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Abstract

Let ir(G) and γ(G) be the irredundance number and domination
number of a graph G, respectively. The number of vertices and leafs of
a graph G is denoted by n(G) and n1(G). If T is a tree, then Lemańska
[4] presented in 2004 the sharp lower bound

γ(T ) ≥ n(T ) + 2− n1(T )
3

.

In this paper we prove

ir(T ) ≥ n(T ) + 2− n1(T )
3

for an arbitrary tree T . Since γ(T ) ≥ ir(T ) is always valid, this
inequality is an extension and improvement of Lemańska’s result.
Keywords: irredundance, tree, domination.
2000 Mathematics Subject Classification: 05C69.

1. Terminology and Introduction

We consider finite, undirected, and simple graphs G with the vertex set
V (G) and the edge set E(G). The number of vertices |V (G)| of a graph G
is called the order of G and is denoted by n = n(G). The open neighborhood
N(v) = N(v, G) of the vertex v consists of the vertices adjacent to v, and
the closed neighborhood of v is N [v] = N [v, G] = N(v) ∪ {v}. For a subset
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X ⊆ V (G), we define N(X) = N(X, G) =
⋃

v∈X N(v) and N [X] = N [X, G]
= N(X) ∪ X. In addition, let G[X] be the subgraph induced by X, and
let e(X) be the number of edges in G[X]. The vertex v is a leaf of G if
d(v,G) = 1, and an isolated vertex if d(v, G) = 0, where d(v) = d(v, G) =
|N(v)| is the degree of v ∈ V (G). Let n1 = n1(G) be the number of leafs in
a graph G. By δ = δ(G) and ∆ = ∆(G), we denote the minimum degree and
maximum degree of the graph G, respectively. If X and Y are two disjoint
subsets of V (G), then let e(X,Y ) be the number of edges with one end in
X and the other in Y .

A set D ⊆ V (G) is a dominating set of the graph G if N [D, G] = V (G).
The domination number γ = γ(G) of G is the cardinality of any smallest
dominating set.

Let I ⊆ V (G) and v ∈ I. A vertex u ∈ V (G)−I is an I-external private
neighbor of v if N(u) ∩ I = {v}. The set of all I-external private neighbors
of v is denoted by EPN(v, I) and

PN(v, I) =

{
EPN(v, I) ∪ {v} if v is isolated in G[I]

EPN(v, I) otherwise.

A subset I ⊆ V (G) is irredundant if PN(v, I) 6= ∅ for all v ∈ I. An
irredundant set I is maximal irredundant if for every vertex u ∈ V (G) − I,
the set I ∪ {u} is not irredundant. The minimum cardinality taken over all
maximal irredundant sets of G is the irredundance number ir(G) of G.

For detailed information on domination, irredundance, and related top-
ics see the comprehensive monograph [3] by Haynes, Hedetniemi, and Slater.

Let T be a tree of maximum degree ∆(T ) ≥ 3. If T is not isomorphic
to the star K1,∆(T ), then Cockayne [1] recently proved that

ir(T ) ≥ 2(n(T ) + 1)
2∆(T ) + 3

.

In this note we will present the following lower bound of the irredundance
number of a tree. If T is a tree, then

ir(T ) ≥ n(T ) + 2− n1(T )
3

.

Since γ(G) ≥ ir(G) is valid for an arbitrary graph G, this lower bound is an
improvement of Lemańska’s [4] inequality

γ(T ) ≥ n(T ) + 2− n1(T )
3

.
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2. Preliminary Results

The following partition of V (G) induced by the vertex subset I will be
involved in the proof of the desired bound.

V (G) = I ∪B ∪A ∪R (disjoint union) where

B = {u ∈ V (G)− I : |N(u) ∩ I| = 1}
A = {u ∈ V (G)− I : |N(u) ∩ I| ≥ 2}
R = V (G)−N [I].

In addition, let B = B0 ∪B1 and R = R0 ∪R1 such that

B0 = {u ∈ B : d(u) ≥ 2}
B1 = {u ∈ B : d(u) = 1}
R0 = {u ∈ R : d(u) ≥ 2}
R1 = {u ∈ R : d(u) = 1}.

In the following the cardinality of any set (except V (G)) denoted by any
upper case letter, will be denoted by the corresponding lower case letter
i.e., |B| = b, |A| = a etc. The proof of our main result is based on a
useful characterization of maximal irredundant sets by Cockayne, Grobler,
Hedetniemi, and McRae [2].

Theorem 2.1 ([2] 1997). Let I be an irredundant set in a graph G. The
set I is maximal irredundant if and only if for each w ∈ N [R], there exists
a vertex v ∈ I such that

PN(v, I) ⊆ N [w].(1)

If (1) is satisfied we say that w annihilates v.

Suppose that F(i, n1) is the set of forests of maximum order which have n1

leafs and a maximal irredundant set of size i.

Lemma 2.2. Let I be a maximal irredundant set of size i of the forest
G ∈ F(i, n1). For each w ∈ R, there exists exactly one v ∈ I such that w
annihilates v.
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Proof. In view of Theorem 2.1, there exists a vertex v ∈ I such that w
annihilates v, that means PN(v, I) ⊆ N [w]. Suppose that there exist two
different vertices v1, v2 ∈ I such that w annihilates v1 as well as v2. Let
{u1} = N(w) ∩ N(v1) and {u2} = N(w) ∩ N(v2). Form the graph G1 by
deleting the edge wu2 and adding a vertex w2 to the set R and the new edges
ww2 and u2w2. Since w2 annihilates v2 in G1, the set I is, by Theorem 2.1,
furthermore a maximal irredundant set of the tree G1 with n1 leafs. This
is a contradiction to the hypothesis that G ∈ F(i, n1), and the proof of
Lemma 2.2 is complete.

3. Main Result

Theorem 3.1. If T is a tree of order n with n1 leafs, then

ir(T ) ≥ n + 2− n1

3
.(2)

Proof. Since the result is immediate for n ≤ 3, we assume in the following
that n ≥ 4. It is evident that it is enough to prove inequality (3) for
T ∈ F(i, n1). Thus let now T ∈ F(i, n1), and let I be a maximal irredundant
set of size i. It is well-known that |V (T )| − 1 = |E(T )|, and thus we deduce
that

|V (T )| − 1 = i + b0 + a + r0 + b1 + r1 − 1

= e(B0) + e(B0, A) + e(A) + e(I) + e(R0) + e(B0, R0) + e(A,R0)

+ e(I, B0) + e(I, A) + b1 + r1.(3)

Next let B0 = X ∪ Y and R0 = R′
0 ∪R′′

0 with

X = {u ∈ B0 : N(u) ∩R 6= ∅}
Y = {u ∈ B0 : N(u) ∩R = ∅}

R′
0 = {w ∈ R0 : |N(w) ∩B| = 1}

R′′
0 = {w ∈ R0 : |N(w) ∩B| ≥ 2}.

Furthermore, we define the set X0 ⊆ X as follows: If u ∈ X is adjacent to
the vertex w ∈ R, then u is also adjacent to the vertex v with the property
that w annihilates v. Finally, let X1 = X −X0.
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If u ∈ Y , then d(u) ≥ 2. Because of |N(u) ∩ I| = 1 and |N(u) ∩R| = 0, the
vertex u is adjacent to a vertex of A ∪B0. This easily leads to

y

2
≤ e(B0) + e(B0, A).(4)

Let u ∈ X0 and v ∈ I the unique neighbor of u in I. By the definition of
X0, there exists a vertex w ∈ R ∩ N(u) such that PN(v, I) ⊆ N [w]. This
implies that v is no isolated vertex in the subgraph G[I], because otherwise
we would arrive at the contradiction {v} ⊆ PN(v, I) 6⊆ N [w]. Let u1 6= u be
a further vertex in X0. Suppose that v is also the unique neighbor of u1 in
I. Since T is a tree, we observe that u1 and w are not adjacent. This leads
to the contradiction {u1} ⊆ PN(v, I) 6⊆ N [w]. Altogether, we conclude that

x0

2
≤ e(I).(5)

According to Theorem 2.1, each vertex w ∈ R′
0 annihilates a vertex v in

I. Hence each vertex w ∈ R′
0 is adjacent to a vertex u ∈ B0. Moreover,

in view of Lemma 2.2, the vertex u is unique and thus |R′
0| ≤ e(R′

0, B0).
The condition d(w) ≥ 2 shows that w is adjacent to a further vertex in
A ∪R. Since, by Theorem 2.1, R1 is not possible, w is adjacent to a vertex
in A ∪ R0. We obtain the minimum number of edges if each w ∈ R′

0 is
adjacent to exactly one vertex of R′

0 and w has no neighbor in A∪R′′
0 . This

yields
|R′

0|
2

≤ e(R′
0) + e(R′

0, R
′′
0) + e(R′

0, A)

and thus

3|R′
0|

2
≤ e(R′

0, B0) + e(R′
0) + e(R′

0, R
′′
0) + e(R′

0, A)

≤ e(R′
0, B0) + e(R0) + e(R′

0, A).(6)

Assume that w ∈ R′′
0 . Again Theorem 2.1 implies that w annihilates a vertex

v in I. Hence w is adjacent to a vertex u ∈ X0. In view of Lemma 2.2, the
vertex u is unique and thus

|R′′
0 | = e(R′′

0 , X0).(7)

In addition, the definition of R′′
0 shows that w is adjacent to a further vertex

u′ ∈ X1, and each vertex u′′ ∈ X1 is adjacent to a vertex in R′′
0 . Hence it
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follows that

e(R′′
0 , X1) ≥ max{|R′′

0 |, |X1|} ≥ |R′′
0 |

2
+
|X1|
2

.(8)

Combining (5) – (9) with the inequality

e(R′′
0 , X0) + e(R′′

0 , X1) + e(R′
0, B0) ≤ e(R0, B0)

we arrive at

b0

2
+

3r0

2
=

x0

2
+

x1

2
+

y

2
+

3|R′
0|

2
+

3|R′′
0 |

2

=
x0

2
+

y

2
+

3|R′
0|

2
+ |R′′

0 |+
x1

2
+
|R′′

0 |
2

≤ e(I) + e(B0) + e(B0, A) + e(R′
0, B0) + e(R0)

+ e(R′
0, A) + e(R′′

0 , X0) + e(R′′
0 , X1)

≤ e(I) + e(B0) + e(B0, A) + e(R0, B0) + e(R0) + e(R0, A) + e(A).

Now we deduce from (4)

i + b0 + a + r0 − 1 = e(B0) + e(B0, A) + e(A) + e(I) + e(R0) + e(B0, R0)

+ e(A,R0) + e(I,B0) + e(I,A)

≥ b0

2
+

3r0

2
+ b0 + 2a

≥ 3b0

2
+

3r0

2
+

3a

2
.

This implies 2i− 2 ≥ b0 + a + r0 and thus

2i− 2 + n1 ≥ b0 + a + r0 + n1.

Since by definition n1 ≥ b1 + r1, we obtain

3i− 2 + n1 ≥ i + b0 + a + r0 + b1 + r1 = n,

and this leads to
i ≥ n + 2− n1

3
.
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Since the last bound is valid for all maximal irredundant sets I with |I| = i,
the desired inequality (3) is proved.

Remark 3.2. If T is a tree, then Lemańska [4] has proved that

γ(T ) =
n(T ) + 2− n1(T )

3

if and only if the distance between each pair of distinct leafs in T is congruent
2 modulo 3. An analyses of the proof of Theorem 3.1 shows that we obtain
equality in (3) for exactly the same family of trees.
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