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Abstract

Let ir(G) and v(G) be the irredundance number and domination
number of a graph G, respectively. The number of vertices and leafs of
a graph G is denoted by n(G) and n1(G). If T is a tree, then Lemariska
[4] presented in 2004 the sharp lower bound

n(T)+2—n1(T) .

[ >
In this paper we prove
T)+2—n (T
ir(T) = n(T) + 3 m(T)

for an arbitrary tree T. Since y(T) > ir(T) is always valid, this
inequality is an extension and improvement of Lemanska’s result.
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1. TERMINOLOGY AND INTRODUCTION

We consider finite, undirected, and simple graphs G with the vertex set
V(G) and the edge set E(G). The number of vertices |V (G)| of a graph G
is called the order of G and is denoted by n = n(G). The open neighborhood
N(v) = N(v,G) of the vertex v consists of the vertices adjacent to v, and
the closed neighborhood of v is N[v] = N[v,G] = N(v) U {v}. For a subset
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X CV(G), we define N(X) = N(X,G) = Uyex N(v) and N[ X| = N[X,G]
= N(X)U X. In addition, let G[X] be the subgraph induced by X, and
let e(X) be the number of edges in G[X]. The vertex v is a leaf of G if
d(v,G) = 1, and an isolated vertez if d(v,G) = 0, where d(v) = d(v,G) =
|N(v)]| is the degree of v € V(G). Let n; = n1(G) be the number of leafs in
a graph G. By 0 = 6(G) and A = A(G), we denote the minimum degree and
mazimum degree of the graph G, respectively. If X and Y are two disjoint
subsets of V(G), then let e(X,Y) be the number of edges with one end in
X and the other in Y.

A set D C V(G) is a dominating set of the graph G if N[D,G] = V(G).
The domination number v = vy(G) of G is the cardinality of any smallest
dominating set.

Let I CV(G) and v € I. A vertex u € V(G) —1 is an I-external private
neighbor of v if N(u) NI = {v}. The set of all I-external private neighbors
of v is denoted by EPN (v, I) and

{ EPN(v,I)U{v} 1if v is isolated in G[I]

PN(v,1) =
®.0) EPN(v,I) otherwise.

A subset I C V(Q) is irredundant if PN(v,I) # 0 for all v € I. An
irredundant set I is maximal irredundant if for every vertex u € V(G) — I,
the set I U {u} is not irredundant. The minimum cardinality taken over all
maximal irredundant sets of G is the irredundance number ir(G) of G.

For detailed information on domination, irredundance, and related top-
ics see the comprehensive monograph [3] by Haynes, Hedetniemi, and Slater.

Let T be a tree of maximum degree A(T") > 3. If T is not isomorphic
to the star K a(), then Cockayne [1] recently proved that

. 2(n(T) + 1)
ir(T) > PNGEER

In this note we will present the following lower bound of the irredundance
number of a tree. If T is a tree, then

T)4+2—n (T
w1y > D) +2=m (D)

3
Since v(G) > ir(G) is valid for an arbitrary graph G, this lower bound is an
improvement of Lemarnska’s [4] inequality

n(T)+2—ny(T)
1(T) = 3 :
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2. PRELIMINARY RESULTS

The following partition of V(G) induced by the vertex subset I will be
involved in the proof of the desired bound.

V(G) = IUBUAUR (disjoint union) where
B={ueV(G)—TI:|NunI|l=1}
A={ueV(G)—1I:|Nu)NnI| >2}

R = V(G) — N|[I].

In addition, let B = By U By and R = Ry U R; such that

By ={ueB: du)>2
By ={ueB:du) =1
Ry = {ueR: du) >2}
Ri={ueR:du) =1
In the following the cardinality of any set (except V(G)) denoted by any
upper case letter, will be denoted by the corresponding lower case letter
ie., |B| = b, |A] = a etc. The proof of our main result is based on a

useful characterization of maximal irredundant sets by Cockayne, Grobler,
Hedetniemi, and McRae [2].

Theorem 2.1 ([2] 1997). Let I be an irredundant set in a graph G. The
set I is mazimal irredundant if and only if for each w € N[R]|, there exists
a vertex v € I such that

(1) PN(v,I) C N[w].
If (1) is satisfied we say that w annihilates v.

Suppose that F(i,n1) is the set of forests of maximum order which have ng
leafs and a maximal irredundant set of size i.

Lemma 2.2. Let I be a mazximal irredundant set of size i of the forest
G € F(i,n1). For each w € R, there exists exactly one v € I such that w
annihilates v.
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Proof. In view of Theorem 2.1, there exists a vertex v € I such that w
annihilates v, that means PN (v,I) C N[w]. Suppose that there exist two
different vertices vi,v9 € I such that w annihilates v; as well as vy. Let
{u1} = N(w) N N(v1) and {uz} = N(w) N N(vz). Form the graph G; by
deleting the edge wus and adding a vertex ws to the set R and the new edges
wwsy and uswsy. Since wo annihilates vo in G1, the set I is, by Theorem 2.1,
furthermore a maximal irredundant set of the tree G; with ny leafs. This
is a contradiction to the hypothesis that G € F(i,n;), and the proof of
Lemma 2.2 is complete. [

3. MAIN RESULT

Theorem 3.1. If T is a tree of order n with ny leafs, then

. n+2—ny
(2) ir(T) > —

Proof. Since the result is immediate for n < 3, we assume in the following
that n > 4. It is evident that it is enough to prove inequality (3) for
T € F(i,n1). Thuslet now T € F(i,n1), and let I be a maximal irredundant
set of size i. It is well-known that |V(T')| — 1 = |E(T))|, and thus we deduce
that
V(T)|—1=idi+by+a+ro+b+r —1

= e(Bo) + e(Bo, A) + e(A) + e(I) + e(Ro) + e(Bo, Ro) + (A, Ro)

(3) + e(Il,By) +e(l,A)+ by +71.

Next let By = X UY and Ry = R{, U Rj with

X ={ueBy: NuyNR#0}
Y ={u€eBy: NuynRkR =0}
Ry, ={weRy: |[IN(w)nB|=1}
Ry = {w € Ry : [N(w) N B| > 2}.
Furthermore, we define the set Xy C X as follows: If v € X is adjacent to

the vertex w € R, then w is also adjacent to the vertex v with the property
that w annihilates v. Finally, let X; = X — Xj.
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If u e Y, then d(u) > 2. Because of |[N(u)NI|=1and |[N(u) N R| =0, the
vertex u is adjacent to a vertex of AU By. This easily leads to

(4)

Let u € Xp and v € I the unique neighbor of u in I. By the definition of
Xy, there exists a vertex w € RN N(u) such that PN (v,I) C N[w]. This
implies that v is no isolated vertex in the subgraph G[I], because otherwise
we would arrive at the contradiction {v} C PN (v,I) € N[w|. Let u; # u be
a further vertex in Xg. Suppose that v is also the unique neighbor of w; in
1. Since T' is a tree, we observe that u; and w are not adjacent. This leads
to the contradiction {u;} € PN (v,I) € N[w]. Altogether, we conclude that

< e(Bo) + e(B(), A).

N

(5) = <elD).

According to Theorem 2.1, each vertex w € R annihilates a vertex v in
I. Hence each vertex w € Ry, is adjacent to a vertex u € By. Moreover,
in view of Lemma 2.2, the vertex w is unique and thus |Rj| < e(Rj, Bo).
The condition d(w) > 2 shows that w is adjacent to a further vertex in
AU R. Since, by Theorem 2.1, R; is not possible, w is adjacent to a vertex
in AU Ry. We obtain the minimum number of edges if each w € Ry is
adjacent to exactly one vertex of R{, and w has no neighbor in AU R{j. This
yields

B0l < o(RY) + e(Ry, RY) + e(Rh, 4)
and thus
3 Bo| < e(R}, Bo) + e(Rp) + e(R, R)) + e(Rj, A)
2
(6) < e(Rl, By) + e(Ro) + e(Rh, A).

Assume that w € R{j. Again Theorem 2.1 implies that w annihilates a vertex
v in I. Hence w is adjacent to a vertex u € Xy. In view of Lemma 2.2, the
vertex u is unique and thus

(7) |Rg| = e(Rg, Xo).-

In addition, the definition of R{ shows that w is adjacent to a further vertex
v’ € Xi, and each vertex u” € X; is adjacent to a vertex in R{j. Hence it
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follows that

] 1]

(8) e(Rl, X1) > max{|R!|,| X1 ]} > y

Combining (5) — (9) with the inequality

G(Rg, X()) + G(Rg, Xl) + G(Ré, Bo) S B(Ro, B[))

we arrive at

by . 3ro _ o 3Rl 3IRs|
2 7_2+2+2Jr 2 2
_ w0y 3R | Ry
2 "2 2 2

IN

e(I) + e(Bo) + e(Bo, A) + e(Rg,BO) + e(Ro)
(R(]v ) + 6(R87XU) + G(Rg, Xl)
(I) +e Bo) + e(Bo, A) + €(R0, B()) + G(Ro) + €(R0,A) + G(A)

|A+

Now we deduce from (4)

i+by+a+rg—1=e(By) +e(By,A) +e(A)+e(l)+e(Ry) + e(Bo, Ro)
+ e(A, Ry) +e(l,By) +e(l,A)

by 3r
> 5°+—°+bo+2a

> 3bo , 3ro , 3a
-2 2 2

This implies 2i — 2 > by + a + rg and thus
2i —2+4+mn1 >byg+a+rg+ n.
Since by definition ny > by + r1, we obtain
3i—24+n>i+by+a+rg+b+1r1=n,
and this leads to

n+2—n
pu— 3 M

1
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Since the last bound is valid for all maximal irredundant sets I with |I| = i,
the desired inequality (3) is proved. ]

Remark 3.2. If T is a tree, then Lemariska [4] has proved that

n(T) + 2 — ny (T)
3

1T) =

if and only if the distance between each pair of distinct leafs in 7" is congruent
2 modulo 3. An analyses of the proof of Theorem 3.1 shows that we obtain
equality in (3) for exactly the same family of trees.

REFERENCES

[1] E.J. Cockayne, Irredundance, secure domination, and maximum degree in
trees, unpublished manuscript (2004).

[2] E.J. Cockayne, P.H.P. Grobler, S.T. Hedetniemi and A.A. McRae, What makes
an irredundant set maximal 7 J. Combin. Math. Combin. Comput. 25 (1997)
213-224.

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination
in Graphs (Marcel Dekker, Inc., New York, 1998).

[4] M. Lemanska, Lower bound on the domination number of a tree, Discuss. Math.
Graph Theory 24 (2004) 165-169.

Received 20 May 2005
Revised 23 February 2006


http://www.tcpdf.org

