Discussiones Mathematicae Graph Theory 26 (2006) 291–305

13th WORKSHOP '3in1' GRAPHS 2004 Krynica, November 11-13, 2004

ARBITRARILY VERTEX DECOMPOSABLE CATERPILLARS WITH FOUR OR FIVE LEAVES

Sylwia Cichacz, Agnieszka Görlich, Antoni Marczyk Jakub Przybyło

> Faculty of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30–059 Kraków, Poland

> > e-mail: marczyk@uci.agh.edu.pl

AND

MARIUSZ WOŹNIAK

Institute of Mathematics of Polish Academy of Sciences (on leave from AGH)

Abstract

A graph G of order n is called arbitrarily vertex decomposable if for each sequence (a_1, \ldots, a_k) of positive integers such that $a_1 + \ldots + a_k = n$ there exists a partition (V_1, \ldots, V_k) of the vertex set of G such that for each $i \in \{1, \ldots, k\}$, V_i induces a connected subgraph of G on a_i vertices.

D. Barth and H. Fournier showed that if a tree T is arbitrarily vertex decomposable, then T has maximum degree at most 4. In this paper we give a complete characterization of arbitrarily vertex decomposable caterpillars with four leaves. We also describe two families of arbitrarily vertex decomposable trees with maximum degree three or four.

Keywords: arbitrarily vertex decomposable graphs, trees, caterpillars, star-like trees.

2000 Mathematics Subject Classification: 05C70.

1. Introduction

Let G = (V, E) be a graph of order n. A sequence $\tau = (a_1, \ldots, a_k)$ of positive integers is called *admissible for* G if it adds up to n. If $\tau = (a_1, \ldots, a_k)$ is an admissible sequence for G and there exists a partition (V_1, \ldots, V_k) of the vertex set V such that for each $i \in \{1, \ldots, k\}$, $|V_i| = a_i$ and a subgraph induced by V_i is connected then τ is called *realizable in* G and the sequence (V_1, \ldots, V_k) is said to be a *G*-realization of τ or a realization of τ in G. A graph G is arbitrarily vertex decomposable (avd for short) if for each admissible sequence τ for G there exists a *G*-realization of τ .

The problem of deciding whether a given graph is arbitrarily vertex decomposable has been considered in several papers (see for example [1]–[4]). Generally, this problem is NP-complete [1] but we do not know if this problem is NP-complete when restricted to trees.

However, it is obvious that each path and each traceable graph is avd. The investigation of avd trees is motivated by the fact that a connected graph is avd if its spanning tree is avd. In [4] M. Horňák and M. Woźniak conjectured that if T is a tree with maximum degree $\Delta(T)$ at least five, then T is not avd. This conjecture was proved by D. Barth and H. Fournier [2].

Theorem 1. If a tree T is arbitrarily vertex decomposable, then $\Delta(T) \leq 4$. Moreover, every vertex of degree four of T is adjacent to a leaf.

In [1] D. Barth, O. Baudon and J. Puech studied a family of trees each of them being homeomorphic to $K_{1,3}$ (they call them tripodes) and showed that determining if such a tree is avd can be done using a polynomial algorithm.

There is an interesting motivation for investigation of avd graphs. Consider a network connecting different computing resources; such a network is modeled by a graph. Suppose there are k different users, where *i*-th one needs n_i resources in our graph. The subgraph induced by the set of resources attributed to each user should be connected and a resource should

292

be attributed to at most one user. So we have the problem of seeking a realization of the sequence (n_1, \ldots, n_k) in this graph. Note also that one can find in [4] some references concerning arbitrarily edge decomposable graphs. The aim of this article is a characterization of avd trees with maximum degree at most four that have a very simple structure. Namely, we consider caterpillars or trees which are homeomorphic to a star $K_{1,q}$, where q is three or four.

2. Terminology and Results

In this paper, we deal with finite, simple and undirected graphs.

Let T = (V, E) be a tree. A vertex $x \in V$ is called *primary* if $d(x) \geq 3$. A *leaf* is a vertex of degree one. A path P of T is an *arm* if one of its endvertices is a leaf in T, the other one is primary and all internal vertices of P have degree two in T. A tree T is called *primary* if it contains a primary vertex.

A graph T is a star-like tree if it is a tree homeomorphic to a star $K_{1,q}$ for some $q \geq 3$. Such a tree has one primary vertex (let us denote it by c) and q arms (let us denote them by $A_i, i \in \{1, \ldots, q\}$). For each A_i let α_i be the order of A_i . The structure of a star-like tree is (up to a isomorphism) determined by this sequence $(\alpha_1, \ldots, \alpha_q)$ of orders of its arms. Since the ordering of this sequence is not important, we will always assume that $2 \leq \alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_q$ and will denote the above defined star-like tree by $S(\alpha_1, \ldots, \alpha_q)$. Notice that an order of this star-like tree is equal to $1 + \sum_{i=1}^{q} (\alpha_i - 1)$.

A tree T is a caterpillar if the set of vertices of degree at least two induces a path. Let T be a caterpillar such that $\Delta(T) \leq 4$. Let us note that if there are two or more vertices of degree four in T, then the sequences (2, 2, ..., 2) if n is even or (1, 2, 2, ..., 2) if n is odd are not realizable in T, hence T is not avd. Clearly, these particular sequences are realizable in T if there is a perfect matching or a quasi-perfect matching in T. According to the above remark we will consider only caterpillars of maximum degree at most four having at most one vertex of degree four.

Let T be a caterpillar with $\Delta(T) = 3$ and let $\{y_1, \ldots, y_s\}$ be the set of primary vertices of T. We call T a caterpillar with s single legs attached at y_1, \ldots, y_s .

Similarly, if T is a caterpillar and $\{x, y_1, \ldots, y_s\}$ the set of primary vertices of T such that d(x) = 4 and $d(y_i) = 3$ for all $i \in \{1, \ldots, s\}$, then

T is called a *caterpillar with one double leg attached at* x and s single legs attached at y_1, \ldots, y_s . For simplicity of notation we say sometimes that we have a caterpillar with s single legs or a caterpillar with one double leg and s single legs. We present two examples of such caterpillars in Figure 1 and Figure 4.

Here and subsequently, we assume that every admissible sequence for a graph G is non-decreasing and we write d^{λ} for the sequence $(\underline{d,\ldots,d})$ and

 $d^{\lambda} \cdot g^{\mu}$ for the sequence $(\underbrace{d, d, \dots, d}_{\lambda}, \underbrace{g, g, \dots, g}_{\mu})$, the concatenation of λ times

 $d \text{ and } \mu \text{ times } g.$ We will note $d \cdot g^{\mu}$ and $d^{\lambda} \cdot g$ instead of $d^{1} \cdot g^{\mu}$ and $d^{\lambda} \cdot g^{1}$.

We denote by (a, b) the greatest common divisor of two positive integers a and b and we write t(i, j) for the transposition of the elements i and j of the set $\{1, 2, \ldots, k\}$. Note that if i = j, then by transposition t(i, j) we mean the identity.

Let T be a tree, and let (V_1, V_2) and (V'_1, V'_2) be two partitions of V(T) such that each V_i and each V'_i induces a tree in T. We say that we can transpose V_1 and V_2 (into V'_1 and V'_2) if $|V'_i| = |V_i|$ (i = 1, 2).

Let $P = y_1, \ldots, y_q$ be a subpath of a tree T and U, W two disjoint subsets of V(T). We shall say that U and W are *neighbouring* in P if for some $j \in \{1, \ldots, q-1\}, y_j \in U$ and $y_{j+1} \in W$ or $y_j \in W$ and $y_{j+1} \in U$.

The first result characterizing avd star-like trees (i.e., caterpillars with one single leg) was found by D. Barth, O. Baudon and J. Puech [1] and, independently, by M. Horňák and M. Woźniak [3].

Proposition 2. The star-like tree S(2, a, b), with $2 \le a \le b$ is and if and only if (a, b) = 1. Moreover, each admissible and non-realizable sequence in S(2, a, b) is of the form d^{λ} , where $a \equiv b \equiv 0 \pmod{d}$ and d > 1.

In [1] D. Barth, O. Baudon and J. Puech proved the following proposition. In the statement of this result the sequence (3, a, b) is not assumed to be non-decreasing.

Proposition 3. Each star-like tree S(2, 2, a, b), with $2 \le a \le b$ is avd if and only if

- 1^0 the star-like tree S(3, a, b) is avd;
- 2^0 a, b are odd;
- $3^0 \ a \neq 2 \pmod{3} \ or \ b \neq 2 \pmod{3}.$

The next result due to D. Barth and H. Fournier [2] shows that the structure of avd caterpillars is not obvious.

Theorem 4. For every $s \ge 1$ there exists an avd caterpillar with s single legs.

The main results of this paper are Theorems 5 and 6 of Sections 3 and 4 which give a complete characterization of avd caterpillars with two single legs and avd star-like trees S(3, a, b). In Section 4 we also give a necessary and sufficient condition for a star-like tree S(2, 2, a, b) to be avd. Thus, we describe the family of avd caterpillars with four leaves. In Section 5 we describe an infinite family of avd caterpillars with one double and one single leg (Proposition 9).

3. Arbitrarily Vertex Decomposable Caterpillars with Two Single Legs

Every caterpillar T of order n with two single legs attached at x and y can be obtained by taking a path $P = x_1, \ldots, x_{n-2}$, where $x = x_i$ and $y = x_j$ (i < j) are two internal vertices of P, adding two vertices u and v, and joining u to x and v to y (see Figure 1). For such a graph let us define $l_x(T) := i$, $r_x(T) := n - i$ and, analogously, $l_y(T) := j + 1$ and $r_y(T) := n - j - 1$.

Figure 1. A caterpillar with two single legs.

Theorem 5. Let T = (V, E) be a caterpillar of order n with two single legs attached at x and y. Then T is avd if and only if the following conditions hold:

 $1^{0} (l_{x}(T), r_{x}(T)) = 1;$ $2^{0} (l_{y}(T), r_{y}(T)) = 1;$ $3^{0} (l_{x}(T), r_{y}(T)) = 1;$ 4⁰ $(l_y(T), r_x(T)) < l_y(T) - l_x(T) \text{ or } n \equiv 1 \pmod{(l_y(T), r_x(T))};$ 5⁰ $n \neq \alpha l_x(T) + \beta l_y(T) \text{ for any } \alpha, \beta \in \mathbf{N};$ 6⁰ $n \neq \alpha r_x(T) + \beta r_y(T) \text{ for any } \alpha, \beta \in \mathbf{N}.$

Proof. For abbreviation we write $l_x = l_x(T)$, $r_x = r_x(T)$, $l_y = l_y(T)$ and $r_y = r_y(T)$. Observe first that $n = l_x + r_x = l_y + r_y$ and there is no loss of

generality in assuming $l_x \leq r_y$.

Necessity. Suppose that $(l_x, r_x) = d > 1$ $((l_y, r_y) = d' > 1$, resp.). Then $n = \lambda \cdot d$ $(n = \lambda' \cdot d', \text{ resp.})$ for some $\lambda \in \mathbf{N}$ $(\lambda' \in \mathbf{N}, \text{ resp.})$. It can be easily seen that the sequence d^{λ} $(d^{\lambda'}, \text{ resp.})$ is not realizable in T, so the conditions 1^0 and 2^0 are necessary for T to be avd.

Suppose now $l_x = \alpha \cdot d$, $r_y = \beta \cdot d$ for some integers $\alpha, \beta \ge 1$ and d > 1. Hence $n = (\alpha + \beta) \cdot d + r$ and, by 1⁰, d does not divide r. Let us consider the sequence $r \cdot d^{\lambda}$ if $r \le d$ or $d^{\lambda} \cdot r$ otherwise. Let S be a subtree of T of order r. It can be easily seen that the graph T - S has a connected component C being a star-like tree S(2, a, b) with $(a, b) = \mu d$ for some integer $\mu \ge 1$ or a path of length which is not divisible by d or else a caterpillar T' with two single legs attached at x and y such that d divides $(l_y(T'), r_y(T'))$ or $(l_x(T'), r_x(T'))$. Thus, using the previous argument or Proposition 2 we may deduce that such a sequence is not realizable in C and this implies the necessity of the condition 3⁰.

Assume then $(l_y, r_x) = d \ge l_y - l_x \ge 2$ and n is not congruent to 1 modulo d. If $d = l_y - l_x$, then $l_x \equiv 0 \pmod{d}$ and we can show as above that T is not avd. Assume $d > l_y - l_x$ and let λ and $r \in \{1, \ldots, d-1\}$ be two integers such that $l_x = \lambda d + r$. Thus, $r_x = \alpha d$, $l_y = \beta d$ for some integers α , β and $n = \lambda d + \alpha d + r$. Hence $r \ge 2$ and, because $l_y - l_x < d$, $\beta = \lambda + 1$. Consider now the sequence $\tau = r \cdot d^{\alpha + \lambda}$. Taking the graph T - S, where S is a subtree of T on r vertices and using a similar argument as in the previous situation we deduce that τ is not realizable in T, so the condition 4^0 is necessary for T to be avd.

Finally, if $n = \alpha l_x + \beta l_y$ for some $\alpha, \beta \in \mathbf{N}$ (or $n = \alpha r_x + \beta r_y$), then the sequence $l_x^{\alpha} \cdot l_y^{\beta}$ (or $r_y^{\beta} \cdot r_x^{\alpha}$, resp.) is not realizable in T and this implies the necessity of the conditions 5^0 and 6^0 .

Sufficiency. Suppose the conditions $1^{0}-6^{0}$ hold and let $\tau = (a_{1}, \ldots, a_{k})$ be an admissible sequence for T. We first show that if $a_{1} = 1$, then there exists a T-realization of τ . Indeed, consider a caterpillar T' = T - u i.e., a caterpillar with one leg attached at y and an admissible sequence $\tau' =$

 (a_2, a_3, \ldots, a_k) for T'. Obviously, if τ' is a realizable sequence for T', then τ is realizable for T. Suppose then, that τ' is not realizable for T'. It follows from Proposition 2 that $(l_y - 1, r_y) = d$ for some integer d > 1 and $\tau' = (d, \ldots, d)$. Thus d divides r_y and, by 3^0 , l_x is not divisible by d, so τ' is realizable in the tree T'' = T - v. It follows that $\tau = (1, d, \ldots, d)$ is realizable in T as claimed.

From now on we will assume that $a_1 \ge 2$, i.e., for every $i = 1, \ldots, k$, $a_i \ge 2$.

Observe that T is avd if and only if for any admissible sequence $\tau = (a_1, \ldots, a_k)$ for T there exists a permutation $\sigma : \{1, \ldots, k\} \to \{1, \ldots, k\}$ such that for all $s \in \{1, \ldots, k\}$

(*)
$$\sum_{i=1}^{s} a_{\sigma(i)} \notin \{l_x, l_y\}.$$

Let *m* be the minimum number $j \in \{1, ..., k\}$ such that $a_1 + ... + a_j \ge l_x$. Thus, for m > 1 we get $a_1 + ... + a_{m-1} < l_x$.

Case 1. $a_1 + \ldots + a_m = l_x$. If $a_j = a_1$ for all $j \in \{1, \ldots, k\}$, then we have a contradiction with condition 1⁰. Therefore, there exists $j_0 \ge m + 1$ such that $a_{j_0} > a_1$. We may assume that j_0 is minimal with this property. Let σ be the product of three transpositions: t(1,m), $t(m+1, j_0)$ and t(m, m+1)taken in this order. It can be easily seen that $a_{\sigma(1)} + \ldots + a_{\sigma(m)} > l_x$ and $a_{\sigma(1)} + \ldots + a_{\sigma(m-1)} = a_2 + \ldots + a_m < l_x$ for m > 1.

Assume that there exists $m' \ge m$ such that $a_{\sigma(1)} + \ldots + a_{\sigma(m')} = l_y$. Now, if $a_{\sigma(j)} = a_1$ for each $j \in \{m'+1, \ldots, k\}$ then $r_y \ge 2a_1$ (k-1 > m'), because $l_x \le r_y$ and $(l_x, r_y) = 1$. So $j_0 = k$ and $a_i = a_1$ for each i < k. It follows that $l_x = ma_1$ and $l_y = (m'-1)a_1 + a_k$; consequently $r_y = n - l_y = \alpha a_1$ for some α which contradicts 3^0 . Hence, we can also assume there exists $s \in \{m'+1, \ldots, k\}$ such that $a_{\sigma(s)} > a_1$.

Case 1.1. m = m'. Hence $a_{\sigma(m)} \geq l_y - l_x + 1$. If $a_{\sigma(j)} > a_{\sigma(m)}$ for some j > m then we can take the permutation $t(m, m + 1) \circ t(m + 1, j) \circ \sigma$ satisfying (*). Thus we may assume that if j > m then $a_{\sigma(j)}$ can take only two values: a_1 and $a_{\sigma(m)}$. Moreover, by 5⁰, we have $m \geq 2$. Set

$$d = a_{\sigma(m)},$$

$$r = \sum_{i=2}^{m-1} a_i \text{ for } m > 2 \text{ and}$$

$$r = 0 \text{ for } m = 2.$$

Hence $l_x = a_1 + r + a_m$ and $l_y = r + a_m + d$.

Case 1.1.1. $d > a_m$. Suppose first $a_m > a_1$ and take the permutation $\sigma' = t(1, m + 1) \circ \sigma$ (recall that $a_{\sigma(1)} = a_m$ and $a_{\sigma(m+1)} = a_1$). We have now $a_{\sigma'(1)} + \ldots + a_{\sigma'(m-1)} = a_1 + r < a_1 + r + a_m = l_x$, $l_y = r + a_m + d > a_{\sigma'(1)} + \ldots + a_{\sigma'(m)} = a_1 + r + d > l_x$ (because $a_m > a_1$ and $d > a_m$), $a_{\sigma'(1)} + \ldots + a_{\sigma'(m+1)} = a_1 + r + d + a_m = l_y + a_1 > l_y$, therefore σ' verifies (*). Suppose then $a_1 = a_m$, i.e., $a_j = a_1$ for all $j \in \{1, \ldots, m\}$ and $l_x = \lambda a_1$ for some integer $\lambda \geq 2$. Therefore, by 3^0 , there exists $i_0 \geq m + 1$, $i_0 \neq j_0$, such that $a_{i_0} = d$. Consider now the permutation $\sigma' = t(m - 1, i_0) \circ \sigma$. We have $a_{\sigma'(1)} + \ldots + a_{\sigma'(m)} = (\lambda - 2)a_1 + 2d > l_y = (\lambda - 1)a_1 + d$. Thus, if $(\lambda - 2)a_1 + d \neq l_x = \lambda a_1$, i.e., $d \neq 2a_1$, then σ' satisfies (*). But if $d = 2a_1$, then r_y is divisible by a_1 and we get a contradiction with 3^0 .

Case 1.1.2. $d = a_m$. By construction of our permutation σ , we get $a_j = d$, for all $j \ge m$, so $r_x = (k - m)d$ and $a_1 < d$. Instead of our permutation σ take another permutation ρ given by the following formula: $\rho(i) = k - i + 1, i = 1, 2, ..., k$. Clearly, $a_{\rho(i)} = a_m = d$ for i = 1, ..., k - m and, since $l_y < r_x$, we obtain $\sum_{i=1}^{k-m} a_{\rho(i)} > l_y$. From 1⁰, l_x is not divisible by d, therefore the condition (*) does not hold for ρ if $l_y = \gamma d$ for some integer γ . But in this case there are three positive integers w, α', β' such that $(l_y, r_x) = wd \ge d > d - a_1 = l_y - l_x$ and $n = r_x + l_x = r_x + l_y - d + a_1 = \alpha'wd + \beta'wd - d + a_1 = (\alpha' + \beta' - 1)wd + (w - 1)d + a_1 \ne 1 \pmod{wd}$ (because $d > a_1 \ge 2$) and we obtain a contradiction with 4⁰.

Case 1.2. m < m'. Suppose that there exists $s_0 \in \{m'+1,\ldots,k\}$ such that $a_{\sigma(s_0)} \neq a_{\sigma(m')}$. Without loss of generality we can assume that $s_0 = m'+1$ (if necessary, we can perform an appropriate transposition). Now taking the transposition t(m', m'+1) we get a permutation that satisfies (*). Assume then $a_{\sigma(s)} = a_{\sigma(m')}$ for all $s \in \{m'+1,\ldots,k\}$.

Now, if m + 1 < m' and for some $i \in \{m + 1, m' - 1\}$ we have $a_{\sigma(i)} \neq a_{\sigma(m')}$, then we can take the permutation $t(m', m' + 1) \circ t(i, m') \circ \sigma$ that verifies (*). Therefore, we can assume that $a_{\sigma(s)} = a_{\sigma(m')}$ for all $s \in \{m + 1, \ldots, m'\}$, so $a_{\sigma(s)} = a_1$ for $s \in \{m + 1, \ldots, k\}$ and $l_x = ma_1$, which is impossible by 3^0 .

Case 2. $a_1 + \ldots + a_m > l_x$. We may assume that there exists $m' \ge m$ such that $a_1 + \ldots + a_{m'} = l_y$, because otherwise the identity permutation satisfies (*). Now, since $a_i \ge a_{m'}$ for i > m', it is enough to consider only the case where $a_i = a_{m'}$ for i > m', i.e., $r_y = \alpha a_{m'}$ for some integer α . Using the same method as in Case 1.2 we see that if there is no permutation

verifying (*), then $a_i = a_{m'}$ for all i > m. Notice that if $a_{m+1} > a_m$ then the transposition $\sigma = t(m, m'+1)$ satisfies (*). So assume $a_i = a_{m'}$ for all $i \ge m$. Hence $l_y < r_x < (k-m+1)a_{m'}$. Now take the permutation ρ defined as follows: $\rho(i) = k - i + 1$, i = 1, 2, ..., k. Since $r_y = \alpha a_{m'}$, for some integer α , it follows by 3⁰ and 2⁰ that the condition (*) holds for ρ and we are done. This finishes the proof of the theorem.

4. Arbitrarily Vertex Decomposable S(3, a, b) and S(2, 2, a, b)

Theorem 6. Let $a, b, 3 \le a \le b$, be two integers and T = S(3, a, b) a starlike tree with three arms. Then T is avd if and only if the following conditions hold:

$$\begin{split} & 1^0 \ (a,b) \leq 2; \\ & 2^0 \ (a+1,b) \leq 2; \\ & 3^0 \ (a,b+1) \leq 2; \\ & 4^0 \ (a+1,b+1) \leq 3; \\ & 5^0 \ n \neq \alpha \cdot a + \beta \cdot (a+1) \ for \ \alpha, \beta \in \mathbf{N}. \end{split}$$

Proof. Let c be the primary vertex of degree three of T and A_1, A_2, A_3 its arms. The vertices of three arms will be denoted as follows:

$$V(A_1) = \{c, x, y\},\$$

$$V(A_2) = \{x_1, \dots, x_a = c\},\$$

$$V(A_3) = \{x_a = c, x_{a+1}, \dots, x_{a+b-1}\},\$$

(see Figure 2).

Figure 2. S(3, a, b)

Necessity. Suppose that (a,b) = d > 2. Then $n = \lambda \cdot d + 1$ for some integer $\lambda \geq 2$, and it can be easily seen that the sequence $d^{\lambda-1} \cdot (d+1)$ is not realizable in T.

Let $(a + 1, b) = d \ge 3$ $((a, b + 1) = d' \ge 3)$. We have $n = \lambda \cdot d$, $\lambda \in \mathbf{N}, \lambda \ge 2$ $(n = \lambda' \cdot d', \lambda' \in \mathbf{N}, \lambda' \ge 2$, resp.) and it is easy to check that the sequence d^{λ} $((d')^{\lambda'}$, resp.) is not realizable in T.

Similarly, if (a + 1, b + 1) = d > 3, then $n = \lambda \cdot d - 1$, $\lambda \in \mathbf{N}$, so the sequence $(d - 1) \cdot d^{\lambda - 1}$ is not realizable in T.

We now turn to the case $n = \alpha \cdot a + \beta \cdot (a+1)$, $\alpha, \beta \in \mathbf{N}$. This implies that the sequence $a^{\alpha} \cdot (a+1)^{\beta}$ is not realizable in T.

Sufficiency. Suppose that conditions $1^{0}-5^{0}$ hold and let $\tau = (m_{1}, \ldots, m_{k})$ be an admissible sequence for the tree T. Such a sequence is realizable in T if $m_{k} = 1$ (because it is ordered in a non-decreasing way), so we will assume $m_{k} > 1$. Let $\hat{\tau} = (n_{1}, \ldots, n_{k})$ be a non-decreasing ordering of the sequence $(m_{1}, \ldots, m_{k-1}, m_{k} - 1)$, with $n_{s} = m_{k} - 1$. Consider the tree $\hat{T} = T - y$ which is isomorphic to the star-like tree S(2, a, b). Clearly, the sequence $\hat{\tau}$ is admissible for the tree \hat{T} . Suppose $\hat{\tau}$ is not realizable in \hat{T} . Then, by 1^{0} and Proposition 2, (a, b) = 2 and $\hat{\tau} = 2^{k}$. Hence $\tau = 2^{k-1} \cdot 3$ is obviously realizable in T. From now on we will assume that $\hat{\tau}$ is realizable in \hat{T} .

Furthermore, since τ is realizable in T if $m_i \in \{1, 2\}$ for some i, we can assume $n_j \geq 3$ for all $j \neq s$ and $n_s \geq 2$. Let $\hat{M} = (V_1, \ldots, V_s, \ldots, V_k)$ be a \hat{T} -realization of $\hat{\tau}$ such that $|V_i| = n_i$ for $i = 1, \ldots, k$, and V_p induces the primary tree of \hat{T} . Observe that if

$$|V_p| = m_k - 1,$$

then the sequence M, obtained from \hat{M} by replacing V_p by $V_p \cup \{y\}$, is a T-realization of τ . Therefore, we will assume that the condition (*) does not hold (so $V_p \neq V_s$).

Case 1. $V_s \subset V(A_2)$. Suppose $x_{a-1} \in V_p$. Because $A_2 - V_p$ is a path in \hat{T} , we can arrange the sets V_i 's covering this path in such a way that V_p and V_s are neighboring in A_2 . Therefore, the subtree of T induced by $V_p \cup V_s \cup \{y\}$ can be covered by $(V_s \cup \{z\}, V_p \setminus \{z\} \cup \{y\})$, where z is the first vertex of V_p on A_2 . Adding the remaining sets V_i we get a T-realization of τ . Thus, let us assume that V_p induces a path in \hat{T} such that $V_p \setminus \{x\} \subset V(A_3)$ (see Figure 3).

Figure 3. V_p and V_s are neighboring in A_2 .

Suppose now $n_s > n_p$. Since $A_2 - V_p$ is a path in \hat{T} , we can assume without loss of generality that V_p and V_s are neighboring in A_2 (see Figure 3). Now the subtree of \hat{T} induced by the set $V_s \cup V_p$ can be covered by (V'_s, V'_p) , where V'_s induces a subpath of A_2 on n_p vertices, and V'_p a star-like tree on $n_s = m_k - 1$ vertices that contains c. Put $V'_i = V_i$ for $i \neq p, s$. It is easy to see that (V'_1, \ldots, V'_k) is a \hat{T} -realization of $\hat{\tau}$ satisfying (*) and we can easily obtain a T-realization of τ . Hence, by the choice of n_s , we can assume that $n_s = n_p - 1 = m_k - 1$. Then $n_i \leq n_p$ for all *i*'s. If for some $i \neq s, p, V_i \subset A_2$ and $|V_i| \leq n_p - 2$, then, assuming that V_i and V_p are neighboring in A_2 , we can cover $V_i \cup V_p$ by the pair (V'_i, V'_p) , where V'_i induces a subpath of $A_3 - c$ on n_i vertices and V'_p induces a tree containing c. Applying the same argument as above we get a T-realization of τ . Hence, $n_p - 1 \leq |V_i| \leq n_p$ for all i's such that $V_i \subset V(A_2)$. Suppose that for some $j, V_j \subset V(A_3)$ and $|V_i| < n_p$. Now, because V_p induces a path in \hat{T} , we can place this V_i at the beginning of the path $xcx_{a+1} \dots x_{a+b-1}$ and find a *T*-realization of τ as in the previous cases. Thus, $|V_i| = n_p$ for all *i*'s such that $V_i \subset V(A_3)$.

Let $q := n_p$. We have now $a = \lambda q + \mu(q-1)$ and $b+1 = \nu q$, for some integers $\lambda > 0$, $\mu \ge 0$ and $\nu > 0$. Moreover, the sequence τ is of the form

 $(q-1)^{\mu} \cdot q^{\lambda+\nu}.$

If $\mu = 0$, then, by 3^0 , $q \leq 2$, a contradiction with our assumption on n_p . Suppose $\mu = 1$. Then $a + 1 = (\lambda + 1)q$, hence, by 4^0 , q = 3, so $\tau = 2 \cdot 3^k$ and this sequence is clearly *T*-realizable. So consider the case $\mu \geq 2$. Because a < b, it follows that $\nu \geq 2$, so the sequence $(q - 1)^2 \cdot q^{\nu - 2}$ is realizable in $A_3 - c$ and the sequence $(q - 1)^{\mu - 2} \cdot q^{\lambda + 2}$ is realizable in the tree induced by $A_2 \cup \{x, y\}$, hence τ is realizable in *T*.

Case 2. $V_s \subset V(A_3)$. As in Case 1 we assume that $x_{a+1} \notin V_p$, $q-1 \leq |V_i| \leq q$ for $V_i \subset V(A_3)$ and $|V_j| = q$ for $V_j \subset V(A_2)$, where $q = n_p$. Now we

can write $b = \lambda q + \mu(q-1)$ and $a + 1 = \nu q$, for some integers $\lambda > 0$, $\mu \ge 0$ and $\nu > 0$. If $\mu = 0$, then, by 2^0 , $q \le 2$, and we get a contradiction with our assumption on n_p . For $\mu = 1$ we proceed as in Case 1 and show that τ is realizable in T. Suppose then $\mu \ge 2$. If $\nu \ge 2$ we proceed as in Case 1 and we show that τ is realizable in T. If $\nu = 1$ (the essential difference between Case 1 and Case 2), then q = a + 1 and $n = (\lambda + 1)(a + 1) + \mu a$, a contradiction. This finishes the proof of the theorem.

Corollary 7. Let $a, b, 3 \le a \le b$ be two integers and T = S(2, 2, a, b)a star-like tree on n vertices. Then T is avd if and only if the following conditions hold:

 $\begin{array}{ll} 1' & (a,b) = 1;\\ 2' & (a+1,b) = 1;\\ 3' & (a,b+1) = 1;\\ 4' & (a+1,b+1) = 2;\\ 5' & n \neq \alpha \cdot a + \beta \cdot (a+1) \ for \ \alpha, \beta \in \mathbf{N}. \end{array}$

Proof. Necessity. Assume that T is avd. Hence, from Proposition 3, S(3, a, b) is avd, a, b are odd, and $a \neq 2 \pmod{3}$ or $b \neq 2 \pmod{3}$.

Therefore, the odd numbers a and b satisfy the conditions $1^{0}-5^{0}$ of Theorem 6, hence also the conditions 1' and 5' of our theorem. Since a and b are odd, it follows by 1^{0} , 2^{0} and 3^{0} that (a,b) = 1, (a + 1, b) = 1 and (a, b + 1) = 1. So a and b satisfy 1', 2' and 3'. By 4^{0} , $(a + 1, b + 1) \in \{2, 3\}$ and since $a \neq 2 \pmod{3}$ or $b \neq 2 \pmod{3}$, we have $(a + 1, b + 1) \neq 3$ and the condition 4' holds.

Sufficiency. If a and b verify the conditions 1'-5' then the conditions 1^0-5^0 of Theorem 6 are satisfied. Thus S(3, a, b) is avd and, by 1'-3', a and b are odd.

Suppose that $a \equiv 2 \pmod{3}$ and $b \equiv 2 \pmod{3}$. Then $a + 1 \equiv 0 \pmod{3}$ and $b + 1 \equiv 0 \pmod{3}$, so $(a + 1, b + 1) \ge 3$, a contradiction. This implies that $a \ne 2 \pmod{3}$ or $b \ne 2 \pmod{3}$, and, by Proposition 3, T is avd. This finishes the proof.

Corollary 8. There are infinitely many arbitrarily vertex decomposable starlike trees S(3, a, b) and S(2, 2, a, b). **Proof.** Let $a \ge 5$ be a prime and b = a + 2. It can be easily seen that a and b satisfy the conditions 1'-5' (and also 1^0-5^0) for n = 2a + 3.

5. Caterpillars with One Double and One Single Leg

Every caterpillar with one double and one single leg attached at x and y can be constructed in the following way. Take a path $P = x_1, \ldots, x_{n-3}$ where $x = x_a$ and $y = x_j$ (a < j) are two internal vertices of P, add three vertices u, v and z and join u and v to x and v to y (see Figure 4).

Let $L_x = \{x_1, x_2, \dots, x\}, R_x = \{x, x_{a+1}, \dots, x_{n-3}\} \cup \{z\}, L_y = \{x_1, x_2, \dots, y\} \cup \{u, v\}, R_y = \{y, x_{j+1}, \dots, x_{n-3}\}$ and let $l_x = |L_x|, r_x = |R_x|, l_y = |L_y|$ and $r_y = |R_y|.$

Figure 4. A caterpillar with one double and one single leg.

Proposition 9. Let T be a caterpillar of order n with one double and one single leg attached at x and y resp. Let $a = l_x$ and $b = r_x$. If $a \equiv 1 \pmod{6}$, $b \equiv 0 \pmod{3}$, $7 \leq a < b$, (a - 3, b) = 1, $n - 1 \neq \alpha a \ (\alpha \in \mathbf{N})$, $r_y = 3$ and a and b satisfy the conditions 1'-5' of Corollary 7, then T is avd.

Proof. Let u and v denote two vertices of degree one adjacent to x and let z be the vertex of degree one adjacent to y (see Figure 4). It follows from our assumptions that $n = a + b + 1 \equiv 2 \pmod{3}$. Let $\tau = (a_1, \ldots, a_k)$ be an admissible sequence for the tree T. We will show that it suffices to consider the case where $a_t \geq 2$ for all t. Indeed, the caterpillar T' = T - v with two single legs satisfies $l'_x = a$, $r'_x = b$, $l'_y = a + b - 3 = n - 4 \equiv 1 \pmod{3}$, $r'_y = 3$, so the conditions $1^{0}-3^{0}$ of Theorem 5 are satisfied. We also have $(l'_y, r'_x) = (a + b - 3, b) = (a - 3, b) = 1 < l'_y - l'_x = b - 3$, so the condition

4⁰ holds. Furthermore, if $\alpha l'_x + \beta l'_y = \alpha a + (n-4)\beta = n-1$, for some $\alpha, \beta \in \mathbf{N}$, then, since $a \geq 7$, we have $\beta = 0$, which is a contradiction. Assume $n-1 = \alpha r'_x + \beta r'_y = \alpha b + 3\beta \equiv 0 \pmod{3}$ ($\alpha, \beta \in \mathbf{N}$). But $n-1 = a+b \equiv 1 \pmod{3}$, and we get a contradiction. So also 5⁰-6⁰ of Theorem 5 hold. Now, if $a_1 = 1$, we can put $V_1 = \{v\}$ and the existence of T-realization of τ is obvious. Therefore, we may assume $a_t \geq 2$ for all t.

Notice that, by Corollary 7, the star-like tree $\hat{T} = S(2, 2, a, b)$ obtained by deleting the edge zy and adding zx_{n-3} is avd. Let $\hat{M} = (V_1, \ldots, V_k)$ be a \hat{T} -realization of τ such that V_p (V_s , resp.) induces a primary tree (a primary tree or a subpath, resp.) of \hat{T} containing x (y, resp.). Observe that if V_s contains x_{n-4} (the vertex that follows y in the path x_1, \ldots, x_{n-3}) then τ is T-realizable. Indeed, if $z \in V_s$, then \hat{M} is also a T-realization of τ and if $z \in V_{s'}$ for some $s' \neq s$, then $V_{s'} = \{x_{n-3}, z\}$ and replacing in $\hat{M} V_s$ and $V_{s'}$ by the sets ($V_s \setminus \{x_{n-4}\}$) $\cup \{z\}$ and ($V_{s'} \setminus \{z\}$) $\cup \{x_{n-4}\}$, we get a T-realization of τ .

Therefore, we shall assume that V_s does not contain x_{n-4} . Hence, because $a_r \ge 2$ for all r, there is g with $V_g = \{x_{n-4}, x_{n-3}, z\}$ (see Figure 5).

Figure 5. Case 1.1

Notice that for every r such that $V_r \subset R_x$ we have $|V_r| = 3$, for otherwise $g \neq r$ and assuming V_r and V_g are neighboring in R_x we could transpose V_r and V_g into V'_r and V'_g , in such a way that V'_r or V'_g contains the set $\{y, x_{n-4}\}$.

Now, since $|R_x| = b \equiv 0 \pmod{3}$, we have $|V_p \cap (R_x \setminus \{x\})| \equiv 2 \pmod{3}$, hence $|V_p \cap (R_x \setminus \{x\})| \geq 2$. Furthermore, since $a_r \geq 2$ for all r, we have $u, v \in V_p$ and $|V_p| \geq 5$.

Case 1. There is h such that $V_h \subset L_x$ and $|V_h| \neq 3$. Obviously, we may suppose that V_h and V_p are neighboring in L_x .

Case 1.1. $|V_h| \leq |V_p \cap (R_x \setminus \{x\})|$ (see Figure 5). Now we can transpose V_p and V_h into V'_p and V'_h with $V'_h \subset R_x$. Using the same argument as above, we easily find a *T*-realization (V'_1, \ldots, V'_k) of τ .

Case 1.2. $|V_h| > |V_p \cap (R_x \setminus \{x\})|$. Let b = 3q and $|V_h| = 3w + r$, where q, w, r are three integers such that $3 \leq q, 1 \leq w$ and $r \in \{0, 1, 2\}$. We have by assumption $3 < |V_h| = 3w + r < a < b = 3q$, so setting:

 $V'_{h} = \{x_{n-3w-r-1}, x_{n-3w-r}, \dots, x_{n-3}, z\},$ $V'_{p} = \{x_{t}, x_{t+1}, \dots, x_{a}, \dots, x_{a+2-r}\} \cup \{u, v\},$ $where |V'_{p}| = |V_{p}| = a_{p}, we can cover the remaining vertices of <math>R_{x}$ by q - w - w $1 \ge 0$ sets of cardinality 3 and the existence of a T-realization (V'_1, \ldots, V'_k) of τ is obvious.

Case 2. $\tau = (3, 3, \dots, 3, |V_p|)$. Because $a - 1 \equiv 0 \pmod{3}$ and $|V_p| > 3$, we can place the set of cardinality $|V_p|$ at the end of the path x_1, x_2, \ldots , x_{n-3}, z and easily construct a realization of τ in T.

Theorem 10. The number of avd caterpillars with one double and one single leg is infinite.

Proof. Take a such that b = a + 2 = 3p, where p is a prime number greater than five. Therefore, $a \equiv 1 \pmod{6}$, (b, a-3) = 1, n = 2a+3, n-1 = 2a+2and it is easy to check that the assumptions 1'-5' of Corollary 7 hold. By Proposition 9 our caterpillar is avd.

References

- [1] D. Barth, O. Baudon and J. Puech, Network sharing: a polynomial algorithm for tripodes, Discrete Appl. Math. **119** (2002) 205–216.
- [2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006) 469-477.
- [3] M. Horňák and M. Woźniak, On arbitrarily vertex decomposable trees, Technical report, Faculty of Applied Mathematics, Kraków (2003), submitted.
- [4] M. Horňák and M. Woźniak, Arbitrarily vertex decomposable trees are of max*imum degree at most six*, Opuscula Mathematica **23** (2003) 49–62.

Received 26 January 2005 Revised 5 October 2005