

13th WORKSHOP
'3in1' GRAPHS 2004
Krynica, November 11-13, 2004

GRAPHS WITH CONVEX DOMINATION NUMBER CLOSE TO THEIR ORDER

Joanna Cyman, Magdalena Lemańska and Joanna Raczek
Department of Technical Physics and Applied Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
e-mail: \{joana, magda, gardenia\}@mif.pg.gda.pl

Abstract

For a connected graph $G=(V, E)$, a set $D \subseteq V(G)$ is a dominating set of G if every vertex in $V(G)-D$ has at least one neighbour in D. The distance $d_{G}(u, v)$ between two vertices u and v is the length of a shortest $(u-v)$ path in G. An $(u-v)$ path of length $d_{G}(u, v)$ is called an $(u-v)$-geodesic. A set $X \subseteq V(G)$ is convex in G if vertices from all ($a-b$)-geodesics belong to X for any two vertices $a, b \in X$. A set X is a convex dominating set if it is convex and dominating. The convex domination number $\gamma_{c o n}(G)$ of a graph G is the minimum cardinality of a convex dominating set in G. Graphs with the convex domination number close to their order are studied. The convex domination number of a Cartesian product of graphs is also considered.

Keywords: convex domination, Cartesian product.
2000 Mathematics Subject Classification: 05C12, 05C69.

1. Terminology

Let $G=(V, E)$ be a simple connected undirected graph with $|V(G)|=n(G)$. The open neighbourhood of a vertex $v \in V(G)$ in G is the set $N_{G}(v)$ of all vertices adjacent to v in G and the closed neighbourhood is $N_{G}[v]=$ $N_{G}(v) \cup\{v\}$.

The degree $\operatorname{deg}_{G}(v)$ of a vertex v in G is the number of edges incident to v, that is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degrees among all vertices of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. If $\delta(G)=$ $\Delta(G)=2$, then G is a cycle and the cycle on n vertices is denoted by C_{n}.

A set $D \subseteq V(G)$ is a dominating set of G if every vertex in $V(G)-D$ has at least one neighbour in D. The domination number of G, denoted $\gamma(G)$, is the minimum cardinality of a dominating set in G.

The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $(u-v)$ path in G. An $(u-v)$ path of length $d_{G}(u, v)$ is called an $(u-v)$-geodesic. A set $X \subseteq V(G)$ is convex in G if vertices from all $(a-b)$-geodesics belong to X for every two vertices $a, b \in X$. A set X is a convex dominating set if X is convex and dominating. The convex domination number $\gamma_{c o n}(G)$ of a graph G equals the minimum cardinality of a convex dominating set in G. The convex domination number was first introduced in 2002 by Jerzy Topp (Gdańsk University of Technology).

The Cartesian product of two graphs G_{1}, G_{2} is the graph $G=G_{1} \times G_{2}$ with the vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if and only if we have one of two possibilities: $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$.

The length of a shortest cycle in G is the girth of G and is denoted $g(G)$ and the circumference $c(G)$ is the length of a longest cycle in G. The eccentricity $e(v)$ of a vertex v of a connected graph G is the number $\max _{u \in V(G)} d_{G}(u, v)$. Define an end-vertex to be a vertex of degree one. The neighbour of an end-vertex is called a support.

For a connected graph G, a vertex $x \in V(G)$ is called a cut-vertex if $G-x$ is no longer connected and an edge $e \in E(G)$ is called a bridge if $G-e$ is not connected. A connected subgraph B of G is called a block if B has no cut-vertex and every subgraph $B^{\prime} \subseteq G$ with $B \subseteq B^{\prime}$ and $B \neq B^{\prime}$ has at least one cut-vertex. A graph G is called a block graph if every block in G is a clique. A vertex $v \in V(G)$ is called simplicial if the subgraph $\left\langle N_{G}[v]\right\rangle$ induced by $N_{G}[v]$ is a clique.

2. Results

We consider only connected graphs. Let us begin with an example and some obvious observations.

Example 1. For a cycle C_{n} on $n \geq 6$ vertices, $\gamma_{c o n}\left(C_{n}\right)=n$.
Observation 1. If $G \neq K_{n}$ and D is a minimum convex dominating set of G, then

1. every cut-vertex belongs to D,
2. no simplicial vertex belongs to D,
3. for any $x, y \in D$ such that $d_{G}(x, y) \geq 2$, we have $N_{G}(x) \cap N_{G}(y) \subseteq D$.

Observation 2. If G is a block graph and $G \neq K_{n}$, then $\gamma_{\text {con }}(G)=n(G)-s$, where s is the cardinality of the set of all simplicial vertices of G.

The following theorems describe graphs with the convex domination number equal to their order.

Theorem 3. If G is a connected graph with $\delta(G) \geq 2$ and $g(G) \geq 6$, then $\gamma_{\text {con }}(G)=n(G)$.

Proof. Let G be a connected graph with $\delta(G) \geq 2$ and $g(G) \geq 6$. Suppose that $\gamma_{\text {con }}(G)<n(G)$. Let D be a minimum convex dominating set of G. Since $\gamma_{\text {con }}(G)<n(G)$, there exists a vertex $x \in V(G)$ such that $x \notin D$. Denote $N_{G}(x)=\left\{x_{1}, \ldots, x_{p}\right\}$, where $p \geq 2$. Since $g(G) \geq 6$, for every $i, j \in\{1, \ldots, p\}$ we have $x_{i} x_{j} \notin E(G)$ and $\left|N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{j}\right)\right|=1(x$ is the only common neighbour of vertices x_{i} and x_{j}).

Notice that for every $i, j \in\{1, \ldots, p\}, i \neq j$, we have $d_{G}\left(x_{i}, x_{j}\right)=2$ and every shortest path between x_{i} and x_{j} contains x.

If there were vertices $x_{i}, x_{j} \in N_{G}(x)$ such that $x_{i}, x_{j} \in D$, then, by Observation $1, x \in D$, a contradiction. Thus $\left|N_{G}(x) \cap D\right| \leq 1$ and since x is dominated, we have $\left|N_{G}(x) \cap D\right|=1$. Without loss of generality assume that $x_{1} \in N_{G}(x) \cap D$. Hence $x_{2} \notin D$. Since x_{2} is dominated, there exists a vertex $y \in N_{G}\left(x_{2}\right)$ such that $y \neq x$ and $y \in D$. Since $g(G) \geq 6$, we have $N_{G}(y) \cap N_{G}(x)=\left\{x_{2}\right\}$ and $N_{G}(y) \cap N_{G}\left(x_{i}\right)=\emptyset$, where $1 \leq i \leq p$. Thus $d_{G}\left(y, x_{1}\right)=3$ and the path $\left(y, x_{2}, x, x_{1}\right)$ is a $\left(y-x_{1}\right)$-geodesic such that two vertices from this path do not belong to D, which contradicts the convexity of D. Thus $\gamma_{c o n}(G)=n(G)$.

Theorem 4. $\gamma_{c o n}(G)<n(G)$ for a connected graph G with $c(G) \leq 5$.
Proof. Let G be a graph with $c(G) \leq 5$. If there is an end-vertex in G, then by Observation 1, $\gamma_{c o n}(G)<n(G)$, so from now on we assume that $\delta(G) \geq 2$. Let $C^{r}=\left(x_{1}, \ldots, x_{r}, x_{1}\right), r \leq 5$, be a longest cycle in G. We consider two cases.

Case 1. For every vertex $v \in V(G),\left|N_{G}(v) \cap V\left(C^{r}\right)\right| \geq 2$.
If $r=3$, then $G=C_{3}$, for otherwise C_{4} is obtained. In this case $\gamma_{c o n}(G)=$ $1<n(G)$.

If $r=4$, then $D=\left\{x_{1}, x_{2}\right\}$ is a convex set in G, because every vertex $x \in V(G)-V\left(C^{r}\right)$ has exactly two non-adjacent neighbours belonging to $V\left(C^{r}\right)$ and thus each vertex of $v \in V(G)-V\left(C^{r}\right)$ has exactly one neighbour among $\left\{x_{1}, x_{2}\right\}$. Hence D is dominating and $\gamma_{\text {con }}(G) \leq 2<n(G)$.

Assume that $r=5$. If $x_{1} x_{4} \in E(G)$ and $x_{3} x_{5} \in E(G)$, then $D=$ $\left\{x_{1}, x_{4}, x_{5}\right\}$ is a convex dominating set of G. Otherwise $D=\left\{x_{1}, x_{3}\right\} \cup S$, where $S=N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{3}\right)$, is a dominating set of G. Suppose D is not convex. Then for some $x, y \in S$ there exists a vertex $z \in N_{G}(x) \cap N_{G}(y)$ such that $z \notin D$. Then $\left(x_{1}, x, z, y, x_{3}, x_{4}, x_{5}, x_{1}\right)$ is a cycle of length seven, a contradiction. Thus D is convex and we obtained a convex dominating set of G of cardinality smaller than $n(G)$.

Case 2. There exists a vertex $v \in V(G)$ such that $\left|N_{G}(v) \cap V\left(C^{r}\right)\right| \leq 1$. Let $A=\left\{u \in V(G): d_{G}(u, v)=e(v)\right\}$ and let \mathcal{C} be the family of cycles such that $|A \cap V(C)| \geq 1$ for every $C \in \mathcal{C}$. Let C_{s} be a longest cycle belonging to \mathcal{C} such that $d_{G}\left(v, V\left(C^{s}\right)\right.$) is minimum (notice that C^{s} does not have to be a longest cycle in G). Observe that v could not have more than one neighbour belonging to C^{s}, as otherwise we would obtain a cycle $C \in \mathcal{C}$ not shorter than C^{s} such that $d_{G}(v, V(C))<d_{G}\left(v, V\left(C^{s}\right)\right)$. We show that there exists exactly one vertex $a_{1} \in V\left(C^{s}\right)$ such that $d_{G}\left(V\left(C^{s}\right), v\right)=d_{G}\left(a_{1}, v\right)$ and a_{1} is a cut-vertex.

Suppose, on the contrary, that for $b, c \in V\left(C^{s}\right)$,

$$
d_{G}\left(V\left(C^{s}\right), v\right)=d_{G}(b, v)=d_{G}(c, v)=t
$$

Let P be a longest $(b-c)$-path containing only vertices of C^{s}. We denote $(b-v)=\left(b_{0}, b_{1}, \ldots, b_{t}\right)$, where $b_{0}=b, b_{t}=v$ and $(c-v)=\left(c_{0}, c_{1}, \ldots, c_{t}\right)$, where $c_{0}=c, c_{t}=v, l=\min \left\{k: b_{k}=c_{k}\right\}$. If $l \geq 2$, we obtain a cycle of length longer than 5 , a contradiction. If $a_{1}=v$, then $d_{G}\left(v, V\left(C^{r}\right)\right) \geq$
$1>d_{G}\left(v, V\left(C^{s}\right)\right)=0$ and for this reason $V\left(C^{s}\right) \cap A=\emptyset$, a contradiction. Thus $l=1$. Now, if $b c \in E\left(C^{s}\right)$, then $V\left(C^{s}\right) \cup\left\{b_{1}\right\}$ forms a cycle longer than C^{s}, which has the same properties as C^{s}, a contradiction. Otherwise $\left(C^{s}-\{z\}\right) \cup\left\{b_{1}\right\}$, where $z \in V\left(C^{s}\right)-P$, forms a cycle $C \in \mathcal{C}$ such that $d_{G}(v, V(C))<d_{G}\left(v, V\left(C^{s}\right)\right)$, a contradiction. Hence a_{1} is unique.

Now we show that a_{1} is a cut-vertex. Let $w \in V\left(C^{s}\right) \cap N_{G}\left(a_{1}\right)$. It is easy to observe that if there is $(w-v)$-path not containing a_{1}, then we obtain a longer cycle, which has the same properties as C^{s}. Hence each $(w-v)$-path contains a_{1} and thus a_{1} is a cut-vertex.

Denote $C^{s}=\left(a_{1}, \ldots, a_{s}, a_{1}\right)$ and let S be the component of $G-\left\{a_{1}\right\}$ containing the vertices of $V\left(C^{s}\right)-\left\{a_{1}\right\}$. We consider three subcases.

Subcase 2.1. There exists a vertex $w \in V(S)$ such that $N_{G}(w) \cap V\left(C^{s}\right)$ $=\emptyset$. Then $d_{G}\left(w, a_{1}\right)=2$, as otherwise $A \cap V\left(C^{s}\right)=\emptyset$. Moreover, there are $k \in N_{G}\left(a_{1}\right) \cap N_{G}(w)$ and $x \in N_{G}(w), x \neq k$. Since S is connected, there is a path between x and $V\left(C^{s}\right)-\left\{a_{1}\right\}$. If there is a path not containing k, then for a_{i} such that $d_{G}\left(x, V\left(C^{s}\right)\right)=d_{G}\left(x, a_{i}\right), i \neq 1$, either $\left(a_{1}, k, w, x, a_{i}, \ldots, a_{s}, a_{1}\right)$ or $\left(a_{1}, a_{2}, \ldots, a_{s}, x, w, k, a_{1}\right)$ is a cycle longer than 5 , a contradiction. Hence every path from x to $V\left(C^{s}\right)-\left\{a_{1}\right\}$ contains k. Without loss of generality we can assume that $k a_{3} \in E(G)$. Observe that $N_{G}[w] \subset N_{G}[k]$ and hence $\left(V(G)-N_{G}(k)\right) \cup\left\{a_{1}, a_{3}\right\}$ is a convex dominating set of G.

Subcase 2.2. There exists a vertex $w \in V(S)$ such that $\mid N_{G}(w) \cap$ $V\left(C^{s}\right) \mid=1$.

Let $w \in N_{G}\left(a_{i}\right)$ for some i and $t \in N_{G}(w), k \neq a_{i}$. If $k \in N_{G}\left(a_{j}\right), j \neq i$, or if there exists a $\left(k-a_{j}\right)$-path not containing a_{i}, then we obtain a cycle longer than C^{s}, which has the same properties as C^{s}, a contradiction. Hence, since $d_{G}\left(w, a_{1}\right) \leq 2$, we have $N_{G}[w] \subset N_{G}\left[a_{i}\right]$ and $\left(V(G)-N_{G}[w]\right) \cup\left\{a_{i}\right\}$ is a convex dominating set of G.

Subcase 2.3. All vertices from S have at least two neighbours in $V\left(C^{s}\right)$. If $s=3$, then $V(G)-V(S)$ is a convex dominating set of G and thus $\gamma_{\text {con }}(G)<n$.

If $s=4$, then $(V(G)-V(S)) \cup\left\{a_{2}\right\}$ is a convex dominating set of G and again $\gamma_{c o n}(G)<n$.

Consider the case $s=5$. Assume that $a_{2} a_{4} \notin E(G)$ or $a_{3} a_{5} \notin E(G)$. Then $D=(V(G)-V(S)) \cup\left\{a_{2}, a_{5}\right\} \cup\left(N_{G}\left(a_{2}\right) \cap N_{G}\left(a_{5}\right)\right)$ is a convex dominating set of G with $|D|<n(G)$.

If $a_{4} a_{2} \in E(G)$ and $a_{3} a_{5} \in E(G)$, then $D=(V(G)-V(S)) \cup\left\{a_{2}\right\}$ is a convex dominating set of G of cardinality smaller than $n(G)$, for otherwise there would exist a vertex $u \in S$ such that $N_{G}(u) \cap\left\{a_{1}, a_{2}\right\}=\emptyset$. But then $u \in N\left(a_{3}\right) \cap N\left(a_{5}\right)$ and $\left(a_{1}, a_{2}, a_{4}, a_{3}, u, a_{5}, a_{1}\right)$ is a cycle longer than 5 , a contradiction.

Theorem 5. Let G be a connected graph with $n(G) \geq 5$. If $\gamma_{c o n}(G)=n(G)$, then $\Delta(G) \leq n(G)-4$.

Proof. We shall prove that if $\Delta(G)>n(G)-4$, then $\gamma_{c o n}(G)<n(G)$.
If $\Delta(G)=n(G)-1$, then obviously $\gamma_{c o n}(G)=1<n(G)$.
Let x be a vertex with $d_{G}(x)=\Delta(G)=n(G)-2$ and let $u \notin N_{G}[x]$. Since G is connected, there exists a vertex $y \in N_{G}(u) \cap N_{G}(x)$ and $\{x, y\}$ is a minimum convex dominating set in G. Thus $\gamma_{c o n}(G)=2<n(G)$.

Assume now that $d_{G}(x)=\Delta(G)=n(G)-3$ and let $u, v \notin N_{G}[x]$. If $d_{G}(u)=1$ or $d_{G}(v)=1$, say $d_{G}(u)=1$, then $V(G)-\{u\}$ is a convex dominating set of G, which implies $\gamma_{c o n}(G)<n(G)$. Hence assume $d_{G}(u)>1$ and $d_{G}(v)>1$. If there exists a vertex $w \in N_{G}(x) \cap N_{G}(u) \cap N_{G}(v)$, then $\{x, w\}$ is a minimum convex dominating set in G and $\gamma_{c o n}(G)=2<n(G)$. Otherwise, if u and v have no common neighbour in $N_{G}(x)$, then there are $y \in N_{G}(x) \cap N_{G}(u)$ and $z \in N_{G}(x) \cap N_{G}(v)$. Then $\{x, y, z\} \cup\left(N_{G}(y) \cap N_{G}(z)\right)$ is a convex dominating set in G and once again $\gamma_{c o n}(G)<n(G)$.
For connected graphs G with $\gamma_{c o n}(G)=n(G)$, the inequality $\Delta(G) \leq$ $n(G)-4$ is best possible and equality $\Delta(G)=n(G)-4$ holds for example for $G=C_{6}$.

The next corollary follows directly from Theorem 3.
Corollary 6. If $\gamma_{c o n}(G)=n(G)$ and $G \neq K_{1}$, then $2 \leq \delta(G) \leq \Delta(G) \leq$ $n(G)-4$.

Hence we immediately have:
Corollary 7. If $\gamma_{c o n}(G)=n(G)$ and $G \neq K_{1}$, then $n(G) \geq 6$.
Now we follow with two observations. The straightforward proofs are omitted.

Observation 8. If $\gamma_{c o n}(G)=n(G)$ and G_{1} is the graph obtained from G by adding a vertex v and edges e_{1}, \ldots, e_{k} incident to v and to vertices of a k-clique in G, then $\gamma_{c o n}\left(G_{1}\right)=n\left(G_{1}\right)-1=n(G)$.

Observation 9. If $\gamma_{c o n}(G)=n(G)$ and G_{2} is the graph obtained from G by adding vertices of a k-clique and edges e_{1}, \ldots, e_{k} joining all vertices of the clique with any vertex of G, then $\gamma_{c o n}\left(G_{2}\right)=n\left(G_{2}\right)-k=n(G)$.

Now let G be a graph in which u, v, w induce a path P in G and let X be a non-empty set of vertices with $V(G) \cap X=\emptyset$. Denote by $F(G, P, X)$ an operation of adding to G the vertices of X and edges $x u$ and $x w$ for each $x \in X$.

Lemma 10. If $\gamma_{c o n}(G)=n(G)$ and the vertices u, v, w induce a path P in G, then for the graph $H=F(G, P,\{x\})$,

$$
\gamma_{c o n}(H)=n(H)=n(G)+1
$$

Proof. Suppose that $\gamma_{c o n}(G)=n(G)$ and $\gamma_{c o n}(H)<n(H)$. Let D_{H} be a minimum convex dominating set in H. Observe that if $u, w \notin D_{H}$, then x belongs to D_{H}, which implies that x is isolated in subgraph $\left\langle D_{H}\right\rangle$ induced by D_{H} and thus D_{H} is not convex. Hence $u \in D_{H}$ or $w \in D_{H}$. Without loss of generality we can assume that $u \in D_{H}$.

If $w \notin D_{H}$ and $x \in D_{H}$, then $v \notin D_{H}$, because otherwise w belongs to a $(v-x)$-geodesic and $w \in D_{H}$. But then $D_{G}=D_{H}-\{x\} \cup\{v\}$ is a convex dominating set of G, a contradiction.

If $w \notin D_{H}$ and $x \notin D_{H}$, then $D_{G}=D_{H}$ is a convex dominating set of G of cardinality smaller than $n(G)$, a contradiction.

If $u, w \in D_{H}$, then $v, x \in D_{H}$, because D_{H} is convex. Hence there exists $y \notin N_{H}[x]$ such that $y \notin D_{H}$. But then $D_{G}=D_{H}-\{x\}$ is a convex dominating set of G of cardinality smaller than $n(G)$, a contradiction.

Corollary 11. Let X be a non-empty set of vertices. If $\gamma_{c o n}(G)=n(G)$ and $u, v, w \in V(G)$ induce a path P in G, then $\gamma_{\text {con }}(H)=n(H)=n(G)+|X|$ for a graph $H=F(G, P, X)$.

For two disjoint connected graphs G and G_{1} denote by $J\left(G, P, G_{1}\right)=$ $F\left(G, P, V\left(G_{1}\right)\right) \cup E\left(G_{1}\right)$, where u, v, x induce a path P in G.

Theorem 12. If G and G_{1} are disjoint connected graphs such that $\gamma_{c o n}(G)=$ $n(G)$ and $u, v, w \in V(G)$ induce a path P in G, then for the graph $H=$ $J\left(G, P, G_{1}\right)$ is $\gamma_{\text {con }}(H)=n(H)=n(G)+n\left(G_{1}\right)$.

Proof. Let $H_{0}=F\left(G, P, V\left(G_{1}\right)\right)$. Corollary 11 implies that $\gamma_{c o n}\left(H_{0}\right)=$ $n\left(H_{0}\right)=n(G)+n\left(G_{1}\right)$. Moreover, each $x \in V\left(G_{1}\right)$ belongs to $(u-w)$ geodesic. It follows that for $H=H_{0} \cup E\left(G_{1}\right), \gamma_{c o n}(H)=n(H)=n(G)+$ $n\left(G_{1}\right)$.

Corollary 13. For every integer $k \geq 3$ there exists a graph H such that $\Delta(H)=k$ and $\gamma_{c o n}(H)=n(H)$.

Proof. Let G be a cycle on six vertices and let $G_{1}=K_{k-2}$. Then $\gamma_{c o n}(G)=$ $n(G)$. If u, v, w are any consecutive vertices of the cycle, then u, v, w induce a path P in G and Theorem 12 implies that for $H=J\left(G, P, G_{1}\right)$ is $\gamma_{c o n}(H)=$ $n(H)$. Obviously, $\Delta(H)=k$.
From Theorem 12 we obtain that a forbidden subgraph characterization for graphs with $\gamma_{c o n}(G)=n(G)$ cannot be obtained since for any graph G_{1} there exists a graph H, namely $H=J\left(C_{6}, P, G_{1}\right)$, such that $\gamma_{c o n}(H)=n(H)$ and G_{1} is an induced subgraph of H.

Lemma 14. If G_{1} and G_{2} are connected graphs such that $\gamma_{c o n}\left(G_{1}\right)=n\left(G_{1}\right)$ >1 and $\gamma_{c o n}\left(G_{2}\right)=n\left(G_{2}\right)>1$, then for a graph H obtained from G_{1} and G_{2} by adding an edge e joining any vertex of G_{1} to any vertex of G_{2},

$$
\gamma_{c o n}(H)=n(H)=n\left(G_{1}\right)+n\left(G_{2}\right)
$$

Proof. In such a graph H, e is a bridge. As $\gamma_{c o n}\left(G_{1}\right)=n\left(G_{1}\right)>1$ and $\gamma_{c o n}\left(G_{2}\right)=n\left(G_{2}\right)>1$, the statement follows.
Instead of an edge e, we can also add a path $P_{k}=\left(v_{1} \ldots v_{k}\right)$ such that $G_{1} \cap P_{k}=\left\{v_{1}\right\}$ and $G_{2} \cap P_{k}=\left\{v_{k}\right\}$.

For a graph G and a cycle C_{p}, let $H=G \circ C_{p}$ be the graph obtained from G and $n(G)$ copies $C_{p}^{1}, C_{p}^{2}, \ldots, C_{p}^{n(G)}$ of C_{p} by joining each $v_{i} \in V(G)$ with exactly one vertex of C_{p}^{i} for $i=1,2, \ldots, n(G)$.

Lemma 15. If G is a connected graph on $n(G)>1$ vertices, then for $H=$ $G \circ C_{p}, p \geq 6$,

$$
\gamma_{c o n}(H)=n(H)=(p+1) n(G)
$$

Proof. Each edge connecting a vertex of $V(G)$ to a vertex of a copy of C_{p} is a bridge. Moreover, $\gamma_{c o n}\left(C_{p}\right)=p$. Hence $\gamma_{c o n}(H)=n(H)=(p+1) n(G)$.

Now let $G \times H$ be the Cartesian product of connected graphs G and H. For a set $D \subseteq V(G \times H)$ we denote:

$$
\begin{aligned}
& D_{G}=\{u \in V(G):(u, v) \in D \text { for some } v \in V(H)\}, \\
& D_{H}=\{v \in V(H):(u, v) \in D \text { for some } u \in V(G)\} .
\end{aligned}
$$

The Vizing Conjecture says that the domination number of the Cartesian product of any two graphs is at least as large as the product of their domination numbers.

The following result can be found in [2]:
Theorem 16. A set $D \subseteq V(G \times H)$ is convex in $G \times H$ if and only if $D=D_{G} \times D_{H}$, where D_{G} and D_{H} are convex in G and H, respectively.
Using this result and the next lemma, we prove that the convex domination number of the Cartesian product of two connected graphs is at least as large as the product of their convex domination numbers.

Lemma 17. If D is dominating in $G \times H$, then D_{G} is dominating in G and D_{H} is dominating in H.

Proof. Let D be a dominating set in $G \times H$. Then it is easily seen that $D_{G}=V(G)$ or $D_{H}=V(H)$. It suffices to show that D_{G} is dominating in G if $D_{H}=V(H)$ (similarly we can prove that D_{H} is dominating in H if $\left.D_{G}=V(G)\right)$.

Let $x \in V(G)-D_{G}$. For every $y \in V(H)$ is $(x, y) \in V(G \times H)-D$ and $N_{G \times H}(x, y) \cap D \neq \emptyset$. Since $\left(\{x\} \times N_{H}(y)\right) \cap D=\emptyset$ (because $\left.x \notin D_{G}\right)$, we have

$$
\begin{aligned}
\emptyset & \neq N_{G \times H}(x, y) \cap D \\
& =\left(\left(N_{G}(x) \times\{y\}\right) \cup\left(\{x\} \times N_{H}(y)\right)\right) \cap D \\
& =\left(N_{G}(x) \times\{y\}\right) \cap D \\
& =\left(N_{G}(x) \times\{y\}\right) \cap\left(D_{y} \times\{y\}\right),
\end{aligned}
$$

where D_{y} is a projection of $D \cap(V(G) \times\{y\})$ into $V(G)$

$$
=\left(N_{G}(x) \cap D_{y}\right) \times\{y\} .
$$

Hence $N_{G}(x) \cap D_{y} \neq \emptyset$ and $N_{G}(x) \cap D_{G} \neq \emptyset$, because $D_{y} \subseteq D_{G}$. It proves that D_{G} is a dominating set in G.

Theorem 18. For any connected graphs G and H, we have inequality $\gamma_{c o n}(G) \gamma_{c o n}(H) \leq \gamma_{c o n}(G \times H)$.

Proof. Let D be a minimum convex dominating set in $G \times H$. Thus, by Theorem 14 and Lemma 15 , the sets D_{G} and D_{H} are dominating and convex in G and H, respectively. Hence $\gamma_{c o n}(G) \leq\left|D_{G}\right|$ and $\gamma_{c o n}(H) \leq\left|D_{H}\right|$. Since $D=D_{G} \times D_{H}$ (by Theorem 14), we have equality $|D|=\left|D_{G}\right|\left|D_{H}\right|$. Thus we have $\gamma_{c o n}(G) \gamma_{c o n}(H) \leq\left|D_{G}\right|\left|D_{H}\right|=|D|=\gamma_{c o n}(G \times H)$.

Corollary 19. For graphs G for which $\gamma(G)=\gamma_{\text {con }}(G)$, the Vizing's Conjecture is satisfied.

Corollary 20. If G and H are connected graphs and $\gamma_{c o n}(G)=n(G)$, $\gamma_{c o n}(H)=n(H)$, then $\gamma_{c o n}(G \times H)=n(G) n(H)=n(G \times H)$.

Observation 21. If every vertex of G is a support or an end-vertex, then $\gamma_{c o n}(G)=\gamma(G)$.

Corollary 22. If every vertex of G_{1} and G_{2} is a support or an end-vertex, then $\gamma\left(G_{1}\right) \gamma\left(G_{2}\right) \leq \gamma\left(G_{1} \times G_{2}\right)$.

References

[1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc., 1998).
[2] Sergio R. Canoy Jr and I.J.L. Garces, Convex sets under some graphs operations, Graphs and Combinatorics 18 (2002) 787-793.

Received 21 January 2005
Revised 18 November 2005

