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Abstract

Given integers p > k > 0, we consider the following problem of
extremal graph theory: How many edges can a bipartite graph of order
2p have, if it contains a unique k-factor? We show that a labeling of the
vertices in each part exists, such that at each vertex the indices of its
neighbours in the factor are either all greater or all smaller than those
of its neighbours in the graph without the factor. This enables us to
prove that every bipartite graph with a unique k-factor and maximal
size has exactly 2k vertices of degree k and 2k vertices of degree |V (G)|

2 .
As our main result we show that for k ≥ 1, p ≡ t (mod k), 0 ≤ t < k,

∗The results were proved while the author was working at the Lehrstuhl C für Mathe-
matik, RWTH-Aachen.
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a bipartite graph G of order 2p with a unique k-factor meets 2|E(G)| ≤
p(p + k)− t(k− t). Furthermore, we present the structure of extremal
graphs.
Keywords: unique k-factor, bipartite graphs, extremal graphs.
Mathematics Subject Classification: Primary 05C70; Secondary
05C35.

1. Introduction

All graphs considered are finite and simple. We use standard graph ter-
minology as can be found in [1]. A graph G has vertex set V (G), edge set
E(G), order n(G) = |V (G)| and size e(G) = |E(G)|. A graph is called bipar-
tite if the vertex set can be partitioned into two sets A,B such that A and
B constitute independent sets. With Ka,b we denote the complete bipartite
graph with partition A,B such that |A| = a and |B| = b. The neighbourhood
NG(v) of a vertex v is the set of all vertices of the graph G adjacent to v.
With dG(v) = |NG(v)| we denote the degree of v in G. A spanning subgraph
F is called a k-factor, if dF (v) = k for all v ∈ V (F ) = V (G). If a graph G
has a factor F , we colour the edges belonging to F red and all other ones
blue and denote with Nr(v) = NF (v) and Nb(v) = NG(v)\NF (v) the red
and blue neighbourhood of a vertex v, respectively. Then dr(v) = |Nr(v)|
and db(v) = |Nb(v)| denote the red and blue degree of v. The red neigh-
bourhood of a set X ⊂ V (G) is simply the union Nr(X) = ∪x∈XNr(x).
The blue neighbourhood of sets of vertices is defined analogously. We call a
path or a circuit alternating, if its edges are coloured red–blue or blue–red
in an alternating way. Note that the graph G has a second k-factor if and
only if it has an alternating circuit. Throughout the paper red edges will
be symbolized by a thick line x y and blue edges will be symbolized by a
thin line x y.

Following a result of J. Sheehan [6] on extremal graphs with a unique
hamiltonian cycle, G.R.T. Hendry [2] proved sharp results for the maximal
size of a graph with a unique 2-factor. P. Johann [4] and L. Volkmann [7]
improved Hendry’s results in special cases, however, the general case remains
unsolved for k ≥ 4. L. Volkmann further presented graphs of arbitrary order
n with a unique k-factor in [7], which he conjectured to have maximal size.
Another interesting conjecture in the same paper is that every graph with
a unique k-factor, for k ≥ 2, has exactly k vertices of degree k if its size is
maximal.
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Two of the authors presented in [3] a method for applying results on general
graphs with a unique k-factor to bipartite graphs with a unique k-factor.
Through this, sharp upper bounds for the size of a bipartite graph with a
unique k-factor if k ≤ 3 and in some special cases were proven.

The aim of this paper is to present detailed information about the struc-
ture of an extremal bipartite graph with a unique k-factor. This will be done
in Section 2. In the third section we will use this information to prove our
main theorem and present a sharp upper bound for the size of a bipartite
graph with a unique k-factor for all k ≥ 1.

In [3] the following graphs and the observation given for the maximum
number of edges in a graph with a unique k-factor have been presented.
Let p and k be non-negative integers such that p = sk + t with s ≥ 1 and
0 ≤ t ≤ k − 1. First define a bipartite graph A(k, t) as follows: Let A1 be
a copy of Kt,t and A2 a bipartite (k − t)-regular graph on 2k vertices (the
latter exists as a result of König’s Theorem [5]). Let Aij , with 1 ≤ j ≤ 2
denote the two parts of Ai, 1 ≤ i ≤ 2. Connect all vertices of A1j with
A2(3−j)

for 1 ≤ j ≤ 2. The resulting graph A(k, t) is bipartite, has exactly
one k-factor, consisting of the edges in A2 and those connecting A1 and A2,
and |E(A(k, t))| = t2 + k(k + t).

Next take s − 1 copies of Kk,k, one copy of A(k, t) and number these
graphs S1, S2, . . . , Ss, respectively. Let (A,B) be the partition of these
graphs. Connect all vertices of V (Si) ∩ A with all vertices in V (Sj) ∩ B
where j > i. The resulting graph B(p, k) is bipartite of order 2p, has ex-
actly one k-factor, formed by the copies of Kk,k and the unique k-factor of
A(k, t).
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Figure 1. The graph B(2k + t, k) with t > 0.
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Observation 1.1. Let G be a bipartite graph of order 2p with a unique
k-factor such that p ≡ t (mod k), 0 ≤ t < k. If |E(G)| is maximum, then

|E(G)| ≥ |E(B(p, k))| = 1
2
(p2 + kp− t(k − t)).(1)

2. Structural Results on Red and Blue
Neighbourhoods

In this section we are going to take a close look at the structure of extremal
bipartite graphs with a unique k-factor. So, throughout this section let G
always denote a bipartite graph of order 2p with a unique k-factor such that
e(G) is maximal, if not stated otherwise. With F we will always denote the
unique k-factor.

We start out with looking at the red and blue neighbourhoods of vertices
and chains of alternating neighbourhoods, defined as follows.

Definition 2.1. Let x ∈ V (G). For i > 0 simultaneously define

for i = 1: R1(x) := Nr(x), B1(x) := Nb(x),

for i > 1: Ri(x) := Nr(Bi−1(x))\
i−1⋃
j=1

Rj(x), Bi(x) := Nb(Ri−1(x))\
i−1⋃
j=1

Bj(x).

If there is no chance of ambiguity, we simply call the sets Ri and Bi.

. . . . . .
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Figure 2. The sets Ri(x) and Bi(x).

Plainly speaking, a set Ri 6= ∅ contains all red neighbours of the vertices in
Bi−1 which are not in Rj for j < i. Similarily for Bi. From the definition
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it is not clear for which i > 1 it holds Ri(x) = ∅ or Bi(x) = ∅. The next
lemma will show us that in a graph with a unique k-factor such that the
size is maximal, the chains of alternating neighbourhoods terminate rather
soon.

Lemma 2.2. For every x and sets Ri(x), Bi(x) as defined in Definition 2.1
it holds

(i) Ri(x) ∩Bj(x) = ∅ for all i and j;
(ii) Bi(x) = ∅ for i ≥ 3 and Ri(x) = ∅ for i ≥ 4.

Proof. By Definition 2.1 Ri(x) and Bj(x) lie in different parts of G if
i 6≡ j (mod 2). Thus Ri(x) ∩ Bj(x) = ∅ in this case. Assume there exist
i ≡ j (mod 2) such that Ri(x)∩Bj(x) 6= ∅. Choose i, j with that property
such that l := min{i, j} is minimal and |i − j| is minimal over all such
pairs i, j with min{i, j} = l. Without loss of generality let i, j be even, as
the proof for i, j odd runs analogously. Choose y ∈ Ri(x) ∩ Bj(x). With
Definition 2.1 we get a path P1 : x x1 x2 . . . xi−1 y and a path
P2 : x y1 y2 . . . yj−1 y. The way the pair i, j was chosen, we
have xs 6= yt for 1 ≤ s ≤ i− 1 and 1 ≤ t ≤ j − 1. But then

x x1 x2 . . . xi−1 y yj−1 . . . y2 y1 x

forms an alternating circuit. This contradicts the uniqueness of the factor
and thus statement (i) of the lemma follows.

For a proof of (ii) we only need to show that B3(x) = B4(x) = ∅.
Assume that B3(x) 6= ∅. Then there exists a vertex y ∈ B3(x). Due to
the definition of B3(x), the vertex y lies in a different part than x and
xy 6∈ E(G). Consider the graph G′ = G ∪ xy which has F as a k-factor. As
G is edge-maximal, there exists an alternating circuit in G′ containing the
blue edge x y. Choose such a circuit C with minimum number of edges.
Then C contains y x x1 x2 with x1 ∈ R1(x) and x2 ∈ B2(x). A
simple counting argument now yields that there either exists an edge v w
with v ∈ B2j(x) and w ∈ B2k+1(x) or an edge v w with v ∈ R2j(x) and
w ∈ R2k+1(x). Both cases contradict (i).

Assume that B4(x) 6= ∅. Then there exists a vertex y ∈ B4(x) and
we can find an alternating path x v1 v2 v3 y with v1 ∈ R1(x),
v2 ∈ B2(x) and v3 ∈ R3(x). By the definition of the sets Bi, v1y 6∈ Eb(G).
Furthermore, v1y 6∈ Er(G) as otherwise we would have the alternating circuit
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v1 v2 v3 y v1. Thus y ∈ B3(v1), contradicting B3(v1) = ∅. Hence,
B4 = ∅, proving statement (ii).

We note that statement (i) of the above lemma holds for any graph with a
unique k-factor. Statement (ii), however, requires the maximality of e(G).

Lemma 2.3. If A, B are the parts of G and, without loss of generality,
x ∈ A, then it holds:

(i) Nb(R2) ⊆ B1 and Nb(R3) ⊆ B2.
(ii) The subgraph induced by V (B1)∪V (B2) is bipartite complete with every

edge coloured blue.
(iii) Every z ∈ A with db(z) ≤ db(x) meets Nb(z) ⊆ Nb(x).

Proof. Statement (i) is a simple corollary of Lemma 2.2. For a proof of
(ii) assume that there exist v ∈ B1(x) and w ∈ B2(x) such that vw 6∈
Eb(G). Obviously w 6= x and vw 6∈ E(G). As G is edge-maximal, the graph
G′ = G ∪ vw contains an alternating circuit C with the path w v z
with z ∈ R2. However, Nb(z) ⊆ B1(x) by (i) and Nr(B1(x)) = R2(x) by
definition and thus the alternating circuit cannot leave B1(x)∪R2(x). This
is a contradiction to w ∈ B2(x).

Following (ii), every vertex z ∈ B2(x) satisfies db(z) > db(x) as B1(x) =
Nb(x) ⊂ Nb(z) and as z also has at least one blue neighbour in R1(x) by
definition. As A = R2(x)∪ {x} ∪B2(x), the only vertices z different from x
satisfying db(z) ≤ db(x) are those in R2(x), proving (iii).

With Lemma 2.3 (iv) we are in the position to label our vertices in any of the
two parts in such a way, that their blue neighbourhoods form an increasing
chain.

Definition 2.4. Let G be a bipartite graph of order 2p, the edges of which
are coloured red and blue. Let A,B denote the two parts of G. A labeling
(X, Y ) of G such that A = {x1, x2, . . . , xp} and B = {y1, y2, . . . , yp} is called
a blue labeling if the following conditions hold:

• Nb(x1) ⊆ Nb(x2) ⊆ . . . ⊆ Nb(xp) and
• Nb(yp) ⊆ Nb(yp−1) ⊆ . . . ⊆ Nb(y1).

Note that Nb = ∅ is allowed in this definition.

Lemma 2.5. Let G be a bipartite graph of order 2p with a unique k-factor
such that e(G) is maximal. Then G has a blue labeling.
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Proof. The statement follows immediately from Lemma 2.3 (iii) and Def-
inition 2.4.

Lemma 2.6. Let A,B be the parts of G and (X,Y ) a blue labeling of G.
For each u ∈ A, v ∈ B and i, j ∈ {1, 2, . . . , p} it holds:

(i) If vxj ∈ Eb, then vxk ∈ Eb for all j < k;
(ii) If uyi ∈ Eb, then uyt ∈ Eb for all t < i.

Proof. We give the proof for (i), the proof for (ii) runs analogously. Sup-
pose that there exist v ∈ B and integers j, k such that 1 ≤ j < k ≤ p,
vxj ∈ Eb and vxk /∈ Eb. Then v ∈ Nb(xj) and v /∈ Nb(xk), which contra-
dicts Nb(xj) ⊆ Nb(xk).

We see that an extremal bipartite graph with a unique k-factor and a blue
labeling has a fan-shaped structure in its blue edges. This motivates the
following general definition.

Definition 2.7. Let G be a bipartite graph of order 2p, the edges of which
are coloured red and blue. Let A = {x1, x2, . . . , xp} and B = {y1, y2, . . . , yp}
denote the parts of G and let u ∈ A and v ∈ B be two arbitrary vertices.

• Let i be the last integer such that uyi ∈ Eb. We say that u has the
property (∗)-right for the sequence (y1, y2, . . . , yp), if uyt /∈ Er for all
t < i (the red edges are on the ”right side”).

• Let j be the first integer such that vxj ∈ Eb. We say that v has the
property (∗)-left for the sequence (x1, x2, . . . , xp), if vxt /∈ Er for all
j < t (the red edges are on the ”left side”).

The definition immediately implies the following lemma.

Lemma 2.8. Let G be a bipartite graph, the edges of which are coloured red
and blue and let A,B denote the parts of G. If one of the following two
conditions is met, then G does not have an alternating circuit:

(i) There exists a labeling of A such that every vertex of B has the (∗)-right
property.

(ii) There exists a labeling of A such that every vertex of B has the (∗)-left
property.

Looking again at extremal bipartite graphs G with a unique k-factor, Lemma
2.6 and Definition 2.7 give us the next lemma.
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Lemma 2.9. Let A,B denote the parts of G and (X, Y ) a blue labeling.
Then every vertex of A has the property (∗)-right and every vertex of B has
the property (∗)-left.

Lemma 2.10. Let A, B denote the parts of G and (X,Y ) a blue labeling.
Then for each v ∈ B and u ∈ A it holds:

(i) If i is the last integer such that vxi ∈ Er then vxj ∈ Eb for j =
i + 1, i + 2, . . . , p.

(ii) If i is the first integer such that uyi ∈ Er then uyj ∈ Eb for j =
1, 2, . . . , i− 1.

Proof. We only show the proof for (i), the proof for (ii) runs analogously.
Suppose that (i) does not hold. Let i be the last integer such that vxi ∈
Er and let j be integer such that i < j ≤ p and vxj /∈ Eb. Then we
add the edge e = vxj and colour it blue. In the resulting graph G + e
each vertex of the set B still has the property (∗)-left for the sequence
(x1, x2, . . . , xp). Thus by Lemma 2.8 the graph G + e does not contain any
alternating circuit. Therefore G+e has a unique k-factor and one more edge
than G, contradicting the maximality of e(G).

Before turning to our main theorem in the next section, we want to seper-
ately state the following theorem, as it provides us with a nice insight on
vertices of minimum degree in an extremal bipartite graph with a unique
k-factor.

Theorem 2.11. Let G be a bipartite graph of order 2p > 2k with a unique
k-factor such that the size of G is maximal. Let further (X,Y ) be a blue
labeling of the parts A,B of G. Then G has exactly 2k vertices of degree k,
namely x1, x2, . . . , xk in A and yp−k+1, yp−k+2, . . . , yp in B.

Proof. We will only show the proof for x1, . . . xk, the proof for yp−k+1, . . . , yp

runs analogously. Let i0 denote the smallest index such that db(xi0) =
min{db(xi) : db(xi) ≥ 1}. By the choice of i0 we either have i0 = 1 or
db(xi) = 0 for 1 ≤ i < i0. Let j0 denote the smallest index such that
xi0yj0 ∈ Er. As xi0 has the (∗)-right property and db(xi0) ≥ 1, Lemma 2.10
gives us j0 > 1. Let us now take a look at yj0−1. By the choice of j0 we have
xi0yj0−1 ∈ Eb. On the one hand, the (∗)-left property holds for yj0−1 and it
follows i < i0 for every xi ∈ Nr(yj0−1). Hence we get i0 > k. On the other
hand, the (∗)-right property holds for each xi as well as db(xi) = 0 for every
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1 ≤ i < i0. Again with Lemma 2.10 we get xiy1 ∈ Er for every 1 ≤ i < i0.
As dr(y1) = k, we get i0 ≤ k +1. Both inequalities together yield i0 = k +1
and d(x1) = d(x2) = . . . = d(xk) = k.

3. Extremal Bipartite Graphs with a Unique
k-Factor

We start this section with the following theorem.

Theorem 3.1. Let G be a bipartite graph of order 2p with a unique k-factor
such that e(G) is maximal. If p = k + t with 0 ≤ t ≤ k − 1, then G is
isomorphic to one of the graphs B(p, k) defined in the introduction.

Proof. From Observation 1.1 we know

e(G) ≥ e(B(p, k)) =
1
2
((k + t)2 + k(k + t)− t(k − t)) = k(k + t) + t2.(2)

The statement is obvious for t = 0, so let t > 1. Colour the edges of the
k-factor F red and all other ones blue. With Theorem 2.11 we know that
k vertices in each part of G have degree k and only connected to red edges.
Thus G can have at most t2 blue edges, resulting in e(G) ≤ pk + t2 =
k(k + t) + t2. As a result we have equality in (2). Thus, the subgraph A1

induced by the t2 blue edges of G is isomporphic to Kt,t. Let A2 denote the
subgraph induced by the vertices of degree k. G has a unique k-factor and
thus every vertex of each part of A1 is connected to every vertex of A2 in
the other part. This leads to |E(A2)| = k(k− t) and as all edges of A2 must
belong to the k-factor of G, A2 is a (k− t)-regular graph. In consequence, G
is isomporphic to one of the graphs A(k, t) and thus to a B(p, k) as defined
in the introduction.

Let us now present our main theorem.

Theorem 3.2. Let G be a bipartite graph of order 2p with a unique k-factor
such that e(G) is maximal. Then e(G) = p2+kp

2 − t(k−t)
2 , with 0 ≤ t < k and

p ≡ t (mod k).
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Proof. We fix k. For p ≥ k let e(p, k) be the maximum size of a bipartite
graph of order 2p with a unique k-factor. Suppose that e(p, k) > p2+kp

2 −
t(k−t)

2 and choose p minimal in this respect. From Theorem 3.1 it follows
p ≥ 2k. For every graph of order 2p and size e(p, k) with a unique k-factor
let A,B be parts of G. As e(p, k) denotes the maximal possible size, Lemma
2.5 gives us the existence of a blue labeling (X, Y ). By Lemma 2.9 each
vertex of B has the property (∗)-left and each vertex of A has the property
(∗)-right.

Let A1 = {x1, x2, . . . , xk} ⊂ A. By Theorem 2.11 we have dr(u) = k
and db(u) = 0 for every u ∈ A1. It is easy to see that the set B1 = {v ∈ B :
Nr(v) = A1} meets 0 ≤ |B1| ≤ k. If |B1| = k then the subgraph induced by
A1 ∪ B1 is isomorphic to Kk,k. Deleting this subgraph leads to a graph G′

of order 2(p− k) and

e(G′) ≥ e(G)− pk >
(p− k)2 + k(p− k)

2
− t(k − t)

2
.

Thus G′ meets the criteria of the assumption and is of smaller order than
G, contradicting the choice of G.

Suppose that G is chosen with the maximum number of vertices in B1

over all bipartite graphs of order 2p and size e(p, k) with a unique k-factor.
Let us denote |B1| = b − 1. Due to the preceding consideration, suppose
that 1 ≤ b ≤ k.

Let us first show, that B1 = {y1, y2, . . . , yb−1}. For this let i0 be the
smallest index such that yi0 6∈ B1. Then yi0 has a red neighbour in A \ A1.
Suppose that there exists yi1 ∈ B1 with i1 > i0. Due to the definition of B1

and the (∗)-left property of yi1 , Nb(yi1) = A\A1. This, however, contradicts
the property Nb(yi1) ⊂ Nb(yi0) in the definition of the blue labeling. We
thus get i0 = b and B1 = {y1, y2, . . . , yb−1}.

Now suppose further that over all such graphs, G is chosen with the
maximum number of vertices in Nr(yb) ∩A1.

Let r be the greatest index such that ybxr ∈ Er. Since yb /∈ B1, we have
xr /∈ A1 and there exists an xi ∈ A1 such that xiyb /∈ E. As dr(xi) = k, it
follows that there is an index w such that ywxi ∈ Er and yw /∈ B1. The edge
ywxr cannot be blue, since the vertex xr has the property (∗)-right, ybxr is
red and b < w.

Case 1. ywxr /∈ E.
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In this case ywxs /∈ Eb for all s ≤ r. We construct a new graph G′ by
deleting the edges yb xr, xi yw and adding the edges yb xi, yw xr,
yb xr. The red edges still form a k-factor in G′ and each vertex of B still
has the property (∗)-left for the sequence (x1, x2, . . . , xp). Thus by Lemma
2.8 G′ has no alternating circuit. Therefore G′ has a unique k-factor and
more edges than G, a contradiction.

Case 2. ywxr ∈ Er.
Suppose that there exists a vertex xs /∈ A1, which is not adjacent to yw.
Because of Nr(xs) 6= Nr(xr) and as the (∗)-right property holds for xr,
there exists a vertex yj ∈ Nr(xs), with j > b, such that yjxr /∈ E. Then we
construct a new graph G′ by deleting the edges yb xr, xi yw, xs yj

and adding edges yb xi, yw xs, xr yj , yb xr. The red edges still
form a k-factor in G′ and each vertex of B still has the property (∗)-left.
Thus by Lemma 2.8 G′ has no alternating circuit, giving us a contradiction
as in Case 1.

Suppose that yw is adjacent to each vertex of A \A1. Let s be the first
integer such that ywxs ∈ Eb (r < s ≤ 2k). Again there exists a vertex
yj ∈ Nr(xs) such that yjxr /∈ E. Since yj /∈ B1, yj 6= yb and xs has the
property (∗)-right, we have that b < j < w. Then we construct a new graph
G′ by deleting the edges yb xr, xi yw, xs yj , yw xs and adding the
edges yb xi, yw xs, xr yj , yb xr. The red edges form a k-factor in
G′ and each vertex of B still has the property (∗)-left in G′. Thus by Lemma
2.8 the graph G′ has no alternating circuit. By Lemma 2.10 db(yi) = p− k
for 1 ≤ i ≤ b−1. Then there is the new labeling B = {yf(1), yf(2), . . . , yf(p)}
of the vertices of B such that Nb(yf(p)) ⊆ Nb(yf(p−1)) ⊆ . . . ⊆ Nb(yf(1)) and
f(b) = b. However, in G′ the set Nr(yb) ∩ A1 has more vertices than in the
graph G, contradicting the choice of G.

Thus all cases have been lead to a contradiction and our theorem is
proved.

Since in the proof of Theorem 3.2 all cases |B1| < k lead to a contradiction,
we obtain the following

Corollary 3.3. Let G be a bipartite graphs of order 2p > 4k with a unique
k-factor such that the size of G is maximal. Let further (X,Y ) be a blue
labeling of the part A,B of G. Then G has exactly 2k vertices of degree p,
namely y1, y2, . . . , yk in B and xp−k+1, xp−k+2, . . . , xp in A.
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Note that it has been implicitely shown in Theorem 3.1 that a bipartite
graph of order 2p < 4k with a unique k-factor such that the size of G is
maximal has exactly 2(p − k) vertices of degree p. From Corollary 3.3 we
get the structure of extremal graphs.

Theorem 3.4. A bipartite graph of order 2p with a unique k-factor and with
the maximum number of edges is isomorphic to one of the graphs B(p, k).
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