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Abstract

A general model of a random digraph D(n,P) is considered. Based
on a precise estimate of the asymptotic behaviour of the distribution
function of the binomial law, a problem of the distribution of extreme
in-degrees of D(n,P) is discussed.
Keywords and phrases: degree sequence, general model of a random
digraph.
2000 Mathematics Subject Classification: 05C80, 05C07.

1. Introduction

We begin with a definition of a general model of a random digraph that was
introduced in [6]. Let P = (P0, . . . , Pn−1) be a probability distribution, i.e.,
an n-tuple of non-negative real numbers which satisfy

∑n−1
i=0 Pi = 1. Denote

by D(n,P) a random digraph on a vertex set V = {1, 2, . . . , n} such that
(here, and what follows, N+(i) denotes the set of images of a vertex i):

(1) each vertex ”chooses” its out-degree and then its images independently
of all other vertices,

(2) each vertex i ∈ V chooses its out-degree according to the probability
distribution P, i.e.,

Pr{|N+(i)| = k} = Pk, k = 0, 1, . . . , n− 1,
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(3) for every S ⊆ V \ {i}, with |S| = k, the probability that S coincides
with the set of images of a vertex i equals

Pr{N+(i) = S} = Pk/

(
n− 1

k

)

i.e., vertex i ”chooses” uniformly the set of images.
In particular, if P is such that Pd = 1 for some d, 1 ≤ d ≤ n − 1, the
model D(n,P) is equivalent to a random d-out regular digraph D(n, d).
Such a digraph can also be defined as an element chosen at random from
the family of all

(
n−1

d

)n
digraphs on n labeled vertices each of out-degree d.

(Alternatively, D(n, d) can be thought as a representation of a sum of d
dependent random mappings as illustrated in [7].)

In a case when P is a binomial distribution B(n− 1, p), i.e.,

P =
(
qn−1, . . . , b(k; n− 1, p), . . . , pn−1

)

where

b(r; n, p) =
(

n

r

)
prqn−r

the model D(n,P) is equivalent to a random digraph D(n,B) on n labeled
vertices in which each of n(n− 1) possible arcs appears independently with
a given probability p = 1− q.

2. Preliminaries

Let X+ be a discrete random variable having a probability distribution
P = (P0, P1, . . . , Pn−1) :

Pr{X+ = k} = Pk, k = 0, 1, . . . , n− 1.

Due to the homogeneous structure of the random digraph D(n,P), the
random variable X+ = X+(i) defines the out-degree of a given vertex
i ∈ V = {1, 2, . . . , n} of D(n,P). Then the probability that a given subset of
vertices is contained in the set of images of vertex i ∈ V can be expressed by
appropriate factorial moment of X+. As a matter of fact the following prop-
erty is true (see [8]). Here and what follows (n)k = n(n− 1) . . . (n− k + 1)
and Ek(X) stands for the k-th factorial moment of a random variable X.
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Property 1. For a given i, 1 ≤ i ≤ n, let U ⊆ V \ {i} and |U | = t ≥ 1.
Then

Pr{U ⊆ N+(i)} =
1

(n− 1)t
Et(X+) .

In particular, if t = 1 the above property defines an arc occurrence proba-
bility in digraph D(n,P). Let

E+ = E+(P) =
n−1∑

k=0

kPk .

Then the probability of an arc in D(n,P) is given by

p∗ =
E+(P)
n− 1

.(1)

Now let X− = X−(i) be the in-degree of a given vertex i ∈ {1, 2, . . . , n} of
D(n,P). Clearly, the probability distribution of X− depends on P. We have
the following result (see [8]).

Property 2. For i = 1, 2, . . . , n the random variable X−(i) has binomial
distribution B(n− 1, p∗).

In contrast with out-degrees of vertices of D(n,P), the random variables
X−(i), i = 1, 2, . . . , n, are not, in general, independent. The only case
when these variables are independent is when X+ is binomially distributed
(see [8]).

The main aim of our paper is to study the probabilistic properties of
extreme in-degrees of the random digraph D(n,P). We show that the in-
degree sequence of D(n,P) behaves similarly to the degree sequence of the
classical model of a random graph (see [11]). Our results generalize those
presented in [10].

Let Gn be an arbitrary random graph model defined on n vertices. If π
is a graph property then the assertion ”Gn has property π asymptotically
almost surely (a.a.s.)” means

lim
n→∞P (Gn has property π) = 1 .

The symbols o,O and ∼ are used with respect to n →∞.
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Consider ”degree” sequence d(1) ≤ d(2) ≤ · · · ≤ d(n) of Gn. If Gn is a
simple (directed) graph then by the ”degree” sequence we mean sequence of
degrees (in-degrees or out-degrees) written in non-decreasing order. Denote
by Xr, Ys and Zt the number of vertices of ”degree” = r,≤ s and ≥ t in Gn,
respectively.

Let B(s;n, p) denote probability of at most s successes in the binomial
distribution. Similarly, let F (t; n, p) denote probability of at least t successes
in such distribution. In the proofs of our main results we will need a very
precise etimate of the asymptotic behaviour of the distribution function of
the binomial law with parameters n and p, where p = p(n) = o(1) and
np/ log n →∞ as n →∞ (see [5] and [12]).

Consider the equation

(1 + z) log(1 + z) +
1
a
(1− az) log(1− az) = u

where 0 ≤ u < ∞ and a ≥ 0. It is known (see e.g. [5]) that this equation
has a negative solution z(u, a) and a positive solution y(u, a), which in some
neighbourhood of zero are given by the power series

z(u, a) = −
(

2u

1 + a

) 1
2

+
∞∑

i=2

(−1)ifi(a)
(

2u

1 + a

)i/2

(2)

and

y(u, a) = −
(

2u

1 + a

) 1
2

+
∞∑

i=2

fi(a)
(

2u

1 + a

)i/2

(3)

in which

fi+1(a) =
(−1)i

i + 1

∑ (−1)k(i + 1)(i + 3) . . . (i + 2k − 1)
k1! . . . ki!(2 · 3)k1 . . . [(i + 1)(i + 2)]ki

× (1− a2)k1(1 + a3)k2 . . . [1 + (−1)iai+1]ki

(1 + a)k

where k = k1+k2+. . . ki and the summation is over all non-negative integers
k1, . . . , ki such that k1 + 2k2 + · · ·+ iki = i. In particular,

z(u, a) = −
(

2u

1 + a

) 1
2

+
1− a

3(1 + a)
u +

√
2

36
1 + 4a + a2

(1 + a)3/2
u3/2 + . . .(4)
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and

y(u, a) =
(

2u

1 + a

) 1
2

+
1− a

3(1 + a)
u−

√
2

36
1 + 4a + a2

(1 + a)3/2
u3/2 + . . .(5)

Now put

u = u(n, p) =
1
np

(
log n− 1

2
log log n

)
.(6)

In proofs of our main results we will need the following lemma giving a very
precise asymptotic behaviour of binomial distribution (see [12]).

Lemma 1. Let m = np = ω(n) log n where ω(n) → ∞ as n → ∞ in
such a way that p = p(n) = o(1). Assume that x = x(n) satisfies x2 =
o(min{ω(n), log n}), and put

s = m + mz

(
u,

p

q

)
−

(
m

2 log n

)1/2

(x− log
√

4π + o(1))

t = m + my

(
u,

p

q

)
+

(
m

2 log n

)1/2

(x− log
√

4π + o(1))

where u is given by (6). Then

nB(s; n, p) ∼ nF (t; n, p) ∼ e−x(7)

and

nb(s; n, p) ∼ nb(t; n, p) ∼
(

2 log n

npq

)1/2

e−x.(8)

3. Main Results

Let X−
r = X−

r (P) denote the number of vertices of in-degree r in a general
model of a random digraph D(n,P). Then by Property 2 we have

Property 3. The expected value of X−
r equals

E(X−
r ) = nb(r; n− 1, p∗)

where p∗ is given by (1).
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Now let us put Y −
s = Y −

s (P) and Z−t = Z−t (P) for the number of vertices of
in-degree of at most s and at least t in D(n,P), respectively. The following
two lemmas, which proofs will be shown in the next section, are the basic
tool in proving our main results.

Lemma 2.

E(Y −
s ) = nB (s; n− 1, p∗)(9)

and

E(Z−t ) = nF (t; n− 1, p∗) .(10)

Lemma 3. (i) If r = o(n) then

E2(X−
r ) ≤ n2b2(r; n− 1, p∗)(1 + o(1)) .

(ii) If E+ = E+(P) = o(n), s < np∗, t > np∗ and t = o(n) then

E2(Y −
s ) ≤ n2B2(s; n− 1, p∗)(1 + o(1))

and
E2(Z−t ) ≤ n2F 2(t; n− 1, p∗)(1 + o(1)) .

Let
d−(1) ≤ d−(2) ≤ · · · ≤ d−(n)

be the in-degree sequence of vertices in a random digraph D(n,P). The first
result shows that for any fixed i ≥ 2 the first i-th and the last i-th terms of
the in-degree sequence of D(n,P) are asymptotically almost surely strictly
increasing. For the sake of simplicity let us denote

s = s(n,P) = (1 + z(u, a))E+(11)

t = t(n,P) = (1 + y(u, a))E+(12)

and

ϕ = ϕ(n,P) =
(

E+

2 log n

)1/2

x(n)(13)

where power series z(u, a) and y(u, a) are given by (2) and (3), respectively
and x(n) is a sequence tending to infinity arbitrary slowly as n →∞.
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Theorem 1. Let P = (P0, P1, . . . , Pn−1) be such that

E+ = ω(n) log(n) = o(n),

where ω(n) →∞ as n →∞. Then for any fixed i ≥ 2

s− ϕ < d−(1) < · · · < d−(i) < s + ϕ a.a.s.(14)

and

t− ϕ < d−(n−i+1) < · · · < d−(n) < t + ϕ a.a.s.(15)

where s and t are given by (11) and (12) with

u = u(n,P) =
1

E+

(
log n− 1

2
log log n

)
(16)

a = a(n,P) =
E+

n− 1− E+
(17)

and ϕ is given by (13).

Proof. Put r = s− ϕ. Then by Lemma 2 we have

E(Y −
r ) = nB (s− ϕ; n− 1, p∗) .

Since

p∗ =
E+

n− 1
=

ω(n) log n

n− 1

and

s− ϕ =
ω(n) log n

n− 1
(
1 + z(u, a)

)−
(

ω(n)
2(n− 1)

)1/2

x(n)

so by Lemma 1

E(Y −
r ) ∼ e−x(n)

= o(1) .(18)
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Consequently
Pr(d(1) ≤ s− ϕ) = Pr(Y −

r ≥ 1)

≤ E(Y −
r )

= o(1) .

Now let us put r = s + ϕ. Then

E(Y −
r ) =∼ ex(n) →∞ as n →∞ .(19)

Moreover, routine calculations show that by (4), (11), (13), (16) and (17)
we have

r = s + ϕ < np∗(1 + o(1)) .

So by Lemma 2 and 3

E2(Y −
r ) ≤ E2(Y −

r )(1 + o(1))

which implies that

V ar(Y −
r ) ≤ E(Y −

r ) + o(E2(Y −
r )) .

Thus by Chebyshev’s inequality

Pr

(
Y −

r ≤ 1
2
E(Y −

r )
)
≤ 4V ar(Y −

r )
E2(Y −

r )
= o(1) .

Consequently, for any fixed i ≥ 1

Pr(d−(i) ≤ s + ϕ) = Pr(Y −
r ≥ i)

≥ 1− o(1) .

To show that the sequence is stricly increasing we have to show that prob-
ability that there are at least two vertices of equal in-degree ≤ s + ϕ tends
to zero as n →∞. We have

s+ϕ∑

k=0

Pr(X−
k ≥ 2) ≤

s+ϕ∑

k=0

E2(X−
k ) .
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Since, by Lemma 3,

E2(X−
r ) ≤ E2(X−

r )(1 + o(1))

so applying Lemma 1 we obtain

s+ϕ∑

k=0

E2(X−
k ) ≤

s+ϕ∑

k=0

n2b2(k, n− 1, p∗)(1 + o(1))

≤ nb(s + ϕ; n− 1, p∗)nB(s + ϕ; n− 1, p∗)(1 + o(1))

∼
(

2 log n

np∗q∗

)1/2

e−2x(n)

= o(1)

which completes the proof of (14). The proof of (15) follows analogously.

The above theorem gives a very precise estimate of the in-degree distribution
of D(n,P) in a case when the out-degree distribution P = (P0, P1, . . . , Pn−1)
satisfies the condition

E+(P) =
n−1∑

k=0

kPk = ω(n) log n .

The disadvantage of this result is the complicated form for given bounds
which are expressed by appropriate power series. It appears that if E+(P)
tends to infinity a bit faster than ω(n) log n much more pleasant estimates
for in-degree sequence can be given. Now let

s = E+ − (2np∗q∗ log n)1/2 +
(

np∗q∗

8 log n

)1/2

log log n(20)

t = E+ + (2np∗q∗ log n)1/2 −
(

np∗q∗

8 log n

)1/2

log log n(21)

and

ϕ(n) =
(

np∗q∗

2 log n

)1/2

x(n)(22)

where x(n) →∞ as n →∞ but x(n) = o(log log n).
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Theorem 2. Let E+ ≥ [γ(n)(log n)3], γ(n) →∞ as n →∞. Then for any
fixed i ≥ 1

s− ϕ ≤ d(1) < d(2) < · · · < d(i) ≤ s + ϕ a.a.s.(23)

and

t− ϕ ≤ d(n−i+1) < · · · < d(n−1) < d(n) ≤ t + ϕ a.a.s.(24)

where s, t and ϕ are given by (20), (21) and (22), respectively.

Proof. Put
r = E+ − v

√
np∗q∗

where

v = v(n) = (2 log n)1/2 −
(

1
2 log n

)1/2 (
1
2

log log n− x(n)
)

.

Then the assumption np∗ ≥ γ(n)(log n)3 implies

v3

√
np∗q∗

≤
(

8
γ(n)

)1/2

= o(1)

so applying the classical DeMoivre-Laplace formula (see Feller [4] Chapter 7)
we obtain

E(Y −
r ) ∼ n√

2π

1
v
e−

v2

2

∼ 1√
2π

e−x(n)

= o(1) .

Now putting
z = E+ − w

√
np∗q∗

where

w = w(n) = (2 log n)1/2 −
(

1
2 log n

)1/2 (
1
2

log log n + x(n)
)
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we have

E(Y −
z ) →∞ as n →∞

and
z∑

k=0

Pr(X−
k ≥ 2) = o(1).

Therefore the same argument as in the proof of Theorem 1 implies the first
part of our result. The second part follows analogously.

4. Proofs of Lemmas

Proof of Lemma 2.

E(Y −
t ) = n

t∑

k=0

(
n− 1

k

){ ∑

a0,...,an−1≥0

a0+···+an−1=k

(
n− 1

a0, . . . , an−1

) n−1∏

j=0

(
Pj

j

n− 1

)aj

×
∑

b0,...,bn−1≥0

b0+···+bn−1=n−k−1

(
n− 1

b0, . . . , bn−1

) n−1∏

j=0

[(
1− j

n− 1

)
Pj

]bj
}

= n
t∑

k=0

(
n− 1

k

)[(
n−1∑

j=0

Pj
j

n− 1

)k(n−1∑

j=0

(
1− Pj

j

n− 1

))n−k−1]
.

Hence

p∗ =
n−1∑

j=0

Pj
j

n− 1

we have

E(Y −
t ) = n

t∑

k=0

(
n− 1

k

)
(p∗)k(q∗)n−k−1

= nB(t; n− 1, p∗) .

Proof of (10) is analogous.
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Proof of Lemma 3. We show part (i). Let L denotes the set of all arcs
in D(n,P). Let A be the event that two given vertices from V , say v1 and
v2, have the in-degree equal to r in D(n,P). Then

E2(X−
r ) = (n)2Pr(A) .(25)

Let
B(v1) = {v ∈ V \ {v1, v2} : (v, v1) ∈ L}

and
B(v2) = {v ∈ V \ {v1, v2} : (v, v2) ∈ L} .

Then considering the event A1 that (v1, v2) /∈ L and (v2, v1) /∈ L, we have
clearly that

|B(v1)| = |B(v2)| = r and |B(v1) ∩B(v2)| = k

for k = f, . . . , r, where f = max{0, 2r − (n− 2)} and

Pr(A1) =

[
P1

(
n−2

1

)
(
n−1

1

) + · · ·+ Pn−1

(
n−2
n−1

)
(
n−1
n−1

)
]2

=
[
P1

(
1− 1

n− 1

)
+ · · ·+ Pn−1

(
1− n− 1

n− 1

)]2

=

[
1− 1

n− 1

n−1∑

i=1

iPi

]2

= (q∗)2 .

Analogously denoting by A2, A3 and A4 the events corresponding to the case

• (v1, v2) /∈ L and (v2, v1) ∈ L
• (v1, v2) ∈ L and (v2, v1) /∈ L
• (v1, v2) ∈ L and (v2, v1) ∈ L,

respectively we have
Pr(A2) = Pr(A3) = p∗q∗

and
Pr(A4) = (p∗)2 .
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Furthermore, let Bj stand for the event that a given vertex from the set
V \ {v1, v2} emanates j (j = 0, 1, 2) arcs to vertices {v1, v2}. Assume that
for j = 1 it is known to which vertex, v1 or v2, an arc is coming to. Then
for j = 0, 1, 2 we have

Pr(Bj) =
n−j∑

i=j

Pi

(
n−3
i−j

)
(
n−1

i

) j = 0, 1, 2 .

In particular

Pr(B1) =
n−2∑

i=1

Pi

(
n−3
i−1

)
(
n−1

i

)

=
n−2∑

i=1

Pi
i(n− i− 1)

(n− 1)(n− 2)

=
n−2∑

i=1

Pi
i(n− 1)

(n− 1)(n− 2)
−

n−2∑

i=1

Pi
i2

(n− 1)(n− 2)

≤
n−1∑

i=0

Pi
i

(n− 1)
−

n−2∑

i=1

Pi
i2

(n− 1)(n− 2)

≤ p∗ − (p∗)2 = p∗q∗ .

Similarly we get that Pr(B0) ≤ (q∗)2 and Pr(B2) ≤ (p∗)2. Consequently,
with

H(a, b, c, e)

=
(

n− 2
a

) c∑

k=b

(
a

k

)(
n− 2− a

c− k

)
Pr(B2)kPr(B1)2(r−k)−ePr(B0)n−2−2r+k+e,

f = max{0, 2r + 2− n}, g = max{0, 2r + 1− n} and h = max{0, 2r− n} we
have

Pr(A|A1) = H(r, f, r, 0)

Pr(A|A2) = Pr(A|A3) = H(r, g, r − 1, 1)

Pr(A|A4) = H(r − 1, h, r − 1, 2) .
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Applying the well-known relation
c∑

k=0

(
a

c

)(
n− 2− a

c− k

)
=

(
n− 2

c

)

we obtain the following estimate

Pr(A|A1)Pr(A1)

=
(

n− 2
r

) r∑

k=f

(
r

k

)(
n− 2− r

r − k

)
Pr(B2)kPr(B1)2(r−k)Pr(B0)n−2r−2+k(q∗)2

≤
(

n− 2
r

) r∑

k=f

(
r

k

)(
n− 2− r

r − k

)
(p∗)2r(q∗)2(n−r−1)

≤
(

n− 2
r

)(
n− 2

r

)
(p∗)2r(q∗)2(n−r−1)

=
[(

n− 1
r

)
(p∗)r(q∗)n−r−1

]2 (
1− r

n− 1

)2

= b2(n− 1; r, p∗)
(
1 + O2(

r

n
)
)

.

Analogously

Pr(A|A2)Pr(A2) = Pr(A|A3)Pr(A3)

= b2(n− 1; r, p∗)
r

n− 1

(
1− r

n− 1

)

and

Pr(A|A4)Pr(A4) = b2(n− 1; r, p∗)
r2

(n− 1)2
.

Thus by the assumption that r = o(n) we get

Pr(A) =
4∑

i=1

Pr(A|Ai)Pr(Ai)

≤ b2(n− 1; r, p∗)(1 + o(1))
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and consequently by (25)

E2(X−
r ) ≤ n2b2(n− 1; r, p∗)(1 + o(1)).

Proof of part (ii) is analogous.
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