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Abstract

A digraph in which any two vertices have distinct degree pairs is
called irregular. Sets of degree pairs for all irregular oriented graphs
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(also loopless digraphs and pseudodigraphs) with minimum and max-
imum size are determined. Moreover, a method of constructing corre-
sponding irregular realizations of those sets is given.

Keywords: irregular digraphs, degree sequences, degree sets.
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1. Introduction

Finite digraphs are considered. The word digraph stands for a general di-
graph with restriction that multiple arcs are forbidden. Independent loops
are allowed. Thus the class of digraphs coincides with that of pseudodi-
graphs. In what follows, however, any specified digraph G is called a pseu-

dodigraph precisely if G has a (directed) loop. A digraph G is called complete

if G is loopless and with all possible arcs. Adding a single loop to each vertex
of a complete digraph gives a complete pseudodigraph. An oriented graph

is a loopless digraph in which any two vertices are joined by at most one
arc. Let G = (V,E) be a digraph with vertex set V = V (G) and arc set
E = E(G). The cardinalities of V and E are called the order and size of G,
respectively. For undefined terminology and notation we refer to [3].

Let u be a vertex of G. The symbols odG(u) and idG(u) denote the
outdegree and indegree of u in G, respectively. Then the number degG(u) =
odG(u) + idG(u) is the degree of the vertex u in G. The ordered pair
(odG(u), idG(u)) is called the degree pair of the vertex u in G. A digraph G
is said to be irregular if its distinct vertices have distinct degree pairs, i.e.,
the following implication holds

u, v ∈ V (G) and u 6= v ⇒ (odG(u), idG(u)) 6= (odG(v), idG(v)).

This kind of irregularity, defined and studied by Gargano et al. in [5], is
a global irregularity. Graphs and digraphs with different variants of local
irregularity are investigated in many papers, for example [1, 2, 9, 10, 11, 13].
Irregular digraphs, called fully irregular in our former publications [12, 14],
are studied in [4, 6, 7], too.

An irregular digraph G is called minimum (maximum) if the size of
G is so among all irregular digraphs of the fixed order |V (G)|. A digraph
with a fixed property is said to be smallest if the order and next the size
of the digraph are the smallest possible. A smallest irregular digraph (resp.
oriented graph) containing a given loopless digraph as an induced subdigraph
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is constructed in [6, 7]. The (asymptotics of the) maximum independence
number and the cardinality of the set of irregular n-vertex digraphs are
investigated in these papers.

For each positive integer n the minimum size, ǫn, of irregular oriented
graphs of order n is found in [12]. The number ǫn is also the minimum size
for n-vertex irregular digraphs. However, the corresponding sets of degree
pairs are not characterized there yet.

In this paper we determine all sets D of degree pairs of minimum as
well as maximum irregular digraphs in general, and also of oriented graphs
in particular. It appears that all sets of degree pairs of minimum irregular
loopless digraphs are realized by irregular oriented graphs, too. Our proof
of realizability is by construction because we do not know of any better
characterization of sequences (sets) of degree pairs in (irregular) oriented
graphs, cp. [8].

Each maximum n-vertex irregular oriented graph is clearly an orienta-
tion of the complete graph, has the unique set of degree pairs, and therefore
is seen to be the transitive tournament Tn. All sets of degree pairs of the
maximum irregular digraphs (either loopless or not) are determined by the
observation that the corresponding complement of a minimum irregular di-
graph is a maximum irregular digraph.

Also minimum digraphic setsD which are uniquely irregularly realizable
and those which have some special irregular realizations are characterized.

2. Preliminaries

Recall some notations and definitions from paper [12]. Given a digraph G,
the symbol DG denotes the set of degree pairs of G, i.e.,

DG = {(odG(u), idG(u)) : u ∈ V (G)}.

If B = {(a1, b1), (a2, b2), . . . , (ak, bk)} is the set of ordered pairs of integers
then the number s(B) =

∑k
i=1 ai +

∑k
i=1 bi is called the sum of B. The set

B is called balanced if
∑k

i=1 ai =
∑k

i=1 bi.

Let N0 be the set of nonnegative integers, p ∈ N0 and let

Bp = {(a, b) : a+ b = p, a, b ∈ N0}.
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Obviously, |Bp| = p+ 1 and each set Bp is balanced. Note that

Proposition 1. The transitive tournament Tn is an irregular oriented graph

and its set of degree pairs is DTn
= Bn−1.

In [12], for a positive integer n, the nonnegative integers τn and mn are
defined (see [7] for more information on τn) such that τ1 = 0 and m1 = 1
and

(1) n = 1 + 2 + . . . + τn +mn, 1 ≤ mn ≤ τn + 1

whence

(2) τn =

⌊√
2n− 1

2

⌋
, mn = n− 1

2
τn(τn + 1).

3. Minimum Sets

For a given positive integer n by Dmin
n we denote the class of all sets D of

ordered pairs of nonnegative integers such that the following three condi-
tions hold:

(α) D is an n-element set,

(β) D is balanced,

(γ) D has the minimum sum s(D) among all D’s satisfying (α) and (β).

By Bs[k], where 0 ≤ k ≤ s+ 1, we denote a k-element subset of the set Bs.
The following lemma gives a more detailed description of all sets in the class
Dmin

n .

Lemma 2. Let n be a positive integer and let τn and mn be given by (2).
Then

(o) D = {(0, 0)} is the only member of Dmin
n for n = 1, Dmin

1 = {B0}.

For n ≥ 2, D ∈ Dmin
n if and only if D has one of the following forms:

(i) D =
⋃τn−1

i=0 Bi ∪Bτn [mn], where the set Bτn [mn] is balanced and mn is

even or τn is even,

(ii) D =
⋃τn−1

i=0 Bi \ {(a, b)} ∪ Bτn [mn + 1], where (a, b) ∈ Bτn−1, the set

Bτn [mn+1]∪{(b, a)} is balanced and both numbers τn and mn are odd,



Extremum Degree Sets of ... 321

(iii) D =
⋃τn−1

i=0 Bi ∪ Bτn [mn − 1] ∪ {(a, b)} where (a, b) ∈ Bτn+1, the set

Bτn [mn−1]∪{(a, b)} is balanced and both numbers τn and mn are odd.

Proof. Due to (1) and (2) it is easy to see that an n-element set of ordered
pairs of nonnegative integers for n > 1 has the minimum sum if and only if
it has the form:

(3)

τn−1⋃

i=0

Bi ∪Bτn [mn].

Moreover, a set of the form (3) is balanced if and only if Bτn [mn] is balanced.
On the other hand, one can easily see that a balanced set Bτn [mn] exists if
and only if τn is even or mn is even. Thus Lemma 2 is true if τn is even or
mn is even. Consider the remaining case that both numbers mn and τn are
odd. Let s be the sum of a set of the form (3). Hence s(D) > s for D ∈ Dmin

n

because no set of the form (3) is balanced. In fact, s(D) = s + 1 because
s(D) is so for all sets D of either form (ii) and (iii), and the existence of such
sets D of either form in case a = b is clear. On the other hand, any required
set D is obtainable from a set of the form (3) by replacing one pair with the
sum of components τn − 1 or τn by a new pair with the sum of components
one greater. In case under consideration the replacement can be carried out
in two ways leading precisely to (ii) and (iii).

Proposition 3. Let n be a positive integer such that τn and mn are both

odd. Then a set D described in case (ii) of Lemma 2 exists for any pair

(a, b) ∈ Bτn−1 if mn < τn, otherwise mn = τn and then such D exists for

a = b = 1
2(τn − 1) only. Moreover, a set D described in case (iii) exists for

any (a, b) ∈ Bτn+1 if mn 6= 1, otherwise D exists for a = b = 1
2(τn+1) only.

Proof. The set D is balanced. Therefore the pair (a, b) is balanced if the
intersection In = D ∩ Bτn is so. Hence the pair (a, b) is as is stated in
case (ii) if mn = τn (i.e., if In = Bτn and in case (iii) if mn = 1 (i.e.,
if In = ∅). Consider any remaining possibility for the value of mn. It is
enough to show the existence of the intersection In. Now the cardinality
|In| = mn ± 1 is even and |In| ≤ τn − 1. Let (a, b) be any of possible pairs
in question. Then |a− b| ≤ τn +1 and |a− b| is even. On the other hand, if
the pair (ci, di) ranges over the set Bτn then the difference ci−di is odd and
ranges bijectively over the set {−τn, 2 − τn, . . . ,−1,+1, . . . , τn}. Therefore
two pairs (ci, di), i = 1, 2, can be found so that they together with the pair
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(b, a) in case (ii) or with the pair (a, b) in case (iii) make up a balanced triple.
The set In which comprises the two pairs (ci, di) as well as

1
2 |In|−1 balanced

twos of pairs selected from remaining pairs in Bτn will do.

A few examples of sets from Dmin
n follow.

For n = 24 we have τn = 6 and mn = 3, so sets from Dmin
24 have the

form (i), for example

5⋃
i=0

Bi ∪ {(6, 0), (2, 4), (1, 5)} ,
5⋃

i=0
Bi ∪ {(5, 1), (3, 3), (1, 5)} .

For n = 18 we have τn = 5 and mn = 3, so sets from Dmin
18 have the form

(ii) or (iii), for example

4⋃
i=0

Bi \ {(1, 3)} ∪ {(4, 1), (3, 2), (2, 3), (0, 5)} ,

4⋃
i=0

Bi \ {(2, 2)} ∪ {(4, 1), (3, 2), (2, 3), (1, 4)} ,

4⋃
i=0

Bi ∪ {(2, 3), (1, 4)} ∪ {(5, 1)},
4⋃

i=0
Bi ∪ {(0, 5), (4, 1)} ∪ {(4, 2)}.

4. The Operation ⋄M on Digraphs

Let G and H be vertex disjoint digraphs and let M be a set of arcs in G,
M ⊆ E(G). For each arc (xi, yi) ∈ M , we choose one or two vertices in
H, say v′i, v

′′

i ∈ V (H). In the union G ∪H we replace each (xi, yi) by two
arcs (xi, v

′

i) and (v′′i , yi). If the resulting structure, say F , does not have
any multiple arc, i.e., F is a digraph, we write F ∈ G ⋄M H and we say
that F is obtained from G and H by using the operation ⋄M . Note that the
resulting F is an oriented graph if both G and H are so and the arc set M
is a matching in G.

In Figure 1 we present an example of the graph F ∈ G ⋄M H in case
M = {(x1, y1), (x2, y2)}.

Proposition 4. Let G and H be vertex disjoint oriented graphs and let M
be a matching in G. If F ∈ G⋄MH then F is an oriented graph, degree pairs

of vertices of G remain unchanged in F , and the total increase of outdegrees

and that of indegrees of vertices of H on passing on to F are both equal

to |M |.
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Figure 1

Proposition 5. Let G and H be vertex disjoint digraphs. Let M be a match-

ing of cardinality r (r > 0) in G and let f+, f− : V (H) → N0 be functions

such that ∑

v∈V (H)

f+(v) =
∑

v∈V (H)

f−(v) = r.

Then there exists a digraph F ∈ G ⋄M H such that for each v ∈ V (H) the

following equalities hold:

(4) odF (v) = odH(v) + f+(v) and idF (v) = idH(v) + f−(v).

Proof. Assume that M = {(xi, yi) : i = 1, 2, . . . , r} is a matching in
G. By X and Y we denote the sets of initial and terminal vertices of arcs
from M , respectively. Let V (H) = {v1, v2, . . . , vk}. It is easy to see that
both sets X and Y can be represented as unions of k pairwise disjoint sets
X1,X2, . . . ,Xk and Y1, Y2, . . . , Yk respectively such that |Xj | = f−(vj) and
|Yj | = f+(vj) for j = 1, 2, . . . , k. Hence, for each i = 1, 2, . . . , r, there exists
exactly one pair (p, q), p, q ∈ {1, 2, . . . , k} such that xi ∈ Xp and yi ∈ Yq.
Let F be the digraph obtained from G ∪H by replacing the arc (xi, yi) by
the two arcs (xi, vp) and (vq, yi) for i ∈ {1, 2, . . . , r}. It is not difficult to
check that F ∈ G ⋄M H and equalities (4) hold.

Recall that the matching number of a digraph G, denoted by µ(G), is the
maximum cardinality among all matchings in G. Usually the operation
⋄M will be used for G =

⋃k
i=1 Ti, where T1,T2, . . . ,Tk are vertex disjoint

transitive tournaments. It is easy to note that

(5) µ

(
k⋃

i=1

Ti

)
=

⌊
k2

4

⌋
.
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5. Irregular Realizability of Minimum Sets

Note that the irregular realization of the set {(0, 0), (1, 1)} is unique and is
pseudodigraphic. No other member of Dmin

n has this property.

Theorem 6. An n-set D of ordered pairs of integers is realized by a mini-

mum irregular oriented graph G if and only if D ∈ Dmin
n and D 6=

{(0, 0), (1, 1)}.

Proof. Necessity is clear, D = DG ∈ Dmin
n which follows from the con-

struction of Dmin
n .

Sufficiency. Refer to (2) for τn and mn. Cases (i)–(iii) we are going to
refer to are those in Lemma 2.

If n ≤ 3 then D is one of the following three sets: {(0, 0)}, {(1, 0), (0, 1)}
and {(0, 0),(1, 0), (0, 1)}. Then the oriented graphs T1, T2 and T1 ∪ T2 are
respective realizations of D.

Let n ≥ 4. Then τn ≥ 2 by (2). By Lemma 2, we can represent the set
D as the disjoint union B ∪ C where:

B =
τn−1⋃
i=0

Bi and C = Bτn [mn] in case (i),

B =
τn−2⋃
i=0

Bi and C = Bτn−1 \ {(a, b)} ∪Bτn [mn + 1] in case (ii),

B =
τn−1⋃
i=0

Bi and C = Bτn [mn − 1] ∪ {(a, b)} in case (iii).

Note that the set C is balanced because both D and B are balanced.

Consider the vertex disjoint tournaments T1, T2, . . . , Tτn+1, Tτn+2. Put

(6) G0 =

τn⋃

i=1

Ti in cases (i) and (iii), G0 =

τn−1⋃

i=1

Ti in case (ii),

T = Tτn ∪ Tτn+1 ∪ Tτn+2,

H = 〈V ′〉T , where V ′ = {v ∈ V (T ) : (odT (v), idT (v)) ∈ C}
and the symbol 〈V ′〉T denotes the subdigraph of T induced by V ′.

Since Ti+1 realizes the set Bi, the digraph G0 realizes the set B. A
realization of D will be obtained by passing on from G0 ∪ H to G0 ⋄M H
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(where M is a matching in G0) so that the operation ⋄M restores the degree
pairs in the part H to their values in T if possible. This works in general
and, for a few sets D only, the realization of D is of the form G0 ⋄M H̃
where H̃ is H together with one or two arcs joining nonadjacent vertices in
H. Instead of functions f+, f− (Proposition 5 above) we use the following
parameters for v ∈ V (H).

r+(T,H)(v) = odT (v)− odH(v), r−(T,H)(v) = idT (v)− idH(v).

It is clear that r+(T,H)(v) ≥ 0 and r−(T,H)(v) ≥ 0 for every v ∈ V ′ and, since
the sets C and D are balanced,

(7)
∑

v∈V ′

r+(T,H)(v) =
∑

v∈V ′

r−(T,H)(v).

Put

(8) r =
∑

v∈V ′

r+(T,H)(v).

By definitions of H, G0, r and by (5), we have

(9) r =





mn(τn −mn + 1)/2 in case (i),

((τn − 1) + (mn + 1)(τn −mn)) /2 in case (ii),

((mn − 1)(τn −mn + 2) + (τn + 1)) /2 in case (iii)

and

µ(G0)− r =





1
4

(
(τn −mn)

2 + (mn − 1)2 − 1
)
for even τn in case (i),

1
4

(
(τn −mn)

2 + (mn − 1)2 − 2
)
for odd τn in case (i),

1
4

(
(τn −mn − 3)2 + (mn − 2)2 − 10

)
in case (ii),

1
4

(
(τn −mn)

2 + (mn − 3)2 − 8
)
in case (iii).

Hence

µ(G0)− r =





−1 in case (iii) if (τn,mn) ∈ {(5, 5), (5, 3)},
−2 in case (iii) if (τn,mn) = (3, 3),

−2 in case (ii) if (τn,mn) ∈ {(7, 3), (5, 1), (5, 3), (3, 1)},

and µ(G0)− r ≥ 0 in remaining cases.
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If r = 0 then H = Tτn+1. So G0 ∪H is an oriented graph which realizes the
set D.

Let 0 < r ≤ µ(G0). Choose a matching M of cardinality r in G0 and
put f+(v) = r+(T,H)(v) and f−(v) = r−(T,H)(v). The construction presented
in the proof of Proposition 5 gives an oriented graph G ∈ G0 ⋄M H which
realizes the set D.

Let µ(G0) − r be equal to −1 or −2. Then, for the particular pairs
(τn,mn), adding one or two arcs to the graph H can give a supergraph H̃
such that

(10) r+
(T,H̃)

(v) ≥ 0 and r−
(T,H̃)

(v) ≥ 0 for v ∈ V (H̃)

and

(11)
∑

v∈V (H̃)

r+
(T,H̃)

(v) =
∑

v∈V (H̃)

r−
(T,H̃)

(v) = µ(G0).

Then any oriented graph from the class G0 ⋄M H̃, where M is a maximum
matching in G0, is a realization of D.

Obviously, any oriented graph is a loopless digraph.

Corollary 7.
⋃+∞

n=1Dmin
n \ {(0, 0), (1, 1)} and

⋃+∞

n=1Dmin
n are the classes of

all sets of degree pairs for minimum irregular respectively loopless digraphs

and pseudodigraphs.

6. Specialized Irregular Realizations

By a 2-cycle we mean the complete 2-vertex digraph. The following ques-
tions arise. Which sets from Dmin

n have not only a realization as an irregular
oriented graph but also as an irregular digraph with 2-cycle and which sets
have a realization as an irregular pseudodigraph with a loop? The answers
to these questions are given below.

Proposition 8. If D is realized by an oriented graph G which includes a

path P4 with nonadjacent endvertices then D is realized by a loopless digraph

with exactly one 2-cycle.

Proof. Let G be an oriented graph which realizes D and contains a path
(v0, v1, v2, v3) such that vertices v0 and v3 are not adjacent. Then adding
the arcs (v0, v3) and (v2, v1) together with removing the arcs (v0, v1) and
(v2, v3) results in a required digraph.
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Proposition 9. If D is realized by an oriented graph G which includes a

path P3 with nonadjacent endvertices then D is realized by a pseudodigraph

with exactly one loop.

Proof. Let G be an oriented graph G which realizes D and contains an
induced path (v0, v1, v2). Then replacing the arcs (v0, v1), (v1, v2) by the arc
(v0, v2) and a loop at the vertex v1 results in a required pseudodigraph.

Lemma 10. If D ∈ Dmin
n and D includes at least two pairs whose all com-

ponents are positive then there exists an irregular oriented graph G which

realizes the set D and contains a path P4 with nonadjacent endvertices.

Proof. Assume n ≥ 7, because for n < 7 no D has two pairs with positive
components. Then τn ≥ 3. Refer to (6) for G0. Then G0 =

⋃k
i=1 Ti where

k ≥ 2.

Case 1. k ≥ 4. Let T3 and T4 be transitive tournaments where V (T3) =
{u1, u2, u3}, V (T4) = {v1, v2, v3, v4}, E(T3) = {(ui, uj) : i < j}, and E(T4) =
{(vi, vj) : i < j}. Then the arc (v1, v4) joins the endvertices of the path
P4 = (v1, v2, v3, v4). Let G

′

0 denote the graph obtained from G0 by removing
two arcs (v1, v4) and (u1, u2) and by adding arcs (u1, v4), (v1, u2). Note that
the path P4 has nonadjacent endvertices in G′

0, µ(G
′

0) = µ(G0), and in G′

0

we can choose a matching of cardinality µ(G′

0) which does not contain any
arc of P4. Then we can obtain a required G by the method used in the proof
of Theorem 6 taking G′

0 instead of G0.

Case 2. k < 4. From the definitions of G0, τn and the assumption n ≥ 7
it follows that τn = 3. Then only the following sets D1–D13 have at least
two pairs with all positive components.

D1 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (2, 1), (1, 2)},
D2 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 3), (2, 1)},
D3 = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (3, 0), (1, 2)},
D4 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 2)},
D5 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2)},
D6 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)},
D7 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (0, 3), (2, 2)},
D8 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (0, 4)},
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D9 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (0, 3), (1, 2), (4, 0)},
D10 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (1, 2), (1, 3)},
D11 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (0, 3), (2, 1), (3, 1)},
D12 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)},
D13 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}.

For 1 ≤ i ≤ 13, i 6= 3, 9, 11 the graph Gi presented in Figure 2 realizes the
set Di. A realization of Di for i = 3, 9, 11 can be obtained by reversing the
arcs in digraphs G2, G8, G10, respectively.
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Figure 2. Irregular oriented graphs which include a path P4 with nonadjacent

endvertices.

Lemma 11. If D ∈ Dmin
n \{(0, 0), (1, 1)} and D contains a pair whose com-

ponents are both positive then there exists an irregular oriented graph G
which includes a path P3 with nonadjacent endvertices and realizes D.

Proof. Refer to (6) and (8) for G0 and r, respectively. Consider the fol-
lowing two cases.

Case 1. G0 contains T3. Let V (T3) = {v1, v2, v3}. If r = 0 then
G = G0 ∪ Tτn+1 realizes D. This graph includes the only arc of T2, say
a1 = (u1, u2), and G includes three arcs, say (v1, v2), a2 = (v1, v3) and
(v2, v3), of T3. Therefore replacing in G the two arcs a1 and a2 by (u1, v3)
and (v1, u2) results in a required irregular oriented graph G.

If r > 0 then we apply the construction described in the proof of The-
orem 6. In this construction the operation ⋄M , where M is a matching in
G0, is used. So, if (v1, v3) ∈ M then obtained graph G includes the induced
path (v1, v2, v3).
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Case 2. G0 does not contain T3. Then τn = 3 in case (ii), τn = 2 in
cases (i), and (iii) is not possible. So D is one of the following six sets:

D1 = {(0, 0), (1, 0), (0, 1), (1, 1)},
D2 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)},
D3 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (2, 1), (1, 2)},
D4 = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (3, 0), (1, 2)},
D5 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 3), (2, 1)},
D6 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}.

For 1 ≤ i ≤ 6 the graph Gi presented in Figure 3 realizes the set Di.
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Figure 3. Irregular oriented graphs which include a path P3 with nonadjacent

endvertices.

The above propositions and lemmas imply the following.

Theorem 12. For D ∈ Dmin
n there exists an irregular digraph G with a

single 2-cycle C2 which realizes D if and only if D includes at least two

pairs whose all components are positive.

Theorem 13. For D ∈ Dmin
n there exists an irregular pseudodigraph with a

single loop and without 2-cycles which realizes D if and only if D includes

a pair whose components are positive.

7. The Unique Irregular Realizations

In this section we describe all sets from Dmin
n which are uniquely realizable

in the class of irregular oriented graphs (digraphs).

Examples. Let D1 = {(0, 0),(1, 0),(0, 1),(2, 0),(1, 1),(0, 3), (2, 1)} and D2 =
{(0, 0),(1, 0),(0, 1),(2, 0),(0, 2),(3, 0),(0, 3)}. Note that D1,D2 ∈ Dmin

7 and
D1 is not uniquely realizable while D2 is uniquely realizable (see Figure 4).
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Figure 4. G1, G2 and G3 are nonisomorphic realizations of D1, G4 is the unique

realization of D2.

It appears that seven is the greatest integer n such that there exists D ∈
Dmin

n which has the unique irregular realization.

Theorem 14. In
⋃+∞

n=1Dmin
n \ {(0, 0), (1, 1)} only the sets {(0, 0)}, {(1, 0),

(0, 1)}, {(0, 0), (1, 0), (0, 1)}, {(0, 0), (1, 0), (0, 1), (1, 1)}, {(0, 0), (1, 0), (0, 1),
(2, 0), (0, 2)} and {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (0, 3)} have the

unique realization in the class of irregular oriented graphs as well as in that

of irregular simple digraphs.

Proof. Let n ≥ 8, D ∈ Dmin
n , and let s be the largest integer such that

D includes the union B0 ∪ B1 ∪ . . . ∪ Bs. Then s ≥ 2 except of s = 1 for
D = D3 where

D3 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}.

Nonisomorphic irregular realizations of D3 are presented in Figure 5.

r

r

r

r

r

-

� -

r r

r r

-� �
��
-

@
@R?

r

r

r

r

r

-

�

? r r

r r

-
6
�
��
-

@
@R?

Figure 5. Two nonisomorphic realizations of the set D3.

If D \⋃s
i=0 Bi = ∅ then the union of vertex disjoint transitive tournaments

T1, T2,. . . , Ts+1 is one of realizations of D. Replacing therein two arcs, say
(u1, u2) from Ti and (v1, v2) from Tj where i 6= j, by arcs (u1, v2) and
(v1, u2) gives another realization of D. Now let D \⋃s

i=0 Bi 6= ∅. In this case
we can obtain nonisomorphic realizations of D using the operation ⋄M with
distinct matchings in G0, cp. (6) and the construction given in the proof of
Theorem 6. Distinct matchings in G0 exist because G0 contains T3. Testing
all sets D ∈Dmin

n for n ≤ 7 for uniqueness of their realizations we obtain
the stated list. Then uniqueness among simple irregular digraphs follows by
Theorem 12.
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Proposition 15. In
⋃+∞

n=1Dmin
n only the sets {(0, 0)}, {(0, 0), (1, 1)}, {(1, 0),

(0, 1)}, {(0, 0), (1, 0), (0, 1)}, {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)} and {(0, 0),
(1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (0, 3)} have the unique irregular realization

in the class of pseudodigraphs.

Proof. It is not difficult to check that each set D from Dmin
n , which is

not on the list, contains a pair whose both components are positive. Then,
by Theorems 6 and 13, D has two realizations: one as an oriented graph,
another as a pseudodigraph. On the other hand, D = {(0, 0), (1, 1)} is the
only set on the list whose unique irregular realization is pseudodigraphic.

8. Maximum Sets

The following is quite obvious (cf. Introduction and Proposition 1, or [5]).

Proposition 16. The set Bn−1 is the unique set of degree pairs among

maximum n-vertex irregular oriented graphs. The transitive tournament Tn

is the only maximum n-vertex irregular oriented graph, DTn
= Bn−1.

Remark 1. The transitive tournament Tn is the only realization of Bn−1 in
the class of n-vertex pseudodigraphs, too. However, Tn is not a maximum
irregular n-vertex simple digraph for n ≥ 3.

If D is an n-set of ordered pairs of nonnegative integers then we put

Dc = {(n − 1− a, n − 1− b) : (a, b) ∈ D},

Dc+ = {(n − a, n− b) : (a, b) ∈ D}.

Given a digraph G (resp. pseudodigraph G), we let G (resp. G
+
) denote the

complement of G in the complete digraph (resp. complete pseudodigraph).

Theorem 17. An n-set D of ordered pairs of nonnegative integers is re-

alized by a maximum irregular simple digraph (resp. pseudodigraph) iff

Dc ∈Dmin
n \{(0, 0), (1, 1)} (resp. Dc+ ∈Dmin

n ).

Proof. Theorem follows from Corollary 7 and the following observations.

• G is an irregular simple digraph (general digraph) iff G (resp. G
+
) is an

irregular simple digraph (general digraph),
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• G is a maximum irregular simple digraph (pseudodigraph) iff G (resp.

G
+
) is a minimum irregular simple digraph (general digraph),

• odG(v) = |V (G)| − 1− odG(v) and idG(v) = |V (G)| − 1− idG(v),

• od
G

+(v) = |V (G)| − odG(v) and id
G

+(v) = |V (G)| − idG(v).

9. Concluding Remark

It can be seen that, for each structure: oriented graph, simple digraph, and
pseudodigraph, the size among n-vertex irregular structures ranges over an
integer interval. We conjecture that deleting a single arc at a time from
a digraph can transform a certain maximum irregular structure to some
minimum one so that all intermediate structures are irregular, too.
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