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Abstract

A graph G is 2-stratified if its vertex set is partitioned into two
classes (each of which is a stratum or a color class), where the vertices
in one class are colored red and those in the other class are colored
blue. Let F be a 2-stratified graph rooted at some blue vertex v. An
F -coloring of a graph is a red-blue coloring of the vertices of G in
which every blue vertex v belongs to a copy of F rooted at v. The F -
domination number γF (G) is the minimum number of red vertices in
an F -coloring of G. In this paper, we study F -domination, where F is
a 2-stratified red-blue-blue path of order 3 rooted at a blue end-vertex.
We present characterizations of connected graphs of order n with F -
domination number n or 1 and establish several realization results on
F -domination number and other domination parameters.
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1. Introduction

Dividing the vertex set of a graph into classes according to some prescribed
rule is a fundamental process in graph theory. The vertices of a graph can
be divided into cut-vertices and non-cut-vertices. Equivalently, the vertices
of a tree are divided into its leaves and non-leaves. The set of vertices of a
graph is partitioned according to the degrees of its vertices. When studying
distance, the vertices of a connected graph are partitioned according to
their eccentricities. Also, in a connected rooted graph, the vertices are
partitioned according to their distance from the root. Perhaps the best
known example of this process, however, is graph coloring, where the vertex
set of a graph is partitioned into classes each of which is independent in
the graph.

A typical Very Large Scale Integrated (VLSI) Circuit chip consists of
millions of transistors assembled through layering of various materials in a
silicon base. In recent years, advances in VLSI fabrication technology have
made it possible to use more than two routing layers for interconnection. In
fact, the most popular processors on the market today use three or more
layers. In the design of algorithms to solve the multilayer routing problems
encountered in this process, it is desirable to use graphs in which the vertices
are partitioned into classes. In VLSI design, the design of computer chips
often yields a division of the nodes into several layers each of which must
induce a planar subgraph. So here too the vertex set of a graph is divided
into classes. Motivated by these observations, Rashidi [10] defined a graph
G to be a stratified graph if its vertex set is partitioned into classes. He
studied a number of problems involving stratified graphs; while distance in
stratified graphs was investigated in [2, 5].

Formally then, a graph G whose vertex set has been partitioned is called
a stratified graph. If V (G) is partitioned into k subsets, then G is a k-
stratified graph. The k subsets are called the strata or color classes of G.
Suppose that the vertex set of a k-stratified graph G is partitioned into k
subsets V1, V2, . . . , Vk. Unlike vertex coloring, no condition is placed on the
subsets Vi, 1 ≤ i ≤ k. If G is 2-stratified, then we commonly color the
vertices of one color class red and color the vertices of the other color class
blue. The 2-stratified graphs were first studied from the point of view of
domination by Chartrand, Haynes, Henning, and Zhang in [3, 4]. We refer
to the book [6] for graph-theoretic notation and terminology not described
in this paper.
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Let F be a 2-stratified graph. So each vertex of F is colored red or blue
and there is at least one vertex of each color. Designate a blue vertex v of
F as the “root” of F . Then F is said to be rooted at v. For example, two
distinct 2-stratified graphs F and F ′ rooted at a blue vertex v are shown
in Figure 1, where the shaded vertices are red vertices and the non-shaded
vertices are blue vertices in each graph.
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Figure 1. Two 2-stratified graphs F and F ′.

For a connected graph G, a red-blue coloring of G is a coloring of G in which
every vertex is colored red or blue. It is acceptable if all vertices of G are
assigned the same color. If there is at least one vertex of each color, then
the red-blue coloring produces a 2-stratification of G. By an F -coloring of a
graph G, we mean a red-blue coloring of G such that for every blue vertex
w of G, there is a copy of F in G with v at w. That is, for every blue
vertex w of G, there exists a 2-stratified subgraph F ′ of G containing w and
a color-preserving isomorphism α from F to F ′ such that α(v) = w. The
red-blue coloring of G in which every vertex is colored red is vacuously an
F -coloring for every 2-stratified rooted graph F . In an F -coloring of a graph
G, if a blue vertex w of G belongs to a copy F ′ of F rooted at w and u is a
red vertex in F ′, then w is said to be F -dominated by u. If c is an F -coloring
of G, then the set Rc of all red vertices of G is called an F -dominating set
of G.

To illustrate these concepts, consider the 2-stratified graph F and the
graph G of Figure 2. The red-blue coloring of G given in Figure 2 is an
F -coloring of G since every blue vertex of G belongs to a copy of F rooted
at that vertex. For example, the blue vertex w of G belongs to a copy F ′ of
F rooted at w, where V (F ′) = {w, x, y, z}. Since x and y are red vertices
in F ′ and F ′ is rooted at w, it follows that w is F -dominated by each of x
and y.

For every 2-stratified graph F and every graph G, the red-blue coloring
of G in which every vertex of G is colored red is an F -coloring of G and so
it is always possible to give an F -coloring of G. The F -domination number
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γF (G) of G was introduced in [3] as the minimum number of red vertices
of G in an F -coloring of G. By a minimum F -coloring of G, we mean an
F -coloring having a minimum number of red vertices, that is, γF (G) red
vertices. In fact, the F -coloring of the graph G in Figure 2 is a minimum
F -coloring. Therefore, γF (G) = 4 for the graph G of Figure 2. The F -
domination number was introduced and studied in [3, 4] for 2-stratified
graphs.
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Figure 2. An F -coloring of a graph.

Another closely related concept concerns domination in graphs. A vertex is
said to dominate itself and each vertex adjacent to it. A set S of vertices in
a graph G is called a dominating set for G if every vertex of G is dominated
by some vertex in S. The domination number γ(G) of the graph G is the
minimum number of vertices in a dominating set for G. A dominating set of
cardinality γ(G) is called a minimum dominating set. The following result
appeared in [3].

Theorem A. If F is a 2-stratified K2, then γF (G) = γ(G) for every
graph G.

Thus domination can be interpreted as a restricted 2-stratification or 2-
coloring, with the red vertices forming the dominating set. In fact, F -
domination generalizes not only ordinary domination but other types of
domination that have been previously studied as we describe next. Let F
be a 2-stratified P3 rooted at a blue vertex v. The five possible choices for
the graph F are shown in Figure 3.

For the 2-stratified graphs F1, F2, F4, and F5 of Figure 3, the following
results are established in [3].

Theorem B. If G is a connected graph of order at least 3, then γF1(G) =
γ(G).
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Figure 3. The five 2-Stratified graphs P3 rooted at v.

A vertex v in a graph G openly dominates each of its neighbors. That is, v
dominates the vertices in its neighborhood N(v) but not itself. A set S of
vertices in a graph G is an open dominating set if every vertex of G is adjacent
to at least one vertex of S. In this case, a vertex v in an open dominating set
of G is said to openly dominate its neighbors but not itself. The minimum
cardinality of an open dominating set is the open domination number γo(G)
of G. An open dominating set of cardinality γo(G) is a minimum open
dominating set or a γo-set for G (see [7]).

Theorem C. If G is a graph without isolated vertices, then γF2(G) =
γo(G).

An F4-coloring of G requires that every blue vertex of G is adjacent to both
a red and a blue vertex, while γF4(G) is the minimum number of red vertices
required in such a 2-stratification of G. Thus, γF4(G) is the known dom-
ination parameter called the restrained domination number γr(G). A set
S ⊆ V (G) is a restrained dominating set if every vertex not in S is adjacent
to a vertex in S and to a vertex in V (G)− S. Every graph has a restrained
dominating set since V (G) is such a set. The restrained domination num-
ber γr(G) is the minimum cardinality of a restrained dominating set of G
(see [8]).

Theorem D. For every graph G, γF4(G) = γr(G).

An F5-coloring of G requires that every blue vertex of G is adjacent to
(at least) two red vertices, while γF5(G) is the minimum number of red
vertices required in such a 2-stratification of G. Thus, γF5(G) is the well-
known domination parameter called the 2-domination number γ2(G) (see
Jacobson [9]). A set S ⊆ V (G) is a k-dominating set if every vertex not in
S is adjacent to at least k vertices in S. The k-domination number of G,
denoted by γk(G), is the minimum cardinality of a k-dominating set of G.
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Theorem E. For every graph G, γF5(G) = γ2(G).

While the parameters γF1(G), γF2(G), γF4(G), and γF5(G) are well-known
domination parameters, the parameter γF3(G) is new, according to the dis-
cussion in [3]. Thus, we investigate F3-domination. To simplify notation,
we denote F3 by F in this paper.

2. Graphs with Prescribed Order and
F -domination Number

Since the 2-stratified graph F = F3 contains exactly one red vertex,

1 ≤ γF (G) ≤ n(1)

for every connected graph G of order n. In this section, we first present
characterizations of connected graphs of order n with F -domination number
n or 1. In order to do this, we present two lemmas, whose routine proofs
are omitted.

Lemma 2.1. Let v be an end-vertex of a connected graph G. Suppose that
v is adjacent to the vertex u in G.

(a) If deg u = 2, then v is colored red by any F -coloring of G.
(b) If u is colored red by an F -coloring c, then v is also colored red by c.

Lemma 2.2. Let G be a connected graph that has an F -coloring. If a blue
vertex v is F -dominated by a red vertex u that is adjacent to v, then v belongs
to a triangle in G that contains u. Consequently, in a triangle-free G, each
blue vertex v can only be F -dominated by a red vertex that is not adjacent
to v.

The distance d(u, v) between two vertices u and v in a connected graph G
is the length of a shortest u − v path in G. The diameter diam(G) of G is
the largest distance between two vertices of G.

Theorem 2.3. Let G be a connected graph of order n ≥ 3. Then

(a) γF (G) = n if and only if G = K1,n−1,
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(b) γF (G) = 1 if and only if G contains a vertex u such that N(u) is
an open dominating set of G. In this case, the red-blue coloring of G
defined by assigning red to u and blue to the remaining vertices of G is
an F -coloring of G.

Proof. We first verify (a). Let G = K1,n−1 and let x be the central vertex
of G. Suppose that c is an arbitrary F -coloring of G. Since there is no
x − y path of length 2 in G for any vertex y in G, the vertex x must be
colored red by c. However, then every end-vertex of G must also be colored
red by c by Lemma 2.1. Hence every vertex of G is colored red by c and
so γF (G) = n.

For the converse, let G 6= K1,n−1 be a connected graph of order n ≥ 3.
If G is a tree, then diam(G) ≥ 3 and so G contains a path P : v1, v2, v3, v4

of length 3. Observe that the red-blue coloring defined by assigning blue to
v2 and v3 and red to the remaining vertices of G is an F -coloring of G with
n− 2 red vertices. Thus γF (G) ≤ n− 2. If G is not a tree, then G contains
a k-cycle C : v1, v2, · · · , vk, v1, where k ≥ 3. Note that the red-blue coloring
defined by assigning blue to v1 and v2 and red to the remaining vertices
of G is an F -coloring of G with n − 2 red vertices. Thus γF (G) ≤ n − 2.
Therefore, (a) holds.

Next, we verify (b). First assume that γF (G) = 1. Then there is an
F -coloring c of G with exactly one red vertex, say u. We show that N(u) is
an open dominating set of G. Let v ∈ V (G). Since u is openly dominated
by any vertex in N(u), we may assume that v 6= u. Because c is an F -
coloring of G, the blue vertex v belongs to a copy of F rooted at v, that is,
v is adjacent to a blue vertex w and w is adjacent to u. Thus v is openly
dominated by w ∈ N(u) and so N(u) is an open dominating set of G.

For the converse, assume that G contains a vertex u such that N(u) is
an open dominating set. We show that γF (G) = 1 by showing the red-blue
coloring c∗ defined by assigning red to u and blue to the remaining vertices
of G is an F -coloring of G. Let v ∈ V (G)−{u} be a blue vertex of G. Since
N(u) is an open dominating set of G, it follows that v is openly dominated
by some vertex w ∈ N(u). Thus v is adjacent to a blue vertex w and w is
adjacent to the red vertex u, implying that the blue vertex v belongs to a
copy of F rooted at v. Therefore, c∗ is an F -coloring of G with exactly one
red vertex and so γF (G) = 1.

By Theorem 2.3, if G is a nontrivial bipartite graph, then γF (G) ≥ 2. In
particular, if T is a tree of order n ≥ 3, then
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2 ≤ γF (T ) ≤ n,(2)

and by Theorem 2.3, γF (T ) = n if and only if T is a star. Next, we char-
acterize all trees of order at least 3 with F -domination number 2. A double
star T is a tree of diameter 3. Recall that for an F -coloring c of a graph, we
let Rc denote the set of all red vertices of c.

Theorem 2.4. A tree T of order at least 3 has γF (T ) = 2 if and only if T
is a double star.

Proof. Suppose that T is a double star. Let s and t be two vertices of
T with d(s, t) = diam(G). The red-blue coloring of T defined by assigning
red to s and t and blue to the remaining vertices of T is an F -coloring of G
with exactly two red vertices. Thus γF (T ) = 2 by (2).

For the converse, assume that T is a tree of order n ≥ 3 that is not
a double star. Then diamT 6= 3. If diamT ≤ 2, then T is a star and so
γF (T ) = n ≥ 3. Thus, we may assume that diamT ≥ 4. We show that
γF (T ) ≥ 3. Assume, to the contrary, that γF (T ) ≤ 2. Then γF (T ) = 2 by
(2). Let c be a minimum F -coloring of T with Rc = {x, y}. Let d(x, y) = k
and let P : x = x0, x1, x2, . . . , xk = y be an x− y path of length k in T . We
consider four cases.

Case 1. k = 1. Then x and y are adjacent. Since T 6= P2, at least one
of x and y is not an end-vertex of T . Assume, without loss of generality,
that x is not an end-vertex of T , and so x is also adjacent to a blue vertex
v. Since T is a tree, T is triangle-free. It then follows by Lemma 2.2 that
v cannot be F -dominated by x. Hence v is F -dominated by y. Thus v is
adjacent to a blue vertex v′ that is adjacent to y. However then x, v, v′, y, x
is a 4-cycle in the tree T , which is impossible.

Case 2. k = 2. Then the blue vertex x1 in P is adjacent to both x
and y. Since x and y are the only red vertices in G, it follows that x1

is F -dominated by a red vertex that is adjacent to x1, which contradicts
Lemma 2.2.

Case 3. k = 3. Then P : x = x0, x1, x2, x3 = y is a path of length 3.
Since diamT ≥ 4, it follows that V (T ) − V (P ) 6= ∅. We claim that every
vertex in V (T )−V (P ) is adjacent to either x1 or x2. Assume, to the contrary,
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that there is v ∈ V (T )− V (P ) such that v is adjacent to neither x1 nor x2.
Suppose, without loss of generality, that v is F -dominated by x. Then v
is adjacent to a blue vertex v′ /∈ {x1, x2} that is adjacent x. Since v′ is
adjacent to x, it follows by Lemma 2.2 that v′ cannot be F -dominated by x
and so v′ is F -dominated by y. Thus v′ is adjacent to a blue vertex v′′ that is
adjacent to y. This implies that x, v′, v′′, y, x2, x1, x is a cycle in the tree T ,
which is impossible. Therefore, as claimed, every vertex in V (T )− V (P ) is
adjacent to either x1 or x2. Moreover, x is adjacent to x1 and y is adjacent
to x2. Therefore, every vertex in V (T )−{x1, x2} is adjacent to either x1 or
x2, implying that T is a double star with central vertices x1 and x2. This
contradicts our assumption that T is not a double star.

Case 4. k ≥ 4. Then d(x1, y) ≥ 3. One the other hand, since x1 is
adjacent to x, it follows by Lemma 2.2 that x1 cannot be F -dominated by
x and so x1 is F -dominated by y. This implies that d(x1, y) ≤ 2, which is a
contradiction.

We have seen in (1) that if G is a connected graph of order n, then 1 ≤
γF (G) ≤ n. Next, we determine which pairs k, n of positive integers with
1 ≤ k ≤ n can be realized as the F -domination number and the order,
respectively, for some connected graph. Certainly, since F contains two
blue vertices, not every such pair is realizable, as we see next.

Observation 2.5. There is no connected graph G of order n ≥ 3 with
γF (G) = n− 1.

On the other hand, for each pair k, n of integers, where 1 ≤ k ≤ n, k 6= n−1,
and 3 ≤ n ≤ 6, there exists a connected graph G of order n with γF (G) = k,
as shown in Figure 4. Moreover, if G is a connected graph of order n = 1
or n = 2, then G does not contain F as a subgraph and so γF (G) = n.
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Figure 4. Realizable pairs k, n for 3 ≤ n ≤ 6.

Thus, if 1 ≤ n ≤ 6, then, for each pair k, n of integers with 1 ≤ k ≤ n and
k 6= n − 1, there exists a connected graph G of order n with γF (G) = k.
However, if n ≥ 7, then γF (G) 6= n−2 for every connected graph G of order
n, as we show next.

Theorem 2.6. There is no connected graph G of order n ≥ 7 with γF (G) =
n− 2.

Proof. Assume, to the contrary, that there exists a connected graph G of
order n ≥ 7 such that γF (G) = n − 2. Let c be a minimum F -coloring of
G and let x and y be the two blue vertices of G. Necessarily, x and y are
adjacent in G. Suppose that x is F -dominated by a red vertex u and y is
F -dominated by a red vertex v.

First, we claim that u 6= v. If u = v, then u, x, y, u is a triangle in G.
Since G is connected and the order of G is at least 7, there is at least one
vertex, say w, such that uw ∈ E(G). Then the red-blue coloring that assigns
blue to u,w, y and red to the remaining vertices of G is an F -coloring of
G with n − 3 red vertices. Thus γF (G) ≤ n − 3, which is a contradiction.
Therefore, u 6= v and there is a path P : u, y, x, v in G, where u, v ∈ Rc.

Next, we claim that each vertex in Rc − {u, v} is adjacent to neither
x nor y. For otherwise, assume that there exists w ∈ Rc − {u, v} such
that w is adjacent to x or y, say the former. Then the red-blue coloring
defined by assigning blue to x, y, w and red the remaining vertices of G is
an F -coloring with n − 3 red vertices, and so γF (G) ≤ n − 3, which is a
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contradiction. Therefore, as claimed, each vertex in Rc − {u, v} is adjacent
to neither x nor y.

Since G is a connected graph of order n ≥ 7, it can be shown that each
vertex in Rc − {u, v} is adjacent to either u or v. We consider two cases.

Case 1. Every vertex in Rc − {u, v} is adjacent to u or every vertex in
Rc − {u, v} is adjacent to v, say the former. Let w ∈ Rc − {u, v}. Then
the red-blue coloring that assigns red to v, w, x and blue to the remaining
vertices of G is an F -coloring of G with three red vertices. Thus γF (G) ≤
3 < 4 ≤ n− 3.

Case 2. Case 1 does not occur. Let W1 be the set of vertices in Rc−{u, v}
that are adjacent to u and let W2 be the set of vertices in Rc − {u, v} that
are adjacent to v. Then W1 6= ∅ and W2 6= ∅. Since n ≥ 7, at least one of
W1 and W2 contains at least two vertices, say |W1| ≥ 2. Let w ∈ W1.
Then the red-blue coloring defined by assigning blue to each vertex in
{u,w, y} and red to the remaining vertices of G is an F -coloring of G with
n− 3 red vertices. Therefore, γF (G) ≤ n− 3.

Next, we show that certain pairs k, n with 1 ≤ k ≤ n can be realized as the
F -domination number and the order of some connected graph.

Theorem 2.7. Let n ≥ 7. If k is an integer with 1 ≤ k ≤ bn/2c + 1 or
k = n, then there exists a connected graph G of order n with γF (G) = k.

Proof. For each pair k, n of integers with 1 ≤ k ≤ bn/2c+ 1 or k = n, we
construct a graph Gk,n of order n with γF (Gk,n) = k. Let G1,n = Kn and
Gn,n = K1,n−1. Thus, we may assume that 2 ≤ k ≤ bn/2c+ 1. We consider
three cases.

Case 1. k = 2. Let C4 : v1, v2, v3, v4, v1 be a cycle of order 4 and let
G2,n be obtained from C4 by (1) adding n− 4 new vertices x1, x2, . . . , xn−4

and joining each vertex xi (1 ≤ i ≤ n − 4) to v1. Define a red-blue col-
oring c∗ of G2,n by assigning red to v2 and v3 and blue to the remaining
vertices of G2,n. Observe that (i) the blue vertex v1 is F -dominated by
the red vertex v3, (ii) the blue vertex v4 is F -dominated by the red ver-
tex v2, and (iii) the blue vertex xi (1 ≤ i ≤ n − 4) is F -dominated by
the red vertex v2. Thus, every blue vertex v of G belongs to a copy of
F rooted at v, implying that c∗ is a an F -coloring of G2,n. Therefore,
γF (G2,n) ≤ |Rc∗ | = 2.
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Next, we show that γF (G2,n) ≥ 2. Assume, to the contrary, that
γF (G2,n) = 1. Let there be given an F -coloring c of G2,n with exactly one
red vertex. Since v3 is only F -dominated by v1 and v1 is only F -dominated
by v3, it follows that at least one of v1 and v3 belongs to Rc. By Lemma 2.1,
we have Rc = {v3}. However, none of the blue vertices xi (1 ≤ i ≤ n − 4)
is F -dominated by v3 and so c is not an F -coloring of G, which is a contra-
diction. Therefore, γF (G2,n) = 2.

Case 2. 3 ≤ k ≤ bn/2c. Let C4 : v1, v2, v3, v4, v1 be a cycle of order 4.
Then the graph Gk,n is obtained from the graph C4 by (1) adding k− 2 > 0
new vertices x1, x2, . . . , xk−2 and joining each vertex xi (1 ≤ i ≤ k − 2)
to v1 and (2) adding n − 2 − k > 0 new vertices y1, y2, . . . , yn−2−k and
joining each vertex yj (1 ≤ j ≤ n − 2 − k) to v3. Then the order of G is
4 + (k − 2) + (n− 2− k) = n. We show that γF (Gk,n) = k.
We first show that γF (Gn,k) ≤ k. Let S = {v1, v2} ∪ {xi : 1 ≤ i ≤ k − 2}.
Define a red-blue coloring c∗ of Gn,k by assigning red to each vertex in S and
blue to the remaining vertices of Gn,k. Observe that (i) the blue vertex v3

is F -dominated by the red vertex v1, (ii) the blue vertex v4 is F -dominated
by the red vertex v2, and (iii) the blue vertex yj (1 ≤ j ≤ n − 2 − k) is
F -dominated by the red vertex v2. Thus, every blue vertex v of G belongs
to a copy of F rooted at v, implying that c∗ is a an F -coloring of Gn,k.
Therefore, γF (Gn,k) ≤ |Rc∗ | = |S| = k.

Next, we show that γF (Gn,k) ≥ k. Assume, to the contrary, that
γF (Gn,k) ≤ k − 1. Let there be given a minimum F -coloring c of Gn,k.
Observe that v3 is only F -dominated by v1 and v1 is only F -dominated by
v3. Thus at least one of v1 and v3 belongs to Rc. By Lemma 2.1, if v1 ∈ Rc,
then xi ∈ Rc for 1 ≤ i ≤ k − 2. Similarly, if v3 ∈ Rc, then yj ∈ Rc for
1 ≤ j ≤ n− 2− k. Thus |Rc| ≥ min{k − 1, n− 1− k}. Since k ≤ bn/2c, it
follows that k − 1 ≤ n− 1− k. This implies that γF (Gn,k) ≥ k − 1. There-
fore, γF (Gn,k) = k− 1 and we may assume that Rc = {v1, x1, x2, . . . , xk−2}.
However then, the blue vertex v2 does not belong to a copy of F rooted at
v2, which is a contradiction. Therefore, γF (Gn,k) = k.

Case 3. k = bn/2c+ 1. Since n ≥ 7, it follows that k ≥ 4. We consider
two subcases.

Subcase 3.1. n is even. Then n = 2` for some integer ` ≥ 4 and
k = ` + 1 ≥ 5. Let P4 : v1, v2, v3, v4 be a path of order 4. Then the graph
Gk,n is obtained from P4 by (1) adding k − 3 new vertices x1, x2, . . . , xk−3
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and joining each vertex xi (1 ≤ i ≤ k − 3) to v1 and (2) adding k − 3 new
vertices y1, y2, . . . , yk−3 and joining each vertex yj (1 ≤ j ≤ k − 3) to v4.
Then the order of G is 4 + 2(k − 3) = 4 + 2(`− 2) = 2` = n.

We first show that γF (Gn,k) ≤ k. Let S0 = {x1, v3, v4, y1, y2, . . . , yk−3}.
Define a red-blue coloring c∗ of Gn,k by assigning red to each vertex in S0 and
blue to the remaining vertices of Gn,k. Observe that (i) the blue vertex v1 is
F -dominated by the red vertex v3, (ii) the blue vertex v2 is F -dominated by
the red vertex x1, and (iii) the blue vertex xi (2 ≤ i ≤ k−3) is F -dominated
by the red vertex x1. Thus, every blue vertex v of G belongs to a copy
of F rooted at v, implying that c∗ is a an F -coloring of Gn,k. Therefore,
γF (Gn,k) ≤ |Rc∗ | = |S0| = k.

Next we show that γF (Gn,k) ≥ k. Let X = {x1, x2, . . ., xk−3} and
Y = {y1, y2, . . ., yk−3}. Suppose that c is a minimum F -coloring of Gn,k.
We consider three subcases.
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Subcase 3.1.1. v1, v4 ∈ Rc. By Lemma 2.1, X ∪ Y ⊆ Rc. This implies
that

γF (Gn,k) = |Rc| ≥ |X ∪ Y ∪ {v1, v4}| = 2k − 4 > k,

as k ≥ 5 (note that n ≥ 7 is even), which is a contradiction.

Subcase 3.1.2. v1 /∈ Rc and v4 /∈ Rc. Since c is an F -coloring, v1 is F -
dominated by some red vertex. Since v1 is only F -dominated by v3, it follows
that v2 is blue and v3 is red. However then, v4 cannot be F -dominated by
any red vertex as v4 is only F -dominated by v2, which is a contradiction.

Subcase 3.1.3. Exactly one of v1 and v4 belongs to Rc, say v1 /∈ Rc and
v4 ∈ Rc. Since v4 ∈ Rc, it follows that Y ⊆ Rc by Lemma 2.1. Since v1 is
only F -dominated v3, it follows that v2 is blue and v3 is red. Note that each
vertex in X is only F -dominated by v2 or some vertex in X. Since v2 is blue,
at least one vertex in X must be colored red. Hence Y ∪ {v3, v4, x} ⊆ Rc,
where x ∈ X. Therefore, γF (Gn,k) = |Rc| ≥ 3 + (k − 3) = k.

Subcase 3.2. n is odd. Then n = 2` + 1 for some integer ` ≥ 3 and
k = ` + 1 ≥ 4. Let P4 : v1, v2, v3, v4 be a path of order 4. So the graph Gk,n

is obtained from P4 by (1) adding k − 2 new vertices x1, x2, . . . , xk−2 and
joining each vertex xi (1 ≤ i ≤ k−2) to v1 and (2) adding k−3 new vertices
y1, y2, . . . , yk−3 and joining each vertex yj (1 ≤ j ≤ k − 3) to v4. Then the
order of G is 4 + (k − 2) + (k − 3) = 4 + (`− 1) + (`− 2) = 2` + 1 = n. We
show that γF (Gk,n) = k.

To show that γF (Gn,k) ≤ k, let S1 = {x1, v3, v4, y1, y2, . . . , yk−3}. Define
a red-blue coloring c∗ of Gn,k by assigning red to each vertex in S1 and blue
to the remaining vertices of Gn,k. An argument similar to the one used
in Subcase 3.1 shows that c∗ is an F -coloring of Gn,k and so γF (Gn,k) ≤
|Rc∗ | = |S1| = k.

Next, we show that γF (Gn,k) ≥ k. Suppose that c is a minimum F -
coloring of Gn,k. An argument similar to the one in Subcases 3.1.1 and
3.1.2 shows that exactly one of v1 and v4 belongs to Rc. If v1 ∈ Rc and
v4 /∈ Rc, then X ⊆ Rc by Lemma 2.1. Since v4 is only F -dominated by
v2, it follows that v2 is red and v3 is blue. Moreover, each vertex in Y is
only F -dominated by v3 or by some vertex in Y . Since v3 is blue, at least
one vertex in Y must be colored red. Hence X ∪ {v1, v2, y} ⊆ Rc, where
y ∈ Y . However then, γF (Gn,k) = |Rc| ≥ 3 + (k − 2) = k + 1 > k, which is
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impossible. Similarly, if v1 /∈ Rc and v4 ∈ Rc, then Rc contains at least k
red vertices and so γF (Gn,k) = |Rc| ≥ k.

Although it can be shown that there are infinitely many pairs k, n of integers
with bn/2c + 1 < k < n − 2 and n ≥ 7 for which there exists a connected
graph G of order n with γF (G) = k, we conclude this section with the
following question.

Problem 2.8. For which pairs k, n of integers with bn/2c+ 1 < k < n− 2
and n ≥ 7, does there exist a connected graph G of order n with γF (G) = k?.

3. Realization Results on Three Domination
Parameters

For a nontrivial connected graph G without isolated vertices, there are three
possibilities related to the three parameters γ(G), γo(G), and γF (G), namely

(1) γ(G) ≤ γF (G) ≤ γo(G),
(2) γ(G) ≤ γo(G) ≤ γF (G),
(3) γF (G) ≤ γ(G) ≤ γo(G).

First, we show that it is possible for these three parameters to be equal.

Proposition 3.1. For each integer k ≥ 2, there exists a connected graph G
such that

γ(G) = γF (G) = γo(G) = k.

Proof. For k = 2, let G be the double star and so γ(G) = γF (G) =
γo(G) = 2. Let k ≥ 3. For each integer i with 1 ≤ i ≤ k − 1, let Fi :
v1i, v2i, v3i, v4i, v1i be a copy of C4. The graph G is obtained from the graphs
Fi (1 ≤ i ≤ k − 1) by identifying vertices v4i (1 ≤ i ≤ k − 1) and labeling
the identified vertex by v. Then it can be verified that γ(G) = γF (G) =
γo(G) = k.

Next result shows that every pair a, b of positive integers can be realizable
as the domination and F -domination of some connected graph.

Theorem 3.2. Let a and b be positive integers with a ≤ b.
(i) There exists a connected graph G such that γ(G) = a and γF (G) = b;
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(ii) There exists a connected graph H such that γF (H) = a and γ(H) = b.

Proof. First, we verify (i). Suppose that a = 1. If b = 1, let G = K3;
while if b ≥ 2, let G = K1,b−1. Then γ(G) = 1 and γF (G) = b for each
integer b ≥ 1. Hence the result holds for a = 1. Thus, we may assume that
a ≥ 2. By Proposition 3.1, the result holds if a = b. Therefore we may
assume that a < b and so b− a > 0. There are two cases.

Case 1. a = 2. Let G be the graph in the proof of Case 2 for Theo-
rem 2.7, where k = b. Then γ(G) = 2 and γF (G) = k = b.

Case 2. a ≥ 3. We begin with a double star T whose central vertices
are u and v. Let U = {u1, u2, . . . , ub−a} and V = {v1, v2, . . . , va+b−1} be
the sets of vertices of T such that u is adjacent to every vertex in U and v
is adjacent to every vertex in V . Then the graph G is obtained from T by
(1) subdividing the edge uv with a new vertex x and (2) adding a− 2 new
vertices w1, w2, . . . , wa−2 and joining each wi to vi for 1 ≤ i ≤ a − 2. Let
W = {w1, w2, . . . , wa−2}.

First, we show that γ(G) = a. Since {u, v, v1, v2, . . . , va−2} is a dominat-
ing set of G, it follows that γ(G) ≤ a. Next, we show that γ(G) ≥ a. Let S be
a minimum dominating set of G. Since each vertex wi (1 ≤ i ≤ a−2) is only
dominated by itself or by vi, it follows that S must contain at least one vertex
from each set {vi, wi} for 1 ≤ i ≤ a−2. Also, each vertex ui (1 ≤ i ≤ b−a) is
only dominated by ui or by u. Thus, either ui ∈ S for all i with 1 ≤ i ≤ b−a
or u ∈ S. Furthermore, each vertex vj (a− 1 ≤ j ≤ a + b− 1) is only domi-
nated by vj or by v. Thus either vj ∈ S for each j with a−1 ≤ j ≤ a+ b−1
or v ∈ S. This implies that γ(G) = |S| ≥ (a− 2) + 2 = a.

Next, we show that γF (G) = b. Let S0 = U ∪ {u, va+b−1} ∪W . Then
|S0| = (b− a) + 2 + (a− 2) = b. Since the red-blue coloring that assigns red
to each vertex in S0 and blue to the remaining vertices of G is an F -coloring
with b red vertices, γF (G) ≤ b. To show that γF (G) ≥ b, let c be a minimum
F -coloring of G. We make four observations: (1) By Lemma 2.1, W ⊂ Rc.
(2) If v is colored red by c, then vi is colored red by c for 1 ≤ i ≤ a + b− 1
and so γF (G) ≥ a + b− 1 > b, a contradiction. Thus v must be colored blue
by c. (3) If u is colored blue by c, then u is not F -dominated by any red
vertex in Rc since u is only F -dominated by v and v is colored blue by c
as shown in (2). Thus, u must be colored red by c. (4) By (3), each vertex
ui ∈ Rc for 1 ≤ i ≤ b− a. It then follows by (1)-(4) that U ∪ {u} ∪W ⊆ Rc

and so |Rc| ≥ (b − a) + 1 + (a − 2) = b − 1. Assume, to the contrary,
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that γF (G) = b − 1. Then Rc = U ∪ {u} ∪ W. However then va+b−1 is
not F -dominated by any vertex in Rc, which is a contradiction. Therefore,
γF (G) ≥ b and so γF (G) = b.

Next, we verify (ii). First, suppose that a = 1. If b = 1, let H = K3

and so γF (H) = γ(H) = 1. Thus we may assume that b ≥ 2.
For the integer b ≥ 2 and 1 ≤ i ≤ b let Fi be a copy of K4 − e with

V (Fi) = {ui, vi, xi, yi} such that deg ui = deg vi = 2 and deg xi = deg yi = 3.
The graph H is obtained from the graphs Fi (1 ≤ i ≤ b) by identifying all
the vertices ui and calling the new vertex u. We first show that γ(H) = b.
Since S0 = {xi : 1 ≤ i ≤ b} is a dominating set of H, it follows that
γ(H) ≤ |S0| = b. On the other hand, since vi is only adjacent to xi and
yi for each i (1 ≤ i ≤ b), at least one vertex in each set {xi, yi, vi} must
belong to any dominating set of H and so γ(H) ≥ b. Next we show that
γF (H) = 1. Since the red-blue coloring that assigns red to vertex u and
blue to the remaining vertices of H is an F -coloring, by (1) it follows that
γF (H) = 1.

Now let a ≥ 2. By Proposition 3.1, the result holds if a = b. Thus
we may assume that a < b. Thus b − a > 0 and so b − a + 2 ≥ 3. We
start with the graph Wb−a+2 = Cb−a+2 + K1, where Cb−a+2 : y1, y2, . . . ,
yb−a+2, y1, and x is the vertex of degree b − a + 2 in Wb−a+2. For each i
with 1 ≤ i ≤ a − 1, let Fi : si, ti be a copy of P2. Then the graph H is
obtained from the graphs Fi (1 ≤ i ≤ a−1) and Wb−a+2 by (1) adding a−1
new edges siy1 (1 ≤ i ≤ a − 1) and (2) adding b − a + 1 new vertices z2,
z3, . . ., zb−a+2 and joining each vertex zj to yj for 2 ≤ j ≤ b − a + 2. Let
T = {t1, t2, . . . , ta−1}.

We first show that γF (H) = a. Since the red-blue coloring that assigns
red to each vertex in {x} ∪ T and blue to the remaining vertices of H is
an F -coloring with a red vertices, γF (H) ≤ a. To show that γF (H) ≥ a,
let c be a minimum F -coloring of H. By Lemma 2.1, we have T ⊆ Rc and
so γF (H) ≥ a − 1. Assume, to the contrary, that γF (H) = a − 1. Hence
Rc = T. However then, no blue vertex (different from y1) is F -dominated
by any vertex in Rc, which is a contradiction. Thus γF (H) = a.

Next we show that γ(H) = b. Since S0 = {s1, s2, . . . , sa−1, y2, . . .,
yb−a+2} is a dominating set of H, it follows that γ(H) ≤ |S0| = b. To
show that γ(H) ≥ b, let S be a minimum dominating set of H. Then S
contains at least one vertex from each set {si, ti} for 1 ≤ i ≤ a − 1 and
at least one vertex from each set {yj , zj} for 2 ≤ j ≤ b − a + 2. Thus
γ(H) = |S| ≥ (a− 1) + (b− a + 1) = b. Therefore, γ(H) = b.
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Next, we show that every pair a, b of positive integers can be realizable as
the open domination number and F -domination number of some connected
graph.

Theorem 3.3. Let a and b be positive integers with a ≤ b.
(i) For a ≥ 2, there exists a connected graph G such that γo(G) = a and

γF (G) = b;
(ii) For b ≥ 2, there exists a connected graph H such that γF (H) = a and

γo(H) = b.

Proof. By Proposition 3.1, the result holds if a = b. Thus we may assume
that a < b. We first verify (i). We consider three cases.

Case 1. a = 2. Let G = K1,b−1. Then γo(G) = 2 and γF (G) = b.

Case 2. a = 3. Let G be the graph in the Proof of Case 2 for Theo-
rem 2.7, where k = b. Then γo(G) = 3 and γF (G) = k = b.

Case 3. a ≥ 4. We begin with a double star T whose central vertices
are u and v. Let U = {u1, u2, . . . , ub−a+1} and V = {v1, v2, . . . , va+b−1} be
the sets of vertices of T such that u is adjacent to every vertex in U and v
is adjacent to every vertex in V . Then the graph G is obtained from T by
(1) subdividing the edge uv with a new vertex x and (2) adding a− 3 new
vertices w1, w2, . . . , wa−3 and joining each wi to vi for 1 ≤ i ≤ a − 3. Let
W = {w1, w2, . . . , wa−3}.

First, we show that γo(G) = a. Since S0 = {u, x, v, v1, v2, . . . , va−3} is
an open dominating set of G, it follows that γo(G) ≤ |S0| = a. To show that
γo(G) ≥ a, let S be a minimum open dominating set of G. Since each wi

(1 ≤ i ≤ a − 3) is only openly dominated by vi (1 ≤ i ≤ a − 3) and each
ui (1 ≤ i ≤ b − a + 1) is only openly dominated by u, we have vi ∈ S for
1 ≤ i ≤ a−3 and u ∈ S. Similarly, since each vj (a−2 ≤ j ≤ a+b−1) is only
openly dominated by v, we have v ∈ S. Thus γo(G) = |S| ≥ a− 1. Assume,
to the contrary, that γo(G) = a−1. However then, S = {u, v, v1, v2, . . . , va−3}
and u is not openly dominated by any vertex in S, which is a contradiction.
Therefore, γo(G) ≥ a and so γo(G) = a.

Next, we show that γF (G) = b. Let S′ = U ∪ {u} ∪W ∪ {va+b−1}. By
the proof of Theorem 3.2(i), the red-blue coloring that assigns red to each
vertex of S′ and blue to the remaining vertices of G is a minimum F -coloring
with b red vertices. Therefore, γF (G) = b.
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Next, we verify (ii). First, suppose that a = 1 and b ≥ 2. Let H be the
graph in Theorem 3.2(ii). So for the integer b ≥ 2 and 1 ≤ i ≤ b− 1, let Fi

be a copy of K4 − e with V (Fi) = {ui, vi, xi, yi} such that deg ui = deg vi =
2 and deg xi = deg yi = 3. The graph H is obtained from the graphs
Fi (1 ≤ i ≤ b − 1) by identifying all the vertices ui and calling the new
vertex u.

We first show that γo(H) = b. Since S0 = {u} ∪ {xi : 1 ≤ i ≤ b− 1} is
an open dominating set in H, it follows that γo(H) ≤ |S0| = b− 1. On the
other hand, since vi is only adjacent to xi and yi for each i (1 ≤ i ≤ b−1), at
least one vertex in each set {xi, yi, vi} must belong to any open dominating
set of H and so γo(H) ≥ b−1. Assume, to the contrary, that γo(H) = b−1.
Then

S = {wi : 1 ≤ i ≤ b− 1} ⊆ {xi, yi, vi : 1 ≤ i ≤ b− 1},
where wi ∈ {xi, yi, vi} for each i with 1 ≤ i ≤ b − 1. However then, wi is
not openly dominated by any vertex in So, which is a contradiction. Thus
γo(H) ≥ b. Next we show that γF (H) = 1. Since the red-blue coloring
that assigns red to vertex u and blue to the remaining vertices of H is an
F -coloring, it follows by (1) that γF (H) = 1.

Now let 2 ≤ a < b. We consider two cases.

Case 1. b = a+1. For each integer i with 1 ≤ i ≤ a−1, let Fi : ui, vi, wi

be a copy of the path P3 and let C3 : x, y, z, x be a copy of a 3-cycle. Then
the graph H is obtained from the graphs Fi (1 ≤ i ≤ a − 1) and C3 by (1)
identifying the vertices ui (1 ≤ i ≤ a− 1) and calling the new vertex u and
(2) joining the vertex u to x.

We first show that γF (H) = a. Let S0 = {x} ∪ {wi : 1 ≤ i ≤ a − 1}.
Since the red-blue coloring that assigns red to each vertex in S0 and blue to
the remaining vertices of H is an F -coloring with a red vertices, γF (H) ≤ a.

To show that γF (H) ≥ a, let c be a minimum F -coloring of H. By
Lemma 2.1, each end-vertex in wi (1 ≤ i ≤ a− 1) must be colored red by c
and so γF (H) ≥ a− 1. Assume to the contrary that γF (H) = a− 1. Then
Rc = {wi : 1 ≤ i ≤ a − 1}. However then, y is not F -dominated by any
vertex in Rc, which is a contradiction. Thus γF (H) ≥ a.

Next we show that γo(H) = a + 1 = b. Since S1 = {u, x} ∪ {vi : 1 ≤ i ≤
a− 1} is an open dominating set in H, it follows that γo(H) ≤ |S1| = a + 1.
On the other hand, since wi (1 ≤ i ≤ a − 1) is only openly dominated
by vi, it follows that vi ∈ S for all 1 ≤ i ≤ a − 1 and so γo(H) ≥ a − 1.
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Also, since each vi is only openly dominated by wi or by u, it follows that
either wi ∈ S (1 ≤ i ≤ a − 1) or u ∈ S. This implies that γo(H) ≥ (a − 1)
+1 = a. Assume, to the contrary, that γo(H) = a. Let S be a minimum
open dominating set of H. Then S ⊂ ({u} ∪ {vi, wi : 1 ≤ i ≤ a − 1}).
However then, y is not openly dominated by any vertex of S, which is a
contradiction. Hence γo(H) ≥ a + 1.

Case 2. b ≥ a + 2. Then b − a + 1 ≥ 3. We start with the graph
Wb−a+1 = Cb−a+1 + K1, where Cb−a+1 : y1, y2, . . . , yb−a+1, y1 and x is the
vertex of degree b − a + 1 in Wb−a+1. For each i with 1 ≤ i ≤ a − 1, let
Fi : si, ti be a copy of P2. Then the graph H is obtained from the graphs Fi

(1 ≤ i ≤ a−1) and Wb−a+1 by (1) adding a−1 new edges siy1 (1 ≤ i ≤ a−1)
and (2) adding b − a new vertices z2, z3, . . ., zb−a+1 and joining each zi

(2 ≤ i ≤ b−a+1) with yi. Let T = {t1, t2, . . . , ta−1}, S = {s1, s2, . . . , sa−1},
and Y = {y1, y2, y3, . . . , yb−a+1}. The red-blue coloring that assigns red to
each vertex of the set {x} ∪ T and blue to the remaining vertices of H is a
minimum F -coloring with a red vertices. Therefore, γF (H) = a.

Next we show that γo(H) = b. Since S ∪ Y is an open dominating
set of H, it follows that γo(H) ≤ |S ∪ Y | = (a − 1) + (b − a + 1) = b, To
show that γo(H) ≥ b, observe that every open dominating set of H contains
S∪(Y −{y1}). On the other hand, s1 is not openly dominated by any vertex
in S ∪ (Y − {y1}) and so S ∪ (Y − {y1}) is not an open dominating set of
H. Therefore, γo(H) ≥ |S ∪ (Y − {y1})| + 1 = (a − 1) + (b − a) + 1 = b.
Therefore, γo(H) = b.

Recall that for a graph G without isolated vertices, the following are possible:

(1) γ(G) ≤ γF (G) ≤ γo(G),
(2) γ(G) ≤ γo(G) ≤ γF (G),
(3) γF (G) ≤ γ(G) ≤ γo(G).

Also, we have seen that every pair a, b of positive integers can be realizable
as the domination number and F -domination number of some connected
graph or the open domination number and F -domination number of some
connected graph. This gives rise to the following natural question.

Problem 3.4. For which triples a, b, c of positive integers with a ≤ b ≤ 2a
and b ≥ 2, does there exist a connected graph G such that γ(G) = a,
γo(G) = b, and γF (G) = c?
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Although it is not known whether every triple a, b, c in Problem 3.4 is re-
alizable as the domination, open domination, and F -domination number of
some connected graph, it can be shown that there are infinitely many such
realizable triples. As an example, we present the following.

Theorem 3.5. For each pair a, b of integers with 1 ≤ a ≤ b ≤ 2a and b ≥ 2,
there exists a connected graph G with γF (G) = 1 such that γ(G) = a and
γo(G) = b.

Proof. For a = 1 and b = 2, let G = K3 and so γF (G) = γ(G) = 1
and γo(G) = 2. Thus we may assume that a ≥ 2. We consider two cases,
according to whether a = b or a 6= b.

Case 1. a = b. If a = b = 2, let G be the graph obtained from the
graph K4−e by adding a new vertex and joining this new vertex to a vertex
of degree 2 in K4 − e. Then γF (G) = 1 and γ(G) = γo(G) = 2. Now
let a = b ≥ 3. Let s > a be an integer and consider the graph Ps + K1,
where Ps : u1, u2, · · · , us and u is the vertex in Ps + K1 with deg u = s.
Then the graph G is obtained from Ps + K1 by adding a − 1 new vertices
v1, v2, · · · , va−1 and joining each vi to ui for 1 ≤ i ≤ a − 1. Since N(u) is
an open dominating set of G, it follows by Theorem 2.3 that γF (G) = 1.
Since {u, u1, u2, · · · , ua−1} is a minimum dominating and minimum open
dominating set of G, it follows that γ(G) = γo(G) = a.

Case 2. a < b ≤ 2a. We consider three subcases.

Subcase 2.1. a < b ≤ 2a − 2. Let b = a + k, where k ≥ 1, and let
` = a− k − 1. Since b = a + k ≤ 2a− 2, it follows that ` ≥ 1. Consider the
graphs H1 and H2 in Figure 5.
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Figure 5. The graphs H1 and H2 in Case 2.
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For each i with 1 ≤ i ≤ k, let Fi be a copy of H1, where V (Fi) = {ui,0,
ui,1, ui,2, · · ·, ui,6}, where ui,p corresponds to up in H1 for 0 ≤ p ≤ 6. For
each j with 1 ≤ j ≤ `, let Gj be a copy of H2 with V (Gj) = {vj,0, vj,1,
vj,2, vj,3}, where vj,q corresponds to vq in H2 for 0 ≤ q ≤ 3. The graph G
is then obtained from the graphs Fi and Gj for 1 ≤ i ≤ k and 1 ≤ j ≤ `
by identifying all vertices ui,0 and vj,0 and labeling the identified vertex v.
Observe that N(v) is an open dominating set of G. Thus γF (G) = 1 by
Theorem 2.3. Also, since

S = {v} ∪ {ui,3 : 1 ≤ i ≤ k} ∪ {vj,1 : 1 ≤ j ≤ `}

is a minimum dominating set of G, it follows that γ(G) = |S| = 1 + k + ` =
1+ k +(a− k− 1) = a. Furthermore, the set So = S ∪{ui,2 : 1 ≤ i ≤ k} is a
minimum open dominating set of G and so γo(G) = |So| = |S|+k = a+k = b.

Subcase 2.2. b = 2a − 1. For each i with 1 ≤ i ≤ a − 1, let Fi be a
copy of H1 in Figure 5 such that V (Fi) = {ui,0, ui,1, ui,2, · · · , ui,6}, where
ui,p corresponds to up in H1 for 0 ≤ p ≤ 6. Then the graph G is obtained
from the graphs Fi, 1 ≤ i ≤ a−1, by identifying all vertices ui,0 and labeling
the identified vertex by v. Again, γF (G) = 1 and {v} is the minimum F -
dominating set. Since S = {v} ∪ {ui,3 : 1 ≤ i ≤ a − 1} is a minimum
dominating set of G and S ∪ {ui,2 : 1 ≤ i ≤ a − 1} is a minimum open
dominating set of G, it follows that γ(G) = |S| = a and γo(G) = |S|+
(a− 1) = 2a− 1 = b.

Subcase 2.3. b = 2a. If a = 1 and b = 2, then the graph H2 of Figure 5
has the desired property. Thus we may assume that a ≥ 2. Let p ≥ 2
be an integer. For each integer i with 1 ≤ i ≤ a − 1, let Fi be the graph
obtained from the path ui, yi, vi by adding 2p new vertices ri,j (1 ≤ j ≤ 2p)
and joining (1) each vertex ri,j (1 ≤ j ≤ p) to ui and yi and (2) each vertex
ri,j (p + 1 ≤ j ≤ 2p) to yi and vi. Then the graph G is obtained from the
a− 1 graphs Fi (1 ≤ i ≤ a− 1) and the path P : z, w, x, w′ of order 4 by (1)
adding the edge xz and (2) joining each of the two vertices w and z to each
vertex in {ui, vi} for 1 ≤ i ≤ a − 1. The graph G is shown in Figure 6 for
a = 3. Since N(w) = {x, z}∪ {ui, vi : 1 ≤ i ≤ a− 1} is an open dominating
set of G, it follows by Theorem 2.3 that γF (G) = 1. It remains to show that
γ(G) = a and γo(G) = b.

We first show that γ(G) = a. Since the set {x}∪ {yi : 1 ≤ i ≤ a− 1} is
a dominating set of G, it follows that γ(G) ≤ a. On the other hand, let S
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be a minimum dominating set of G. For each integer i with 1 ≤ i ≤ a− 1,
let Ri = {ri,j : 1 ≤ j ≤ p} and R′

i = {ri,j : p + 1 ≤ j ≤ 2p} Observe that
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Figure 6. The graph G in Subcase 2.3 for a = 3.

(b1) since w′ is an end-vertex of G and w′ is adjacent to x, the set S
contains at least one vertex in {w′, x}, and

(b2) since yi is only dominated by a vertex in the set

Ai = {ui, vi, yi} ∪Ri ∪R′
i,(3)

the set S must contain at least one vertex in each set Ai.

The a sets {w′, x} and Ai (1 ≤ i ≤ a − 1) are pairwise disjoint. It then
follows by (b1) and (b2) that S contains at least a distinct vertices of G and
so γ(G) ≥ a. Therefore, γ(G) = a.

Next, we show that γo(G) = b. Since N(w) is an open dominating set
of G, it follows that γo(G) ≤ |N(w)| = 2a. On the other hand, let So be a
minimum open dominating set of G. First, we verify the following claim.

Claim. For each integer i with 1 ≤ i ≤ a − 1, the set So must contain at
least two vertices in each set Ai in (3).

Proof of Claim. Assume, to the contrary, that So contains at most one
vertex in Ai for some i with 1 ≤ i ≤ a − 1. Observe that each vertex in
Ri is only openly dominated by a vertex in Bi = {ui, yi} and so So must
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contain at least one vertex in Bi. Similarly, each vertex in R′
i is only openly

dominated by a vertex in Ci = {vi, yi} and so So must contain at least one
vertex in Ci. Since Bi ∪Ci = {ui, vi, yi} ⊆ Ai, it follows that So contains at
least one vertex in Ai. Hence So contains exactly one vertex in Ai. Because
Bi ∩ Ci = {yi}, the vertex yi is the only vertex of Ai that belongs to So.
However, yi is only openly dominated by a vertex in Ai−{yi}, implying that
yi is not openly dominated by any vertex in So, which is a contradiction.

This completes the proof of the claim. Therefore, So must contain at
least two vertices in each set Ai for 1 ≤ i ≤ a− 1. Moreover, the end-vertex
w′ is only openly dominated by x and x is only openly dominated by a
vertex in the set V (P ) − {x} = {w,w′, z}. Thus So must contain at least
two vertices in V (P ). Since the a subsets V (P ) and Ai (1 ≤ i ≤ a − 1) of
V (G) are pairwise disjoint, So contains at least 2a distinct vertices of G and
so γo(G) = |So| ≥ 2a. Therefore, γo(G) = 2a = b.
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