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Abstract

For a connected graph G = (V,E), a set D ⊆ V (G) is a dominating
set of G if every vertex in V (G)−D has at least one neighbour in D.
The distance dG(u, v) between two vertices u and v is the length of a
shortest (u− v) path in G. An (u− v) path of length dG(u, v) is called
an (u− v)-geodesic. A set X ⊆ V (G) is convex in G if vertices from all
(a − b)-geodesics belong to X for any two vertices a, b ∈ X. A set X
is a convex dominating set if it is convex and dominating. The convex
domination number γcon(G) of a graph G is the minimum cardinality
of a convex dominating set in G. Graphs with the convex domina-
tion number close to their order are studied. The convex domination
number of a Cartesian product of graphs is also considered.
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1. Terminology

Let G = (V, E) be a simple connected undirected graph with |V (G)| = n(G).
The open neighbourhood of a vertex v ∈ V (G) in G is the set NG(v) of
all vertices adjacent to v in G and the closed neighbourhood is NG[v] =
NG(v) ∪ {v}.

The degree degG(v) of a vertex v in G is the number of edges incident to
v, that is degG(v) = |NG(v)|. The minimum and maximum degrees among
all vertices of G are denoted by δ(G) and ∆(G), respectively. If δ(G) =
∆(G) = 2, then G is a cycle and the cycle on n vertices is denoted by Cn.

A set D ⊆ V (G) is a dominating set of G if every vertex in V (G) −D
has at least one neighbour in D. The domination number of G, denoted
γ(G), is the minimum cardinality of a dominating set in G.

The distance dG(u, v) between two vertices u and v in a connected graph
G is the length of a shortest (u − v) path in G. An (u − v) path of length
dG(u, v) is called an (u− v)-geodesic. A set X ⊆ V (G) is convex in G if ver-
tices from all (a−b)-geodesics belong to X for every two vertices a, b ∈ X. A
set X is a convex dominating set if X is convex and dominating. The convex
domination number γcon(G) of a graph G equals the minimum cardinality
of a convex dominating set in G. The convex domination number was first
introduced in 2002 by Jerzy Topp (Gdańsk University of Technology).

The Cartesian product of two graphs G1, G2 is the graph G = G1 ×G2

with the vertex set V (G) = V (G1)×V (G2) and two vertices (u1, u2), (v1, v2)
are adjacent in G1×G2 if and only if we have one of two possibilities: u1 = v1

and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).
The length of a shortest cycle in G is the girth of G and is denoted

g(G) and the circumference c(G) is the length of a longest cycle in G.
The eccentricity e(v) of a vertex v of a connected graph G is the num-
ber maxu∈V (G) dG(u, v). Define an end-vertex to be a vertex of degree one.
The neighbour of an end-vertex is called a support.

For a connected graph G, a vertex x ∈ V (G) is called a cut-vertex if
G−x is no longer connected and an edge e ∈ E(G) is called a bridge if G−e
is not connected. A connected subgraph B of G is called a block if B has
no cut-vertex and every subgraph B

′ ⊆ G with B ⊆ B
′
and B 6= B

′
has at

least one cut-vertex. A graph G is called a block graph if every block in G
is a clique. A vertex v ∈ V (G) is called simplicial if the subgraph 〈NG[v]〉
induced by NG[v] is a clique.
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2. Results

We consider only connected graphs. Let us begin with an example and some
obvious observations.

Example 1. For a cycle Cn on n ≥ 6 vertices, γcon(Cn) = n.

Observation 1. If G 6= Kn and D is a minimum convex dominating set of
G, then

1. every cut-vertex belongs to D,
2. no simplicial vertex belongs to D,
3. for any x, y ∈ D such that dG(x, y) ≥ 2, we have NG(x) ∩NG(y) ⊆ D.

Observation 2. If G is a block graph and G 6= Kn, then γcon(G) = n(G)−s,
where s is the cardinality of the set of all simplicial vertices of G.

The following theorems describe graphs with the convex domination number
equal to their order.

Theorem 3. If G is a connected graph with δ(G) ≥ 2 and g(G) ≥ 6, then
γcon(G) = n(G).

Proof. Let G be a connected graph with δ(G) ≥ 2 and g(G) ≥ 6. Suppose
that γcon(G) < n(G). Let D be a minimum convex dominating set of G.
Since γcon(G) < n(G), there exists a vertex x ∈ V (G) such that x /∈ D.
Denote NG(x) = {x1, . . . , xp}, where p ≥ 2. Since g(G) ≥ 6, for every
i, j ∈ {1, . . . , p} we have xixj /∈ E(G) and |NG(xi) ∩NG(xj)| = 1 (x is the
only common neighbour of vertices xi and xj).

Notice that for every i, j ∈ {1, . . . , p}, i 6= j, we have dG(xi, xj) = 2 and
every shortest path between xi and xj contains x.

If there were vertices xi, xj ∈ NG(x) such that xi, xj ∈ D, then, by
Observation 1, x ∈ D, a contradiction. Thus |NG(x) ∩D| ≤ 1 and since x
is dominated, we have |NG(x) ∩D| = 1. Without loss of generality assume
that x1 ∈ NG(x) ∩D. Hence x2 /∈ D. Since x2 is dominated, there exists a
vertex y ∈ NG(x2) such that y 6= x and y ∈ D. Since g(G) ≥ 6, we have
NG(y) ∩ NG(x) = {x2} and NG(y) ∩ NG(xi) = ∅, where 1 ≤ i ≤ p. Thus
dG(y, x1) = 3 and the path (y, x2, x, x1) is a (y−x1)-geodesic such that two
vertices from this path do not belong to D, which contradicts the convexity
of D. Thus γcon(G) = n(G).
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Theorem 4. γcon(G) < n(G) for a connected graph G with c(G) ≤ 5.

Proof. Let G be a graph with c(G) ≤ 5. If there is an end-vertex in G,
then by Observation 1, γcon(G) < n(G), so from now on we assume that
δ(G) ≥ 2. Let Cr = (x1, . . . , xr, x1), r ≤ 5, be a longest cycle in G. We
consider two cases.

Case 1. For every vertex v ∈ V (G), |NG(v) ∩ V (Cr)| ≥ 2.
If r = 3, then G = C3, for otherwise C4 is obtained. In this case γcon(G) =
1 < n(G).

If r = 4, then D = {x1, x2} is a convex set in G, because every vertex
x ∈ V (G) − V (Cr) has exactly two non-adjacent neighbours belonging to
V (Cr) and thus each vertex of v ∈ V (G)− V (Cr) has exactly one neighbour
among {x1, x2}. Hence D is dominating and γcon(G) ≤ 2 < n(G).

Assume that r = 5. If x1x4 ∈ E(G) and x3x5 ∈ E(G), then D =
{x1, x4, x5} is a convex dominating set of G. Otherwise D = {x1, x3} ∪ S,
where S = NG(x1) ∩ NG(x3), is a dominating set of G. Suppose D is not
convex. Then for some x, y ∈ S there exists a vertex z ∈ NG(x) ∩ NG(y)
such that z /∈ D. Then (x1, x, z, y, x3, x4, x5, x1) is a cycle of length seven, a
contradiction. Thus D is convex and we obtained a convex dominating set
of G of cardinality smaller than n(G).

Case 2. There exists a vertex v ∈ V (G) such that |NG(v)∩V (Cr)| ≤ 1.
Let A = {u ∈ V (G) : dG(u, v) = e(v)} and let C be the family of cycles such
that |A∩ V (C)| ≥ 1 for every C ∈ C. Let Cs be a longest cycle belonging to
C such that dG(v, V (Cs)) is minimum (notice that Cs does not have to be a
longest cycle in G). Observe that v could not have more than one neighbour
belonging to Cs, as otherwise we would obtain a cycle C ∈ C not shorter
than Cs such that dG(v, V (C)) < dG(v, V (Cs)). We show that there exists
exactly one vertex a1 ∈ V (Cs) such that dG(V (Cs), v) = dG(a1, v) and a1 is
a cut-vertex.

Suppose, on the contrary, that for b, c ∈ V (Cs),

dG(V (Cs), v) = dG(b, v) = dG(c, v) = t.

Let P be a longest (b − c)-path containing only vertices of Cs. We denote
(b − v) = (b0, b1, . . . , bt), where b0 = b, bt = v and (c − v) = (c0, c1, . . . , ct),
where c0 = c, ct = v, l = min{k : bk = ck}. If l ≥ 2, we obtain a cycle
of length longer than 5, a contradiction. If a1 = v, then dG(v, V (Cr)) ≥
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1 > dG(v, V (Cs)) = 0 and for this reason V (Cs) ∩ A = ∅, a contradiction.
Thus l = 1. Now, if bc ∈ E(Cs), then V (Cs) ∪ {b1} forms a cycle longer
than Cs, which has the same properties as Cs, a contradiction. Otherwise
(Cs − {z}) ∪ {b1}, where z ∈ V (Cs) − P , forms a cycle C ∈ C such that
dG(v, V (C)) < dG(v, V (Cs)), a contradiction. Hence a1 is unique.

Now we show that a1 is a cut-vertex. Let w ∈ V (Cs)∩NG(a1). It is easy
to observe that if there is (w − v)-path not containing a1, then we obtain a
longer cycle, which has the same properties as Cs. Hence each (w− v)-path
contains a1 and thus a1 is a cut-vertex.

Denote Cs = (a1, . . . , as, a1) and let S be the component of G − {a1}
containing the vertices of V (Cs)− {a1}. We consider three subcases.

Subcase 2.1. There exists a vertex w ∈ V (S) such that NG(w) ∩ V (Cs)
= ∅. Then dG(w, a1) = 2, as otherwise A ∩ V (Cs) = ∅. Moreover, there are
k ∈ NG(a1)∩NG(w) and x ∈ NG(w), x 6= k. Since S is connected, there is a
path between x and V (Cs)−{a1}. If there is a path not containing k, then for
ai such that dG(x, V (Cs)) = dG(x, ai), i 6= 1, either (a1, k, w, x, ai, . . . , as, a1)
or (a1, a2, . . . , as, x, w, k, a1) is a cycle longer than 5, a contradiction. Hence
every path from x to V (Cs) − {a1} contains k. Without loss of generality
we can assume that ka3 ∈ E(G). Observe that NG[w] ⊂ NG[k] and hence
(V (G)−NG(k)) ∪ {a1, a3} is a convex dominating set of G.

Subcase 2.2. There exists a vertex w ∈ V (S) such that |NG(w) ∩
V (Cs)| = 1.

Let w ∈ NG(ai) for some i and t ∈ NG(w), k 6= ai. If k ∈ NG(aj), j 6= i,
or if there exists a (k − aj)-path not containing ai, then we obtain a cycle
longer than Cs, which has the same properties as Cs, a contradiction. Hence,
since dG(w, a1) ≤ 2, we have NG[w] ⊂ NG[ai] and (V (G)−NG[w])∪ {ai} is
a convex dominating set of G.

Subcase 2.3. All vertices from S have at least two neighbours in V (Cs).
If s = 3, then V (G) − V (S) is a convex dominating set of G and thus
γcon(G) < n.

If s = 4, then (V (G) − V (S)) ∪ {a2} is a convex dominating set of G
and again γcon(G) < n.

Consider the case s = 5. Assume that a2a4 /∈ E(G) or a3a5 /∈ E(G).
Then D = (V (G)− V (S))∪ {a2, a5} ∪ (NG(a2)∩NG(a5)) is a convex domi-
nating set of G with |D| < n(G).
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If a4a2 ∈ E(G) and a3a5 ∈ E(G), then D = (V (G) − V (S)) ∪ {a2} is a
convex dominating set of G of cardinality smaller than n(G), for otherwise
there would exist a vertex u ∈ S such that NG(u) ∩ {a1, a2} = ∅. But then
u ∈ N(a3) ∩ N(a5) and (a1, a2, a4, a3, u, a5, a1) is a cycle longer than 5, a
contradiction.

Theorem 5. Let G be a connected graph with n(G) ≥ 5. If γcon(G) = n(G),
then ∆(G) ≤ n(G)− 4.

Proof. We shall prove that if ∆(G) > n(G)− 4, then γcon(G) < n(G).
If ∆(G) = n(G)− 1, then obviously γcon(G) = 1 < n(G).
Let x be a vertex with dG(x) = ∆(G) = n(G) − 2 and let u /∈ NG[x].

Since G is connected, there exists a vertex y ∈ NG(u)∩NG(x) and {x, y} is
a minimum convex dominating set in G. Thus γcon(G) = 2 < n(G).

Assume now that dG(x) = ∆(G) = n(G) − 3 and let u, v /∈ NG[x].
If dG(u) = 1 or dG(v) = 1, say dG(u) = 1, then V (G) − {u} is a convex
dominating set of G, which implies γcon(G) < n(G). Hence assume dG(u) > 1
and dG(v) > 1. If there exists a vertex w ∈ NG(x) ∩ NG(u) ∩ NG(v), then
{x,w} is a minimum convex dominating set in G and γcon(G) = 2 < n(G).
Otherwise, if u and v have no common neighbour in NG(x), then there are
y ∈ NG(x)∩NG(u) and z ∈ NG(x)∩NG(v). Then {x, y, z}∪(NG(y)∩NG(z))
is a convex dominating set in G and once again γcon(G) < n(G).

For connected graphs G with γcon(G) = n(G), the inequality ∆(G) ≤
n(G) − 4 is best possible and equality ∆(G) = n(G) − 4 holds for exam-
ple for G = C6.

The next corollary follows directly from Theorem 3.

Corollary 6. If γcon(G) = n(G) and G 6= K1, then 2 ≤ δ(G) ≤ ∆(G) ≤
n(G)− 4.

Hence we immediately have:

Corollary 7. If γcon(G) = n(G) and G 6= K1, then n(G) ≥ 6.

Now we follow with two observations. The straightforward proofs are omit-
ted.

Observation 8. If γcon(G) = n(G) and G1 is the graph obtained from G
by adding a vertex v and edges e1, . . . , ek incident to v and to vertices of a
k-clique in G, then γcon(G1) = n(G1)− 1 = n(G).
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Observation 9. If γcon(G) = n(G) and G2 is the graph obtained from G
by adding vertices of a k-clique and edges e1, . . . , ek joining all vertices of
the clique with any vertex of G, then γcon(G2) = n(G2)− k = n(G).

Now let G be a graph in which u, v, w induce a path P in G and let X be
a non-empty set of vertices with V (G) ∩X = ∅. Denote by F (G,P, X) an
operation of adding to G the vertices of X and edges xu and xw for each
x ∈ X.

Lemma 10. If γcon(G) = n(G) and the vertices u, v, w induce a path P in
G, then for the graph H = F (G,P, {x}),

γcon(H) = n(H) = n(G) + 1.

Proof. Suppose that γcon(G) = n(G) and γcon(H) < n(H). Let DH be a
minimum convex dominating set in H. Observe that if u,w /∈ DH , then x
belongs to DH , which implies that x is isolated in subgraph 〈DH〉 induced
by DH and thus DH is not convex. Hence u ∈ DH or w ∈ DH . Without
loss of generality we can assume that u ∈ DH .

If w /∈ DH and x ∈ DH , then v /∈ DH , because otherwise w belongs to a
(v − x)−geodesic and w ∈ DH . But then DG = DH − {x} ∪ {v} is a convex
dominating set of G, a contradiction.

If w /∈ DH and x /∈ DH , then DG = DH is a convex dominating set of
G of cardinality smaller than n(G), a contradiction.

If u,w ∈ DH , then v, x ∈ DH , because DH is convex. Hence there
exists y /∈ NH [x] such that y /∈ DH . But then DG = DH − {x} is a convex
dominating set of G of cardinality smaller than n(G), a contradiction.

Corollary 11. Let X be a non-empty set of vertices. If γcon(G) = n(G) and
u, v, w ∈ V (G) induce a path P in G, then γcon(H) = n(H) = n(G) + |X|
for a graph H = F (G,P,X).

For two disjoint connected graphs G and G1 denote by J(G,P, G1) =
F (G,P, V (G1)) ∪ E(G1), where u, v, x induce a path P in G.

Theorem 12. If G and G1 are disjoint connected graphs such that γcon(G) =
n(G) and u, v, w ∈ V (G) induce a path P in G, then for the graph H =
J(G, P, G1) is γcon(H) = n(H) = n(G) + n(G1).
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Proof. Let H0 = F (G,P, V (G1)). Corollary 11 implies that γcon(H0) =
n(H0) = n(G) + n(G1). Moreover, each x ∈ V (G1) belongs to (u − w)-
geodesic. It follows that for H = H0 ∪ E(G1), γcon(H) = n(H) = n(G) +
n(G1).

Corollary 13. For every integer k ≥ 3 there exists a graph H such that
∆(H) = k and γcon(H) = n(H).

Proof. Let G be a cycle on six vertices and let G1 = Kk−2. Then γcon(G) =
n(G). If u, v, w are any consecutive vertices of the cycle, then u, v, w induce a
path P in G and Theorem 12 implies that for H = J(G,P, G1) is γcon(H) =
n(H). Obviously, ∆(H) = k.

From Theorem 12 we obtain that a forbidden subgraph characterization for
graphs with γcon(G) = n(G) cannot be obtained since for any graph G1 there
exists a graph H, namely H = J(C6, P, G1), such that γcon(H) = n(H) and
G1 is an induced subgraph of H.

Lemma 14. If G1 and G2 are connected graphs such that γcon(G1) = n(G1)
> 1 and γcon(G2) = n(G2) > 1, then for a graph H obtained from G1 and
G2 by adding an edge e joining any vertex of G1 to any vertex of G2,

γcon(H) = n(H) = n(G1) + n(G2).

Proof. In such a graph H, e is a bridge. As γcon(G1) = n(G1) > 1 and
γcon(G2) = n(G2) > 1, the statement follows.

Instead of an edge e, we can also add a path Pk = (v1 . . . vk) such that
G1 ∩ Pk = {v1} and G2 ∩ Pk = {vk}.

For a graph G and a cycle Cp, let H = G ◦ Cp be the graph obtained
from G and n(G) copies C1

p , C2
p , . . . , C

n(G)
p of Cp by joining each vi ∈ V (G)

with exactly one vertex of Ci
p for i = 1, 2, . . . , n(G).

Lemma 15. If G is a connected graph on n(G) > 1 vertices, then for H =
G ◦ Cp, p ≥ 6,

γcon(H) = n(H) = (p + 1)n(G).

Proof. Each edge connecting a vertex of V (G) to a vertex of a copy of Cp

is a bridge. Moreover, γcon(Cp) = p. Hence γcon(H) = n(H) = (p + 1)n(G).
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Now let G×H be the Cartesian product of connected graphs G and H. For
a set D ⊆ V (G×H) we denote:

DG = {u ∈ V (G) : (u, v) ∈ D for some v ∈ V (H)},
DH = {v ∈ V (H) : (u, v) ∈ D for some u ∈ V (G)}.

The Vizing Conjecture says that the domination number of the Cartesian
product of any two graphs is at least as large as the product of their domi-
nation numbers.

The following result can be found in [2]:

Theorem 16. A set D ⊆ V (G × H) is convex in G × H if and only if
D = DG ×DH , where DG and DH are convex in G and H, respectively.

Using this result and the next lemma, we prove that the convex domination
number of the Cartesian product of two connected graphs is at least as large
as the product of their convex domination numbers.

Lemma 17. If D is dominating in G×H, then DG is dominating in G and
DH is dominating in H.

Proof. Let D be a dominating set in G × H. Then it is easily seen that
DG = V (G) or DH = V (H). It suffices to show that DG is dominating in
G if DH = V (H) (similarly we can prove that DH is dominating in H if
DG = V (G)).

Let x ∈ V (G)−DG. For every y ∈ V (H) is (x, y) ∈ V (G×H)−D and
NG×H(x, y) ∩D 6= ∅. Since ({x} × NH(y)) ∩D = ∅ (because x /∈ DG), we
have

∅ 6= NG×H(x, y) ∩D

= ((NG(x)× {y}) ∪ ({x} ×NH(y))) ∩D

= (NG(x)× {y}) ∩D

= (NG(x)× {y}) ∩ (Dy × {y}),
where Dy is a projection of D ∩ (V (G)× {y}) into V (G)

= (NG(x) ∩Dy)× {y}.

Hence NG(x) ∩Dy 6= ∅ and NG(x) ∩DG 6= ∅, because Dy ⊆ DG. It proves
that DG is a dominating set in G.
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Theorem 18. For any connected graphs G and H, we have inequality
γcon(G)γcon(H) ≤ γcon(G×H).

Proof. Let D be a minimum convex dominating set in G × H. Thus, by
Theorem 14 and Lemma 15, the sets DG and DH are dominating and convex
in G and H, respectively. Hence γcon(G) ≤ |DG| and γcon(H) ≤ |DH |. Since
D = DG × DH (by Theorem 14), we have equality |D| = |DG||DH |. Thus
we have γcon(G)γcon(H) ≤ |DG||DH | = |D| = γcon(G×H).

Corollary 19. For graphs G for which γ(G) = γcon(G), the Vizing’s Con-
jecture is satisfied.

Corollary 20. If G and H are connected graphs and γcon(G) = n(G),
γcon(H) = n(H), then γcon(G×H) = n(G)n(H) = n(G×H).

Observation 21. If every vertex of G is a support or an end-vertex, then
γcon(G) = γ(G).

Corollary 22. If every vertex of G1 and G2 is a support or an end-vertex,
then γ(G1)γ(G2) ≤ γ(G1 ×G2).
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