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Abstract

A general model of a random digraph D(n, P) is considered. Based
on a precise estimate of the asymptotic behaviour of the distribution
function of the binomial law, a problem of the distribution of extreme
in-degrees of D(n,P) is discussed.
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1. Introduction

We begin with a definition of a general model of a random digraph that was

introduced in [6]. Let P = (P,..., P,—1) be a probability distribution, i.e.,
an n-tuple of non-negative real numbers which satisfy Z?;Ol P; = 1. Denote
by D(n,P) a random digraph on a vertex set V' = {1,2,...,n} such that
(here, and what follows, N1 (i) denotes the set of images of a vertex i):

(1) each vertex ”chooses” its out-degree and then its images independently
of all other vertices,

(2) each vertex i € V chooses its out-degree according to the probability
distribution P, i.e.,

Pr{INT(i)|=k} =P, k=0,1,....,n—1,
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(3) for every S C V' \ {i}, with |S| = k, the probability that S coincides
with the set of images of a vertex ¢ equals

PNNW@:S}:BJC?#)

i.e., vertex ¢ ”chooses” uniformly the set of images.

In particular, if P is such that P; = 1 for some d,1 < d < n — 1, the
model D(n,P) is equivalent to a random d-out regular digraph D(n,d).
Such a digraph can also be defined as an element chosen at random from
the family of all ("gl)n digraphs on n labeled vertices each of out-degree d.
(Alternatively, D(n,d) can be thought as a representation of a sum of d
dependent random mappings as illustrated in [7].)

In a case when P is a binomial distribution B(n — 1, p), i.e.,

P = (q”_l,...,b(k‘;n—1,p),...,pn_1>

where

Y »r n—r
b(rin,p) = <T>p q

the model D(n,P) is equivalent to a random digraph D(n,5) on n labeled
vertices in which each of n(n — 1) possible arcs appears independently with
a given probability p =1 —gq.

2. Preliminaries

Let XT be a discrete random variable having a probability distribution
P = (P07P17"'7P7L—1) :

PriXt =k} = Py, k=0,1,...,n—1.

Due to the homogeneous structure of the random digraph D(n,P), the
random variable Xt = X7T(i) defines the out-degree of a given vertex
i€V ={12,...,n}of D(n,P). Then the probability that a given subset of
vertices is contained in the set of images of vertex ¢ € V' can be expressed by
appropriate factorial moment of X . As a matter of fact the following prop-
erty is true (see [8]). Here and what follows (n)y =n(n —1)...(n —k+1)
and Ey(X) stands for the k-th factorial moment of a random variable X.



IN-DEGREE SEQUENCE IN A GENERAL MODEL OF ... 195

Property 1. For a given i,1 < i <mn, let U C V\{i} and |[U| =t > 1.

Then
1

Pr{iU C NT(i)} = )

Ey(XT).

In particular, if ¢ = 1 the above property defines an arc occurrence proba-
bility in digraph D(n, P). Let

n—1
ET=E"(P)=> kP;.
k=0
Then the probability of an arc in D(n,P) is given by

. _ E*(P)

n—1"

(1) p
Now let X~ = X~ (i) be the in-degree of a given vertex i € {1,2,...,n} of
D(n,P). Clearly, the probability distribution of X~ depends on P. We have
the following result (see [8]).

Property 2. For i = 1,2,...,n the random variable X~ (i) has binomial
distribution B(n — 1, p*).

In contrast with out-degrees of vertices of D(n,P), the random variables

X~(i), i = 1,2,...,n, are not, in general, independent. The only case
when these variables are independent is when X T is binomially distributed
(see [8]).

The main aim of our paper is to study the probabilistic properties of
extreme in-degrees of the random digraph D(n,P). We show that the in-
degree sequence of D(n,P) behaves similarly to the degree sequence of the
classical model of a random graph (see [11]). Our results generalize those
presented in [10].

Let G, be an arbitrary random graph model defined on n vertices. If
is a graph property then the assertion ”G,, has property m asymptotically

almost surely (a.a.s.)” means

lim P(G,, has property m) = 1.

n—oo

The symbols 0, O and ~ are used with respect to n — oo.
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Consider ”degree” sequence d(l) < d(g) < .o < d(n) of G,. If G, is a
simple (directed) graph then by the "degree” sequence we mean sequence of
degrees (in-degrees or out-degrees) written in non-decreasing order. Denote
by X,, Ys; and Z; the number of vertices of "degree” = r, < s and > ¢ in Gy,
respectively.

Let B(s;n,p) denote probability of at most s successes in the binomial
distribution. Similarly, let F'(¢; n, p) denote probability of at least ¢ successes
in such distribution. In the proofs of our main results we will need a very
precise etimate of the asymptotic behaviour of the distribution function of
the binomial law with parameters n and p, where p = p(n) = o(1) and
np/logn — 0o as n — oo (see [5] and [12]).

Consider the equation

1
(I+2)log(l+2)+ —(1 —az)log(l —az) =u
a
where 0 < u < oo and a > 0. It is known (see e.g. [5]) that this equation

has a negative solution z(u, a) and a positive solution y(u, a), which in some
neighbourhood of zero are given by the power series

o Awa) == (12fa)é * i<—1)ifi(a) (1%:‘a)i/2

i=2
and
i/2
) y(u,a>——(1+a) Zfz (%)
in which

Fi+1)(i+3)...(i+2k—1)
firr(a) = 2—1—1 Zkl k(2 3)k . (i 4+ 1)(5 + 2)]k

(1—a®)*1(14a®)k . [1 4 (—1)lait]k
(14 a)k

X

where k = k1+ko+. .. k; and the summation is over all non-negative integers
ki,...,k; such that ki 4+ 2kg + - - - + ik; = 1. In particular,

2u 2 1-a V21 +4a + a? 3/2
— Ut U
l+a 3(1+a) 36 (14 a)3/?

4) z(u,a) = — (
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and
1
2u \? l1-a V21+4da+a® 5
5 — A R L
(5) ylwa) <1+a> 30+ 36 atap2 "t T
Now put
(6) (n,p) = — (logn — ~loglogn
u =un = — ogn — — 10 .
P np g 9 glog

In proofs of our main results we will need the following lemma giving a very
precise asymptotic behaviour of binomial distribution (see [12]).

Lemma 1. Let m = np = w(n)logn where w(n) — oo as n — o0 in
such a way that p = p(n) = o(1). Assume that x = x(n) satisfies z* =

o(min{w(n),logn}), and put

s=m+mz <u,§> —< m >1/2(x—log\/4ﬁ—|—o(l))

2logn

t=m+my <u,§> +< = >1/2(:p—log\/4ﬁ+o(1))

2logn

where u is given by (6). Then

(7) nB(s;n,p) ~nF(t;n,p) ~e™*
and
2logn)1/2 _
8 nb(s;n,p) ~ nb(t;n,p) ~ e .
®) () ~ it )~ (2 .

3. Main Results

Let X, = X, (P) denote the number of vertices of in-degree r in a general
model of a random digraph D(n,P). Then by Property 2 we have

Property 3. The expected value of X, equals

E(X, ) =nb(r;n—1,p")

r

where p* is given by (1).
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Now let us put Y;” =Y, (P) and Z; = Z, (P) for the number of vertices of
in-degree of at most s and at least t in D(n,P), respectively. The following
two lemmas, which proofs will be shown in the next section, are the basic
tool in proving our main results.

Lemma 2.

(9) E(Yy) =nB(s;n—1,p%)
and

(10) E(Z;)=nF (t;n—1,p").

Lemma 3. (i) If r = o(n) then
Ey(X,;) <nPb*(rin — 1,p")(1 + o(1)).
(ii) If ET = E*(P) = o(n),s < np*,t > np* and t = o(n) then

By (Yy) <nB*(sin — 1,p")(1+ o(1))

and
Eo(Z7) <nPF%(t;n —1,p")(1 +0(1)) .

Let

Aoy Sdg = - = dg,
be the in-degree sequence of vertices in a random digraph D(n,P). The first
result shows that for any fixed ¢ > 2 the first i-th and the last ¢-th terms of
the in-degree sequence of D(n,P) are asymptotically almost surely strictly
increasing. For the sake of simplicity let us denote

(11) s=3sn,P)=(1+z(u,a))E*"
(12) t=t(n,P)=(1+y(u,a)E"
and

NSV
(13) e =)= (5] at)

where power series z(u,a) and y(u, a) are given by (2) and (3), respectively
and x(n) is a sequence tending to infinity arbitrary slowly as n — oc.
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Theorem 1. Let P = (Py, P1, ..., P,—1) be such that
E* = w(n)log(n) = o(n),

where w(n) — oo as n — oo. Then for any fived i > 2

(14) s—g0<d(1)<---<d&)<s+g0 a.a.s.
and
(15) t—p<dg_ ;g < <dg <t+y aas.

where s and t are given by (11) and (12) with

1 1
(16) u=u(n,P) = o <logn ~5 log log n)

E+

(17) a=a(n,P) = T

and ¢ is given by (13).

Proof. Put r = s — ¢. Then by Lemma 2 we have

EY, " )=nB(s—¢;n—1,p).
Since
. ET wn)logn
P T n—1  n-1
and

w(n)logn w(n)

s—@= ﬁ(1 + 2(u,a)) — (2(”—1)> v z(n)

so by Lemma 1

(18) = o(1).
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Consequently
Pr(day <s - ) = Pr(¥; 21)
< E(Y,7)

= o(1).
Now let us put » = s + . Then

(19) B(Y~

) =~ "™ = 0 asn — 00

Moreover, routine calculations show that by (4), (11), (13), (16) and (17)
we have

r=s+p<np(l+o(l)).

So by Lemma 2 and 3
Er(Y,") < E*(Y,7)(1 +o(1))
which implies that
Var(Y,") < B(Y,”) + o(E*(Y,")).
Thus by Chebyshev’s inequality

4Var(Y,")

pr (v < 5B < P =),

Consequently, for any fixed ¢ > 1
Pr(d&) <s+¢) = Pr(Y,” >1)

>1-0(1).

To show that the sequence is stricly increasing we have to show that prob-
ability that there are at least two vertices of equal in-degree < s + ¢ tends
to zero as n — oo. We have

s+p s+

Y Pr(X, =22) <) By X;).
k=0

k=0
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Since, by Lemma 3,
Ey(X;) < EA(X)(1+ o(1))

so applying Lemma 1 we obtain

s+ s+
D By(Xy) < ) nbP(k,n—1,p%)(1+o(1))
k=0 k=0
< nb(s +p;n—1,p")nB(s + g;n — 1,p*)(1 + o(1))

921 1/2
-~ ( Ogn) €—2x(n)
np*q*

= o(1)
which completes the proof of (14). The proof of (15) follows analogously. m

The above theorem gives a very precise estimate of the in-degree distribution
of D(n,P) in a case when the out-degree distribution P = (Py, P1, ..., Pph—1)
satisfies the condition

The disadvantage of this result is the complicated form for given bounds
which are expressed by appropriate power series. It appears that if E1(P)
tends to infinity a bit faster than w(n)logn much more pleasant estimates
for in-degree sequence can be given. Now let

(20) Bt o ogmt/2 4 (20N

5= — (2np*q*logn) /< + Slogn log logn

x %\ 1/2
(21) t=E' + (2np*q*logn)/? — <g§>gqn> oglogn
and
wox N 1/2
np q

22 =
(22) o) = (520 ato)

where x(n) — 0o as n — oo but z(n) = o(loglogn).
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Theorem 2. Let ET > [y(n)(logn)3],v(n) — 0o as n — oo. Then for any
fized i > 1
(23) S—gogd(l)<d(2)<--‘<d(i)§8+ﬁp a.a.s.

and

(24) t—p < d(n,iJrl) < < d(nfl) < d(n) <t+¢ a.a.s.

where s,t and ¢ are given by (20), (21) and (22), respectively.

Proof. Put
r=FET —u\/np*q*

where

1\ /1
v=uv(n) = (2logn)"/? - (2logn> <2loglogn - x(n)) :

Then the assumption np* > v(n)(logn)? implies

\/n;*q < (fn))m =

so applying the classical DeMoivre-Laplace formula (see Feller [4] Chapter 7)
we obtain

Now putting
2z =E" —wy\/np*q*

where

1\
w = w(n) = (2logn)"/? — (210gn> <2 loglogn + x(n))
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we have

E(Y,) —ococasn— o0

and

> Pr(X; >2)=o(1).

k=0

Therefore the same argument as in the proof of Theorem 1 implies the first
part of our result. The second part follows analogously. [

4. Proofs of Lemmas
Proof of Lemma 2.

w0 (U () ()

aQ,--3ap_1>0
ao+-+an—1=k

b0 sbyy—1 20 T J
bo+---+bp—1=n—k—1

T [

7=0
Hence
n—1 j
*
=3P
p Z Tn—1
7=0
we have

B = nZ (" N 1) (P (g")"

k=0

=nB(t;n—1,p%).

Proof of (10) is analogous. |
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Proof of Lemma 3. We show part (i). Let £ denotes the set of all arcs
in D(n,P). Let A be the event that two given vertices from V, say v; and
v, have the in-degree equal to r in D(n,P). Then

(25) Ey(X;7) = (n)2Pr(A).

Let
B(vy) ={v e V\{v1,v2} : (v,v1) € L}

and
B(vg) ={v € V\ {v1,v2} : (v,v2) € L}.

Then considering the event A; that (vi,v2) ¢ £ and (va,v1) ¢ L, we have
clearly that

[B(vi)| = [B(vz)| =7 and [B(vi) N B(vz)| = k

for k= f,...,r, where f = max{0,2r — (n — 2)} and

B n—2 n—2\ 72
Pr(4)) = |P E”ilg + 4 Py E?j;]
L 1 n—1
1 n—1y\1?
- Pl(l_n—l)jL +Pn1(1_n—1>}
B 1 n—1 2
= |1 n—1 ;ZPZ
= (¢

Analogously denoting by As, A3 and A4 the events corresponding to the case
o (v1,v2) ¢ L and (ve,v1) € £
o (vi,v2) € L and (vo,v1) ¢ L
e (vi,v2) € L and (va,v1) € L,
respectively we have
Pr(As) = Pr(As) =p*¢"

and
Pr(As) = (0°)?.



IN-DEGREE SEQUENCE IN A GENERAL MODEL OF ... 205

Furthermore, let B; stand for the event that a given vertex from the set
V' \ {vi,v2} emanates j (j = 0,1,2) arcs to vertices {v1,v2}. Assume that
for j = 1 it is known to which vertex, vy or vs, an arc is coming to. Then
for j =0,1,2 we have

Pr(B;) =Y P j=0,1,2.
= ()
In particular
n—2 (1'173)
Pr(Bi) =) Py
i=1 (")
n—2 . .
B i(n—i-1)
N ;R(n— 1)(n—2)
n—2 n—2
B i(n—1) B ‘ i2
_; ‘“(n—1)(n—2) 2 ‘(n—1)(n—2)
n—1 i n—2 2
D B e VR Bk ey ey

Similarly we get that Pr(By) < (¢*)? and Pr(Bz) < (p*)?. Consequently,
with

H(a,b,c,e)

_ (- 2 - a n—2-a k 2(r—k)—e n—2—2r+k+e
= ( . )Z (k)< . )PT(BQ) Pr(B) Pr(By) ,

k=b

f=max{0,2r +2 —n},g = max{0,2r + 1 —n} and h = max{0,2r —n} we
have
PT(A’Al) = H(T’ f7 T, 0)

Pr(A|Ag) = Pr(AlAs) = H(r,g,r — 1,1)
Pr(AlAy)=H(r—1,h,r—1,2).
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Applying the well-known relation

S (-

we obtain the following estimate

Pr(A|A;)Pr(Ay)
= (n R 2) I; (Z) (n ;f R T> Pr(Ba)* Pr(By) 2R Pr(By)" 22 (¢)?
(B0 e

< (n ; 2) (n ; 2) (p") " ()2

— [(n ; 1) (p*)r(q*)n—r_lr <1 . i 1>2

20 4. ok 2,7
=t (n—1im,p7) (14+0%(2)).
Analogously
Pr(A|As)Pr(Ay) = Pr(A|As)Pr(As)

r r
= b (n—1rnp 1—
(n 7r7p)n_1< n_1>

and

Pr(A|Ay)Pr(Ag) = b (n — 1;7,p%) e

Thus by the assumption that » = o(n) we get

4
Pr(A) =) Pr(A|A:)Pr(A;)
=1

< b(n—Lir,p*)(1+0(1))
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and consequently by (25)

Exy(X,) <nPb*(n — 13, p) (14 0(1)).

Proof of part (ii) is analogous. |
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