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Abstract

A graph G of order n is called arbitrarily vertex decomposable if for
each sequence (a1, . . . , ak) of positive integers such that a1+. . .+ak = n
there exists a partition (V1, . . . , Vk) of the vertex set of G such that
for each i ∈ {1, . . . , k}, Vi induces a connected subgraph of G on ai

vertices.
D. Barth and H. Fournier showed that if a tree T is arbitrarily

vertex decomposable, then T has maximum degree at most 4. In this
paper we give a complete characterization of arbitrarily vertex decom-
posable caterpillars with four leaves. We also describe two families of
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arbitrarily vertex decomposable trees with maximum degree three or
four.

Keywords: arbitrarily vertex decomposable graphs, trees, caterpil-
lars, star-like trees.
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1. Introduction

Let G = (V, E) be a graph of order n. A sequence τ = (a1, . . . , ak) of positive
integers is called admissible for G if it adds up to n. If τ = (a1, . . . , ak) is
an admissible sequence for G and there exists a partition (V1, . . . , Vk) of the
vertex set V such that for each i ∈ {1, . . . , k}, |Vi| = ai and a subgraph
induced by Vi is connected then τ is called realizable in G and the sequence
(V1, . . . , Vk) is said to be a G-realization of τ or a realization of τ in G.
A graph G is arbitrarily vertex decomposable (avd for short) if for each
admissible sequence τ for G there exists a G-realization of τ .

The problem of deciding whether a given graph is arbitrarily vertex de-
composable has been considered in several papers (see for example [1]–[4]).
Generally, this problem is NP-complete [1] but we do not know if this prob-
lem is NP-complete when restricted to trees.

However, it is obvious that each path and each traceable graph is avd.
The investigation of avd trees is motivated by the fact that a connected
graph is avd if its spanning tree is avd. In [4] M. Horňák and M. Woźniak
conjectured that if T is a tree with maximum degree ∆(T ) at least five, then
T is not avd. This conjecture was proved by D. Barth and H. Fournier [2].

Theorem 1. If a tree T is arbitrarily vertex decomposable, then ∆(T ) ≤ 4.
Moreover, every vertex of degree four of T is adjacent to a leaf.

In [1] D. Barth, O. Baudon and J. Puech studied a family of trees each of
them being homeomorphic to K1,3 (they call them tripodes) and showed that
determining if such a tree is avd can be done using a polynomial algorithm.

There is an interesting motivation for investigation of avd graphs. Con-
sider a network connecting different computing resources; such a network
is modeled by a graph. Suppose there are k different users, where i-th one
needs ni resources in our graph. The subgraph induced by the set of re-
sources attributed to each user should be connected and a resource should
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be attributed to at most one user. So we have the problem of seeking a re-
alization of the sequence (n1, . . . , nk) in this graph. Note also that one can
find in [4] some references concerning arbitrarily edge decomposable graphs.
The aim of this article is a characterization of avd trees with maximum
degree at most four that have a very simple structure. Namely, we consider
caterpillars or trees which are homeomorphic to a star K1,q, where q is three
or four.

2. Terminology and Results

In this paper, we deal with finite, simple and undirected graphs.
Let T = (V, E) be a tree. A vertex x ∈ V is called primary if d(x) ≥ 3.

A leaf is a vertex of degree one. A path P of T is an arm if one of its
endvertices is a leaf in T , the other one is primary and all internal vertices
of P have degree two in T . A tree T is called primary if it contains a
primary vertex.

A graph T is a star-like tree if it is a tree homeomorphic to a star
K1,q for some q ≥ 3. Such a tree has one primary vertex (let us denote
it by c) and q arms (let us denote them by Ai, i ∈ {1, . . . , q}). For each
Ai let αi be the order of Ai. The structure of a star-like tree is (up to a
isomorphism) determined by this sequence (α1, . . . , αq) of orders of its arms.
Since the ordering of this sequence is not important, we will always assume
that 2 ≤ α1 ≤ α2 ≤ . . . ≤ αq and will denote the above defined star-like
tree by S(α1, . . . , αq). Notice that an order of this star-like tree is equal to
1 +

∑q
i=1(αi − 1).

A tree T is a caterpillar if the set of vertices of degree at least two
induces a path. Let T be a caterpillar such that ∆(T ) ≤ 4. Let us note
that if there are two or more vertices of degree four in T , then the sequences
(2, 2, . . . , 2) if n is even or (1, 2, 2, . . . , 2) if n is odd are not realizable in T ,
hence T is not avd. Clearly, these particular sequences are realizable in T if
there is a perfect matching or a quasi-perfect matching in T . According to
the above remark we will consider only caterpillars of maximum degree at
most four having at most one vertex of degree four.

Let T be a caterpillar with ∆(T ) = 3 and let {y1, . . . , ys} be the set of
primary vertices of T . We call T a caterpillar with s single legs attached at
y1, . . . , ys.

Similarly, if T is a caterpillar and {x, y1, . . . , ys} the set of primary
vertices of T such that d(x) = 4 and d(yi) = 3 for all i ∈ {1, . . . , s}, then
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T is called a caterpillar with one double leg attached at x and s single legs
attached at y1, . . . , ys. For simplicity of notation we say sometimes that we
have a caterpillar with s single legs or a caterpillar with one double leg and
s single legs. We present two examples of such caterpillars in Figure 1 and
Figure 4.

Here and subsequently, we assume that every admissible sequence for a
graph G is non-decreasing and we write dλ for the sequence (d, . . . , d︸ ︷︷ ︸

λ

) and

dλ · gµ for the sequence (d, d, . . . , d︸ ︷︷ ︸
λ

, g, g, . . . , g︸ ︷︷ ︸
µ

), the concatenation of λ times

d and µ times g. We will note d · gµ and dλ · g instead of d1 · gµ and dλ · g1.
We denote by (a, b) the greatest common divisor of two positive integers

a and b and we write t(i, j) for the transposition of the elements i and j of
the set {1, 2, . . . , k}. Note that if i = j, then by transposition t(i, j) we
mean the identity.

Let T be a tree, and let (V1, V2) and (V ′
1 , V

′
2) be two partitions of V (T )

such that each Vi and each V ′
i induces a tree in T . We say that we can

transpose V1 and V2 (into V ′
1 and V ′

2) if |V ′
i | = |Vi| (i = 1, 2).

Let P = y1, . . . , yq be a subpath of a tree T and U , W two disjoint
subsets of V (T ). We shall say that U and W are neighbouring in P if for
some j ∈ {1, . . . , q − 1}, yj ∈ U and yj+1 ∈ W or yj ∈ W and yj+1 ∈ U .

The first result characterizing avd star-like trees (i.e., caterpillars with
one single leg) was found by D. Barth, O. Baudon and J. Puech [1] and,
independently, by M. Horňák and M. Woźniak [3].

Proposition 2. The star-like tree S(2, a, b), with 2 ≤ a ≤ b is avd if and
only if (a, b) = 1. Moreover, each admissible and non-realizable sequence in
S(2, a, b) is of the form dλ, where a ≡ b ≡ 0 (mod d) and d > 1.

In [1] D. Barth, O. Baudon and J. Puech proved the following proposition.
In the statement of this result the sequence (3, a, b) is not assumed to be
non-decreasing.

Proposition 3. Each star-like tree S(2, 2, a, b), with 2 ≤ a ≤ b is avd if and
only if

10 the star-like tree S(3, a, b) is avd;
20 a, b are odd;
30 a 6= 2 (mod 3) or b 6= 2 (mod 3).
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The next result due to D. Barth and H. Fournier [2] shows that the structure
of avd caterpillars is not obvious.

Theorem 4. For every s ≥ 1 there exists an avd caterpillar with s single
legs.

The main results of this paper are Theorems 5 and 6 of Sections 3 and 4
which give a complete characterization of avd caterpillars with two single
legs and avd star-like trees S(3, a, b). In Section 4 we also give a necessary
and sufficient condition for a star-like tree S(2, 2, a, b) to be avd. Thus, we
describe the family of avd caterpillars with four leaves. In Section 5 we
describe an infinite family of avd caterpillars with one double and one single
leg (Proposition 9).

3. Arbitrarily Vertex Decomposable Caterpillars
with Two Single Legs

Every caterpillar T of order n with two single legs attached at x and y can be
obtained by taking a path P = x1, . . . , xn−2, where x = xi and y = xj (i < j)
are two internal vertices of P , adding two vertices u and v, and joining u
to x and v to y (see Figure 1). For such a graph let us define lx(T ) := i,
rx(T ) := n− i and, analogously, ly(T ) := j + 1 and ry(T ) := n− j − 1.

Figure 1. A caterpillar with two single legs.

Theorem 5. Let T = (V, E) be a caterpillar of order n with two single legs
attached at x and y. Then T is avd if and only if the following conditions
hold:

10 (lx(T ), rx(T )) = 1;
20 (ly(T ), ry(T )) = 1;
30 (lx(T ), ry(T )) = 1;
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40 (ly(T ), rx(T )) < ly(T )− lx(T ) or n ≡ 1 (mod(ly(T ), rx(T )));
50 n 6= αlx(T ) + βly(T ) for any α, β ∈ N;
60 n 6= αrx(T ) + βry(T ) for any α, β ∈ N.

Proof. For abbreviation we write lx = lx(T ), rx = rx(T ), ly = ly(T ) and
ry = ry(T ). Observe first that n = lx + rx = ly + ry and there is no loss of
generality in assuming lx ≤ ry.

Necessity. Suppose that (lx, rx) = d > 1 ((ly, ry) = d′ > 1, resp.). Then
n = λ · d (n = λ′ · d′, resp.) for some λ ∈ N (λ′ ∈ N, resp.). It can be
easily seen that the sequence dλ (dλ′ , resp.) is not realizable in T , so the
conditions 10 and 20 are necessary for T to be avd.

Suppose now lx = α · d, ry = β · d for some integers α, β ≥ 1 and d > 1.
Hence n = (α+β) ·d+r and, by 10, d does not divide r. Let us consider the
sequence r · dλ if r ≤ d or dλ · r otherwise. Let S be a subtree of T of order
r. It can be easily seen that the graph T − S has a connected component
C being a star-like tree S(2, a, b) with (a, b) = µd for some integer µ ≥ 1
or a path of length which is not divisible by d or else a caterpillar T ′ with
two single legs attached at x and y such that d divides (ly(T ′), ry(T ′)) or
(lx(T ′), rx(T ′)). Thus, using the previous argument or Proposition 2 we
may deduce that such a sequence is not realizable in C and this implies the
necessity of the condition 30.

Assume then (ly, rx) = d ≥ ly − lx ≥ 2 and n is not congruent to 1
modulo d. If d = ly− lx, then lx ≡ 0 (mod d) and we can show as above that
T is not avd. Assume d > ly − lx and let λ and r ∈ {1, . . . , d − 1} be two
integers such that lx = λd + r. Thus, rx = αd, ly = βd for some integers α,
β and n = λd + αd + r. Hence r ≥ 2 and, because ly − lx < d, β = λ + 1.
Consider now the sequence τ = r · dα+λ. Taking the graph T − S, where
S is a subtree of T on r vertices and using a similar argument as in the
previous situation we deduce that τ is not realizable in T , so the condition
40 is necessary for T to be avd.

Finally, if n = αlx +βly for some α, β ∈ N (or n = αrx +βry), then the
sequence lαx · lβy (or rβ

y · rα
x , resp.) is not realizable in T and this implies the

necessity of the conditions 50 and 60.

Sufficiency. Suppose the conditions 10–60 hold and let τ = (a1, . . . , ak)
be an admissible sequence for T . We first show that if a1 = 1, then there
exists a T -realization of τ . Indeed, consider a caterpillar T ′ = T − u i.e.,
a caterpillar with one leg attached at y and an admissible sequence τ ′ =
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(a2, a3, . . . , ak) for T ′. Obviously, if τ ′ is a realizable sequence for T ′, then
τ is realizable for T . Suppose then, that τ ′ is not realizable for T ′. It
follows from Proposition 2 that (ly − 1, ry) = d for some integer d > 1 and
τ ′ = (d, . . . , d). Thus d divides ry and, by 30, lx is not divisible by d, so
τ ′ is realizable in the tree T ′′ = T − v. It follows that τ = (1, d, . . . , d) is
realizable in T as claimed.

From now on we will assume that a1 ≥ 2, i.e., for every i = 1, . . . , k,
ai ≥ 2.

Observe that T is avd if and only if for any admissible sequence τ =
(a1, . . . , ak) for T there exists a permutation σ : {1, . . . , k} → {1, . . . , k}
such that for all s ∈ {1, . . . , k}

(∗)
s∑

i=1

aσ(i) /∈ {lx, ly}.

Let m be the minimum number j ∈ {1, .., k} such that a1 + . . . + aj ≥ lx.
Thus, for m > 1 we get a1 + . . . + am−1 < lx.

Case 1. a1+ . . .+am = lx. If aj = a1 for all j ∈ {1, . . . , k}, then we have
a contradiction with condition 10. Therefore, there exists j0 ≥ m + 1 such
that aj0 > a1. We may assume that j0 is minimal with this property. Let σ
be the product of three transpositions: t(1,m), t(m + 1, j0) and t(m,m + 1)
taken in this order. It can be easily seen that aσ(1) + . . . + aσ(m) > lx and
aσ(1) + . . . + aσ(m−1) = a2 + . . . + am < lx for m > 1.

Assume that there exists m′ ≥ m such that aσ(1)+. . .+aσ(m′) = ly. Now,
if aσ(j) = a1 for each j ∈ {m′+1, . . . , k} then ry ≥ 2a1 (k−1 > m′), because
lx ≤ ry and (lx, ry) = 1. So j0 = k and ai = a1 for each i < k. It follows
that lx = ma1 and ly = (m′ − 1)a1 + ak; consequently ry = n − ly = αa1

for some α which contradicts 30. Hence, we can also assume there exists
s ∈ {m′ + 1, . . . , k} such that aσ(s) > a1.

Case 1.1. m = m′. Hence aσ(m) ≥ ly − lx + 1. If aσ(j) > aσ(m) for
some j > m then we can take the permutation t(m,m + 1) ◦ t(m + 1, j) ◦ σ
satisfying (∗). Thus we may assume that if j > m then aσ(j) can take only
two values: a1 and aσ(m). Moreover, by 50, we have m ≥ 2. Set

d = aσ(m),
r =

∑m−1
i=2 ai for m > 2 and

r = 0 for m = 2.
Hence lx = a1 + r + am and ly = r + am + d.
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Case 1.1.1. d > am. Suppose first am > a1 and take the permutation
σ′ = t(1,m + 1) ◦ σ (recall that aσ(1) = am and aσ(m+1) = a1). We have
now aσ′(1) + . . . + aσ′(m−1) = a1 + r < a1 + r + am = lx, ly = r + am + d >
aσ′(1) + . . . + aσ′(m) = a1 + r + d > lx (because am > a1 and d > am),
aσ′(1) + . . . + aσ′(m+1) = a1 + r + d + am = ly + a1 > ly, therefore σ′ verifies
(∗). Suppose then a1 = am, i.e., aj = a1 for all j ∈ {1, . . . ,m} and lx = λa1

for some integer λ ≥ 2. Therefore, by 30, there exists i0 ≥ m + 1, i0 6= j0,
such that ai0 = d. Consider now the permutation σ′ = t(m− 1, i0) ◦ σ. We
have aσ′(1) + . . . + aσ′(m) = (λ − 2)a1 + 2d > ly = (λ − 1)a1 + d. Thus, if
(λ− 2)a1 + d 6= lx = λa1, i.e., d 6= 2a1, then σ′ satisfies (∗). But if d = 2a1,
then ry is divisible by a1 and we get a contradiction with 30.

Case 1.1.2. d = am. By construction of our permutation σ, we get
aj = d, for all j ≥ m, so rx = (k − m)d and a1 < d. Instead of our
permutation σ take another permutation ρ given by the following formula:
ρ(i) = k − i + 1, i = 1, 2, . . . , k. Clearly, aρ(i) = am = d for i = 1, . . . , k −m

and, since ly < rx, we obtain
∑k−m

i=1 aρ(i) > ly. From 10, lx is not divisible
by d, therefore the condition (∗) does not hold for ρ if ly = γd for some
integer γ. But in this case there are three positive integers w,α′, β′ such
that (ly, rx) = wd ≥ d > d−a1 = ly− lx and n = rx + lx = rx + ly−d+a1 =
α′wd+β′wd−d+a1 = (α′+β′−1)wd+(w−1)d+a1 6= 1(modwd) (because
d > a1 ≥ 2) and we obtain a contradiction with 40.

Case 1.2. m < m′. Suppose that there exists s0 ∈ {m′ + 1, . . . , k}
such that aσ(s0) 6= aσ(m′). Without loss of generality we can assume that
s0 = m′+1 (if necessary, we can perform an appropriate transposition). Now
taking the transposition t(m′,m′+1) we get a permutation that satisfies (∗).
Assume then aσ(s) = aσ(m′) for all s ∈ {m′ + 1, . . . , k}.

Now, if m + 1 < m′ and for some i ∈ {m + 1,m′ − 1} we have aσ(i) 6=
aσ(m′), then we can take the permutation t(m′,m′ + 1) ◦ t(i, m′) ◦ σ that
verifies (∗). Therefore, we can assume that aσ(s) = aσ(m′) for all s ∈ {m +
1, . . . , m′}, so aσ(s) = a1 for s ∈ {m + 1, . . . , k} and lx = ma1, which is
impossible by 30.

Case 2. a1 + . . . + am > lx. We may assume that there exists m′ ≥ m
such that a1 + . . . + am′ = ly, because otherwise the identity permutation
satisfies (∗). Now, since ai ≥ am′ for i > m′, it is enough to consider only
the case where ai = am′ for i > m′, i.e., ry = αam′ for some integer α.
Using the same method as in Case 1.2 we see that if there is no permutation
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verifying (∗), then ai = am′ for all i > m. Notice that if am+1 > am then
the transposition σ = t(m, m′ + 1) satisfies (∗). So assume ai = am′ for all
i ≥ m. Hence ly < rx < (k−m+1)am′ . Now take the permutation ρ defined
as follows: ρ(i) = k− i+1, i = 1, 2, . . . , k. Since ry = αam′ , for some integer
α, it follows by 30 and 20 that the condition (∗) holds for ρ and we are done.
This finishes the proof of the theorem.

4. Arbitrarily Vertex Decomposable S(3, a, b) and
S(2, 2, a, b)

Theorem 6. Let a, b, 3 ≤ a ≤ b, be two integers and T = S(3, a, b) a star-
like tree with three arms. Then T is avd if and only if the following conditions
hold:

10 (a, b) ≤ 2;
20 (a + 1, b) ≤ 2;
30 (a, b + 1) ≤ 2;
40 (a + 1, b + 1) ≤ 3;
50 n 6= α · a + β · (a + 1) for α, β ∈ N.

Proof. Let c be the primary vertex of degree three of T and A1, A2, A3

its arms. The vertices of three arms will be denoted as follows:

V (A1) = {c, x, y},
V (A2) = {x1, . . . , xa = c},
V (A3) = {xa = c, xa+1, . . . , xa+b−1},

(see Figure 2).
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Figure 2. S(3, a, b)
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Necessity. Suppose that (a, b) = d > 2. Then n = λ · d + 1 for some
integer λ ≥ 2, and it can be easily seen that the sequence dλ−1 · (d + 1) is
not realizable in T .

Let (a + 1, b) = d ≥ 3 ((a, b + 1) = d′ ≥ 3). We have n = λ · d,
λ ∈ N, λ ≥ 2 (n = λ′ · d′, λ′ ∈ N, λ′ ≥ 2, resp.) and it is easy to check that
the sequence dλ ((d′)λ′ , resp.) is not realizable in T .

Similarly, if (a + 1, b + 1) = d > 3, then n = λ · d − 1, λ ∈ N, so the
sequence (d− 1) · dλ−1 is not realizable in T .

We now turn to the case n = α · a + β · (a + 1), α, β ∈ N. This implies
that the sequence aα · (a + 1)β is not realizable in T .

Sufficiency. Suppose that conditions 10–50 hold and let τ = (m1, . . . , mk)
be an admissible sequence for the tree T . Such a sequence is realizable in T
if mk = 1 (because it is ordered in a non-decreasing way), so we will assume
mk > 1. Let τ̂ = (n1, . . . , nk) be a non-decreasing ordering of the sequence
(m1, . . . ,mk−1,mk − 1), with ns = mk − 1. Consider the tree T̂ = T − y
which is isomorphic to the star-like tree S(2, a, b). Clearly, the sequence τ̂
is admissible for the tree T̂ . Suppose τ̂ is not realizable in T̂ . Then, by 10

and Proposition 2, (a, b) = 2 and τ̂ = 2k. Hence τ = 2k−1 · 3 is obviously
realizable in T . From now on we will assume that τ̂ is realizable in T̂ .

Furthermore, since τ is realizable in T if mi ∈ {1, 2} for some i, we can
assume nj ≥ 3 for all j 6= s and ns ≥ 2. Let M̂ = (V1, . . . , Vs, . . . , Vk) be
a T̂ -realization of τ̂ such that |Vi| = ni for i = 1, . . . , k, and Vp induces the
primary tree of T̂ . Observe that if

(∗) |Vp| = mk − 1,

then the sequence M , obtained from M̂ by replacing Vp by Vp ∪ {y}, is a
T -realization of τ . Therefore, we will assume that the condition (∗) does
not hold (so Vp 6= Vs).

Case 1. Vs ⊂ V (A2). Suppose xa−1 ∈ Vp. Because A2 − Vp is a path
in T̂ , we can arrange the sets Vi’s covering this path in such a way that
Vp and Vs are neighboring in A2. Therefore, the subtree of T induced by
Vp∪Vs∪{y} can be covered by (Vs∪{z}, Vp \{z}∪{y}), where z is the first
vertex of Vp on A2. Adding the remaining sets Vi we get a T -realization of τ .
Thus, let us assume that Vp induces a path in T̂ such that Vp \{x} ⊂ V (A3)
(see Figure 3).
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Figure 3. Vp and Vs are neighboring in A2.

Suppose now ns > np. Since A2−Vp is a path in T̂ , we can assume without
loss of generality that Vp and Vs are neighboring in A2 (see Figure 3). Now
the subtree of T̂ induced by the set Vs ∪ Vp can be covered by (V ′

s , V ′
p),

where V ′
s induces a subpath of A2 on np vertices, and V ′

p a star-like tree on
ns = mk − 1 vertices that contains c. Put V ′

i = Vi for i 6= p, s. It is easy to
see that (V ′

1 , . . . , V
′
k) is a T̂ -realization of τ̂ satisfying (∗) and we can easily

obtain a T -realization of τ . Hence, by the choice of ns, we can assume that
ns = np− 1 = mk − 1. Then ni ≤ np for all i’s. If for some i 6= s, p, Vi ⊂ A2

and |Vi| ≤ np − 2, then, assuming that Vi and Vp are neighboring in A2,
we can cover Vi ∪ Vp by the pair (V ′

i , V ′
p), where V ′

i induces a subpath of
A3− c on ni vertices and V ′

p induces a tree containing c. Applying the same
argument as above we get a T -realization of τ . Hence, np − 1 ≤ |Vi| ≤ np

for all i’s such that Vi ⊂ V (A2). Suppose that for some j, Vj ⊂ V (A3) and
|Vj | < np. Now, because Vp induces a path in T̂ , we can place this Vj at the
beginning of the path xcxa+1 . . . xa+b−1 and find a T -realization of τ as in
the previous cases. Thus, |Vi| = np for all i’s such that Vi ⊂ V (A3).

Let q := np. We have now a = λq + µ(q − 1) and b + 1 = νq, for some
integers λ > 0, µ ≥ 0 and ν > 0. Moreover, the sequence τ is of the form

(q − 1)µ · qλ+ν .

If µ = 0, then, by 30, q ≤ 2, a contradiction with our assumption on np.
Suppose µ = 1. Then a+1 = (λ+1)q, hence, by 40, q = 3, so τ = 2 · 3k and
this sequence is clearly T -realizable. So consider the case µ ≥ 2. Because
a < b, it follows that ν ≥ 2, so the sequence (q − 1)2 · qν−2 is realizable in
A3− c and the sequence (q− 1)µ−2 · qλ+2 is realizable in the tree induced by
A2 ∪ {x, y}, hence τ is realizable in T .

Case 2. Vs ⊂ V (A3). As in Case 1 we assume that xa+1 /∈ Vp, q − 1 ≤
|Vi| ≤ q for Vi ⊂ V (A3) and |Vj | = q for Vj ⊂ V (A2), where q = np. Now we
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can write b = λq + µ(q − 1) and a + 1 = νq, for some integers λ > 0, µ ≥ 0
and ν > 0. If µ = 0, then, by 20, q ≤ 2, and we get a contradiction with
our assumption on np. For µ = 1 we proceed as in Case 1 and show that
τ is realizable in T . Suppose then µ ≥ 2. If ν ≥ 2 we proceed as in Case
1 and we show that τ is realizable in T . If ν = 1 (the essential difference
between Case 1 and Case 2), then q = a + 1 and n = (λ + 1)(a + 1) + µa, a
contradiction. This finishes the proof of the theorem.

Corollary 7. Let a, b, 3 ≤ a ≤ b be two integers and T = S(2, 2, a, b)
a star-like tree on n vertices. Then T is avd if and only if the following
conditions hold:

1′ (a, b) = 1;
2′ (a + 1, b) = 1;
3′ (a, b + 1) = 1;
4′ (a + 1, b + 1) = 2;
5′ n 6= α · a + β · (a + 1) for α, β ∈ N.

Proof. Necessity. Assume that T is avd. Hence, from Proposition 3,
S(3, a, b) is avd, a, b are odd, and a 6= 2 (mod 3) or b 6= 2 (mod 3).

Therefore, the odd numbers a and b satisfy the conditions 10–50 of
Theorem 6, hence also the conditions 1′ and 5′ of our theorem. Since a and
b are odd, it follows by 10, 20 and 30 that (a, b) = 1, (a + 1, b) = 1 and
(a, b + 1) = 1. So a and b satisfy 1′, 2′ and 3′. By 40, (a + 1, b + 1) ∈ {2, 3}
and since a 6= 2 (mod 3) or b 6= 2 (mod 3), we have (a+1, b+1) 6= 3 and the
condition 4′ holds.

Sufficiency. If a and b verify the conditions 1′–5′ then the conditions 10–50

of Theorem 6 are satisfied. Thus S(3, a, b) is avd and, by 1′–3′, a and b are
odd.

Suppose that a ≡ 2 (mod 3) and b ≡ 2 (mod 3). Then a+1 ≡ 0 (mod 3)
and b + 1 ≡ 0 (mod 3), so (a + 1, b + 1) ≥ 3, a contradiction. This implies
that a 6= 2 (mod 3) or b 6= 2 (mod 3), and, by Proposition 3, T is avd. This
finishes the proof.

Corollary 8. There are infinitely many arbitrarily vertex decomposable star-
like trees S(3, a, b) and S(2, 2, a, b).
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Proof. Let a ≥ 5 be a prime and b = a + 2. It can be easily seen that a
and b satisfy the conditions 1′–5′ (and also 10–50) for n = 2a + 3.

5. Caterpillars with One Double and One Single
Leg

Every caterpillar with one double and one single leg attached at x and y can
be constructed in the following way. Take a path P = x1, . . . , xn−3 where
x = xa and y = xj (a < j) are two internal vertices of P , add three vertices
u,v and z and join u and v to x and v to y (see Figure 4).

Let Lx = {x1, x2, . . . , x}, Rx = {x, xa+1, . . . , xn−3} ∪ {z}, Ly = {x1,
x2, . . . , y} ∪ {u, v}, Ry = {y, xj+1, . . . , xn−3} and let lx = |Lx|, rx = |Rx|,
ly = |Ly| and ry = |Ry|.

Figure 4. A caterpillar with one double and one single leg.

Proposition 9. Let T be a caterpillar of order n with one double and one
single leg attached at x and y resp. Let a = lx and b = rx. If a ≡ 1 (mod 6),
b ≡ 0 (mod 3), 7 ≤ a < b, (a− 3, b) = 1, n− 1 6= αa (α ∈ N), ry = 3 and a
and b satisfy the conditions 1′–5′ of Corollary 7, then T is avd.

Proof. Let u and v denote two vertices of degree one adjacent to x and let
z be the vertex of degree one adjacent to y (see Figure 4). It follows from
our assumptions that n = a + b + 1 ≡ 2 (mod 3). Let τ = (a1, . . . , ak) be an
admissible sequence for the tree T . We will show that it suffices to consider
the case where at ≥ 2 for all t. Indeed, the caterpillar T ′ = T − v with two
single legs satisfies l′x = a, r′x = b, l′y = a + b − 3 = n − 4 ≡ 1 (mod 3),
r′y = 3, so the conditions 10–30 of Theorem 5 are satisfied. We also have
(l′y, r′x) = (a + b − 3, b) = (a − 3, b) = 1 < l′y − l′x = b − 3, so the condition
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40 holds. Furthermore, if αl′x + βl′y = αa + (n − 4)β = n − 1, for some
α, β ∈ N, then, since a ≥ 7, we have β = 0, which is a contradiction.
Assume n − 1 = αr′x + βr′y = αb + 3β ≡ 0 (mod 3) (α, β ∈ N). But
n − 1 = a + b ≡ 1 (mod 3), and we get a contradiction. So also 50–60 of
Theorem 5 hold. Now, if a1 = 1, we can put V1 = {v} and the existence of
T -realization of τ is obvious. Therefore, we may assume at ≥ 2 for all t.

Notice that, by Corollary 7, the star-like tree T̂ = S(2, 2, a, b) obtained
by deleting the edge zy and adding zxn−3 is avd. Let M̂ = (V1, . . . , Vk)
be a T̂ -realization of τ such that Vp (Vs, resp.) induces a primary tree (a
primary tree or a subpath, resp.) of T̂ containing x (y, resp.). Observe
that if Vs contains xn−4 (the vertex that follows y in the path x1, . . . , xn−3)
then τ is T -realizable. Indeed, if z ∈ Vs, then M̂ is also a T -realization of τ
and if z ∈ Vs′ for some s′ 6= s, then Vs′ = {xn−3, z} and replacing in M̂ Vs

and Vs′ by the sets (Vs r {xn−4}) ∪ {z} and (Vs′ r {z}) ∪ {xn−4}, we get a
T -realization of τ .

Therefore, we shall assume that Vs does not contain xn−4. Hence, be-
cause ar ≥ 2 for all r, there is g with Vg = {xn−4, xn−3, z} (see Figure 5).

Figure 5. Case 1.1

Notice that for every r such that Vr ⊂ Rx we have |Vr| = 3, for otherwise
g 6= r and assuming Vr and Vg are neighboring in Rx we could transpose
Vr and Vg into V ′

r and V ′
g , in such a way that V ′

r or V ′
g contains the set

{y, xn−4}.
Now, since |Rx| = b ≡ 0 (mod 3), we have |Vp ∩ (Rx \ {x})| ≡ 2 (mod 3),

hence |Vp ∩ (Rx \ {x})| ≥ 2. Furthermore, since ar ≥ 2 for all r, we have
u, v ∈ Vp and |Vp| ≥ 5.

Case 1. There is h such that Vh ⊂ Lx and |Vh| 6= 3. Obviously, we may
suppose that Vh and Vp are neighboring in Lx.
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Case 1.1. |Vh| ≤ |Vp ∩ (Rx \ {x})| (see Figure 5). Now we can transpose
Vp and Vh into V ′

p and V ′
h with V ′

h ⊂ Rx. Using the same argument as above,
we easily find a T -realization (V ′

1 , . . . , V
′
k) of τ .

Case 1.2. |Vh| > |Vp ∩ (Rx \ {x})|. Let b = 3q and |Vh| = 3w + r, where
q, w, r are three integers such that 3 ≤ q, 1 ≤ w and r ∈ {0, 1, 2}. We have
by assumption 3 < |Vh| = 3w + r < a < b = 3q, so setting:
V ′

h = {xn−3w−r−1, xn−3w−r, . . . , xn−3, z},
V ′

p = {xt, xt+1, . . . , xa, . . . , xa+2−r} ∪ {u, v},
where |V ′

p | = |Vp| = ap, we can cover the remaining vertices of Rx by q−w−
1 ≥ 0 sets of cardinality 3 and the existence of a T -realization (V ′

1 , . . . , V
′
k)

of τ is obvious.

Case 2. τ = (3, 3, . . . , 3, |Vp|). Because a− 1 ≡ 0 (mod 3) and |Vp| > 3,
we can place the set of cardinality |Vp| at the end of the path x1, x2, . . . ,
xn−3, z and easily construct a realization of τ in T .

Theorem 10. The number of avd caterpillars with one double and one single
leg is infinite.

Proof. Take a such that b = a+2 = 3p, where p is a prime number greater
than five. Therefore, a ≡ 1 (mod 6), (b, a−3) = 1, n = 2a+3, n−1 = 2a+2
and it is easy to check that the assumptions 1′–5′ of Corollary 7 hold. By
Proposition 9 our caterpillar is avd.
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