
Cp

denote the cycle Cp with a given orientation and suppose there is some i

such that xi and xi+1 are consecutive on
→
Cp. Then the length of the cycle

x−i , xi, Pi, Qi,
←

Pi+1, xi+1, x
+
i+1, . . . , x

−
i is p + 4α− 2, where Qi is a path from

yi to yi+1 in K of 4α − |V (Pi)| − |V (Pi+1)|+ 2 ≥ 2 vertices. Suppose then
that any two vertices xi and xi+1 are separated by at least one vertex on
Cp. Hence r = α and the set {x+

1 , x+
2 , . . . , x+

α } has α elements. If there
are two indices, say i and j, such that x+

i x+
j belongs to E(G), then the
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cycle x−i , xi, Pi, Qij ,
←
Pj , xj , x

−
j , . . . , x+

i , x+
j , x++

j , . . . x−i , where Qij is a yi−yj

path of 4α − |V (Pi)| − |V (Pj)| + 2 ≥ 2 vertices which is contained in K
(see Figure 1). Obviously, the length of this cycle is p + 4α− 2.

K
Qij

Cp

G− Cpyi yj

xi

xj

x+
i

x+
j

Pi Pj

'

&

$

%

q

q q

q

q

q

Figure 1

Thus suppose the vertices x+
1 , x+

2 , . . . , x+
α are independent and let u be the

second vertex on P1 (starting at x1). If ux+
i ∈ E(G) for some i, 2 ≤ i ≤ α,

then the starting vertices of Pi and of the path obtained by replacing in P1

the vertex x1 by x+
i and the edge ux1 by ux+

i are consecutive on C. So we
can construct a cycle of length p + 4α− 2 as above. So assume ux+

i /∈ E(G)
for i = 2, . . . , α. Thus, because the stability number of G is α, ux+

1 ∈ E(G)
and we can replace the path P1 by another one starting at x+

1 . Repeating
this reasoning (if necessary) we obtain ux−2 ∈ E(G). Therefore, there are
two disjoint paths whose starting vertices are consecutive on the cycle and
we can construct a Cp+4α−2. So our claim is proved.

Because G contains a cycle Cp for every p between 3 and 4α, the exis-
tence of a cycle of length p for 3 ≤ p ≤ n/2 − 2 follows by induction from
our now-proved claim. This completes the proof of the theorem.
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[4] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin.
Theory (B) 14 (1973) 46–54.

[5] J.A. Bondy and U.S.R. Murty, Graphs Theory with Applications (Macmillan.
London, 1976).

[6] S. Brandt, private communication.

[7] S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph
Theory 27 (1998) 141–176.

[8] V. Chvátal and P. Erdős, A note on Hamilton circuits, Discrete Math. 2 (1972)
111–113.

[9] N. Chakroun and D. Sotteau, Chvátal-Erdős theorem for digraphs, in: Cycles
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[14] A. Marczyk and J-F. Saclé, On the Jackson-Ordaz conjecture for graphs with
the stability number four (Rapport de Recherche 1287, Université de Paris-
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