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Abstract

An edge ranking of a graph is a labeling of edges using positive inte-
gers such that all paths connecting two edges with the same label visit
an intermediate edge with a higher label. An edge ranking of a graph
is optimal if the number of labels used is minimum among all edge
rankings. As the problem of finding optimal edge rankings for general
graphs is NP-hard [12], it is interesting to concentrate on special classes
of graphs and find optimal edge rankings for them efficiently. Apart
from trees and complete graphs, little has been known about special
classes of graphs for which the problem can be solved in polynomial
time. In this paper, we present a polynomial-time algorithm to find
an optimal edge ranking for a complete bipartite graph by using the
dynamic programming strategy.
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1. Introduction

All graphs considered in this paper are finite and undirected, without loops
or multiple edges. Let G = (V, E) be a graph and let t be a positive integer.
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An edge t-ranking of G is an edge labeling φ : E −→ {1, 2, · · · , t} such that
for every pair of edges e and f with φ(e) = φ(f) and for every path between
e and f there is an edge g on this path with φ(g) > φ(e). The edge-ranking
number of G, denoted by χe(G), is the smallest value t for which G admits
an edge t-ranking. An edge χe(G)-ranking of G is said to be an optimal edge
ranking of G. The edge ranking problem is to find an optimal edge ranking
of a graph. As revealed in [14, 20], the edge ranking problem is equivalent
to the problem of finding a minimum-height edge-separator tree of a graph.
Finding an optimal edge ranking has an interesting application in scheduling
the assembly of multi-part product [10].

The vertex ranking of a graph is closely related to the edge ranking and
is similarly defined, except that a labeling on vertex set is used instead of a
labeling on edge set. A vertex ranking of a graph is optimal if the number
of labels used is minimum among all vertex rankings. The vertex ranking
problem is to find an optimal vertex ranking of a graph. The vertex ranking
problem is equivalent to the problem of finding a minimum-height elimina-
tion tree of a graph [5, 6] and is NP-hard for general graphs [16, 17]. It
remains NP-hard even for cobipartite and bipartite graphs [2]. Polynomial-
time algorithms are known only for a few special classes of graphs including
trees [18], cographs [15, 19], AT-free graphs [11], trapezoid graphs, permu-
tation graphs, interval graphs [1, 7], and circular-arc graphs [7]. The vertex
ranking problem on complete bipartite graphs can be easily solved in linear
time since these graphs form a subclass of cographs and the vertex ranking
problem on cographs can be linear solvable [15].

The edge ranking problem is NP-hard for general graphs [12]. Extensive
work has been done in finding optimal edge rankings of trees [5, 21], now
there exists a linear-time algorithm for trees [13]. Bodlaender et al. derived
a formula to compute the edge ranking-number of a complete graph [2].
Little has been known about special classes of graphs for which the problem
can be solved in polynomial time except trees and complete graphs. In
this paper, we propose an O(|E|2)-time algorithm to solve the edge ranking
problem on complete bipartite graphs, where E is the edge set of the input
complete bipartite graph.

The remainder of the paper is organized as follows: In Section 2, we give
some basic definitions and notation. Section 3 presents a dynamic program-
ming algorithm to solve the edge ranking problem on complete bipartite
graphs. Finally, we make some concluding remarks and state an open prob-
lem in Section 4.
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2. Preliminaries

For any positive integer n, the complete graph of n vertices, denoted by Kn,
is a graph of n vertices in which every two vertices are adjacent. A bipartite
graph is one whose vertices can be partitioned into two (disjoint) nonempty
set V1 and V2, called bipartition sets, in such a way that every edge joins
a vertex in V1 and a vertex in V2. In particular, there are no edges within
V1 nor V2. A complete bipartite graph is a bipartite graph in which every
vertex in V1 is adjacent to all vertices in V2. The complete bipartite graph
on bipartition sets of m vertices and n vertices, respectively, is denoted by
Km,n. Properties of and optimization problems on complete bipartite graphs
have been studied in [3, 8, 9] and the related literature.

Let G = (V,E) be a graph with vertex set V and edge set E. For
E′ ⊆ E, G(E′) denotes the graph (V, E′) with vertex set V and edge set E′.
The deletion of edge set R from G, denoted by G\R, is the graph G(E \R).
A subset R ⊆ E of a graph G = (V, E) is said to be an edge separator if
G(E \R) is disconnected. As shown in [14, 20], the edge ranking problem is
equivalent to the problem of finding the minimum-height edge-separator tree
of a graph. Thus, we will use edge separators as a tool to investigate edge
rankings of complete bipartite graphs. We then define the edge-separator
tree of a graph as follows.

Definition 2.1 [2]. Given an edge t-ranking φ : E −→ {1, 2, · · · , t} of
a connected graph G = (V, E), we assign a rooted tree T (φ) to it by an
inductive construction as follows:

(1) If no label occurs more than once in G, then T (φ) consists of a single
node r (called root) and the edge set of G is assigned to r.

(2) Otherwise, let i be the largest label assigned to more than one edge
by φ. Then, the set of edges labeled by {i + 1, i + 2, · · · , t} has to be an
edge separator R of G. We create a root r of T (φ) and assign R to r.
(The induced subgraph of G corresponding to the subtree of T rooted at
r will be G itself.) Assuming that an edge-separator tree Ti(φ) with root
ri has already been defined for each connected component Gi of the graph
G(E \ R), the children of r in T (φ) will be the nodes ri and the subtree of
T (φ) rooted at ri will be Ti(φ).

The rooted tree T (φ) is said to be an edge-separator tree of G. The
height of T (φ) is defined to be the largest number of edges assigned to
nodes of T (φ) on a path from a leaf to the root. An edge-separator tree
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T (φ) is called the minimum-height edge-separator tree of G if its height is
minimum among all edge-separator trees of G.

Notice that all edges of G assigned to nodes of T (φ) on a path from a leaf
to the root receive different labels, and φ is an optimal edge ranking of G if
and only if T (φ) is a minimum-height edge-separator tree of G.

3. The Edge Ranking Problem in Complete Bipartite Graphs

Bodlaender et al. [2] applied the concept of the edge-separator tree to derive
a formula for complete graph Kn as follows: For every positive integer n,
χe(Kn) = n2+g(n)

3 where g(1) = −1, g(2n) = g(n), and g(2n + 1) = g(n + 1)
+n. In this section, we will apply the analogous concept to solve the edge
ranking problem on complete bipartite graphs.

For every edge t-ranking of a graph G, the following property holds: if i
is the largest label occurring more than once, then the edges with labels i+
1, i+2, · · · , t form an edge separator of G. Moreover, making an appropriate
relabeling of these labels i + 1, i + 2, · · · , t we get a new edge t-ranking of G
with the property that there is a label j > i such that all edges with labels
j, j +1, · · · , t form an edge separator of G which is minimal under inclusion.
Therefore, it is sufficient to consider only the minimal edge separators to
construct the edge-separator tree.

Consider two edges e1 and e2 that share a common endpoint to have
a path between them. By definition of edge ranking, e1 and e2 must be
labeled by different labels. Hence the following lemma clearly holds.

Lemma 3.1. χe(K1,n) = n, for every positive integer n.

In the following, assume Km,n satisfies that m > 1 and n > 1. We then
give a theorem to compute χe(Km,n). The following is a key theorem in
designing our algorithm.

Theorem 3.2. Assume that Km,n is a complete bipartite graph with m > 1
and n > 1. Then, χe(Km,n) = min1≤m1<m,1≤n1<n{m1n2 + m2n1 + max
{χe(Km1,n1), χe(Km2,n2)}}, where m1 + m2 = m and n1 + n2 = n.

Proof. Consider a complete bipartite graph Km,n with bipartition sets V1

and V2. Without loss of generality, assume that 1 < m ≤ n. Let φ be an
edge t-ranking of the graph. Let e = (u, v) be an edge with label i which is
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the largest label occurring more than once in φ. Notice that if there does
not exist such a label, then t = mn and we can find a better edge ranking
φ∗ with the largest label less than mn. Thus there must exist such an edge
e with label i. Let X1 and X2 be the vertex sets that can be reached from
e through edges with labels less than i, where X1 ⊆ V1, X2 ⊆ V2, u ∈ X1,
and v ∈ X2. Let Y1 = V1 \X1 and Y2 = V2 \X2. Let |X1| = m1, |X2| = n1,
|Y1| = m2, and |Y2| = n2.

Now we consider the special case that either m2 or n2 equals 0. Note
that m1 6= 0 and n1 6= 0. Assume by contradiction that m2 = 0. Then,
Y1 = ∅ and Y2 6= ∅. Let x ∈ X1, y ∈ Y2, and let ẽ = (x, y). If u = x,
then edges e and ẽ share a common vertex u and hence, ẽ cannot have label
exactly i by definition. Suppose u 6= x and ẽ is labeled by i. Let e′ = (v, x).
By definition, e′ receives a label less than i. Then, the path passing through
edges e, e′, and ẽ results in a contradiction for edge ranking φ. Thus, ẽ
cannot have label exactly i. By definition of Y2, ẽ must be labeled by an
integer larger than i. Therefore, the set of edges connecting two vertices
of X1 and Y2 must be with labels larger than i. By definition, the set of
edges connecting two vertices of X1 \ {u} and X2 must be with labels less
than i. Thus edge e is assigned label i which occurs exactly once in φ, a
contradiction occurs. Thus, m2 6= 0. The case of n2 6= 0 can be proved
similarly. Therefore, m2 6= 0 and n2 6= 0.

We can see that the set of edges connecting two vertices of X1 and Y2

or two vertices of X2 and Y1 must be with labels larger than i and it is a
minimal edge separator that separates edge e from other edges with label i.
We can label edges in this minimal edge separator with labels j, j + 1, · · · ,
t, where j = t − (m1n2 + m2n1) + 1. Therefore we have that t = (m1n2 +
m2n1)+max{χe(Km1,n1), χe(Km2,n2)} and the corresponding edge separator
has size m1n2+m2n1. Note that the corresponding edge separator separates
Km,n into Km1,n1 and Km2,n2 . Every edge ranking starting with the edge
separator has at least (m1n2+m2n1)+max{χe(Km1,n1), χe(Km2,n2)} labels,
and there is indeed one using exactly that many labels.

We can obtain an optimal edge ranking satisfying that m1 6= 0, m2 6= 0,
n1 6= 0, and n2 6= 0. Therefore, χe(Km,n) = min1≤m1<m,1≤n1<n{m1n2 +
m2n1+max{χe(Km1,n1), χe(Km2,n2)}}, where m1+m2 = m and n1+n2 = n.
This completes the proof.

Definition 3.1. Let Km,n be a complete bipartite graph with m > 1 and
n > 1. Let R be an edge separator of Km,n such that it separates Km,n
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into Kp,q and Km−p,n−q, |R| = p(n− q) + q(m− p), and χe(Km,n) = |R|+
max{χe(Kp,q), χe(Km−p,n−q)}. We call p and q the separator points of Km,n.

Based on Theorem 3.2, we design an efficient dynamic programming al-
gorithm, which runs in O(|E|2) time, for finding an optimal edge ranking
of a complete bipartite graph with edge set E. The algorithm is formally
presented as follows:

Algorithm EdgeRank(Km,n)
Input: A complete bipartite graph Km,n = (V1, V2, E) with 1 < (m = |V1|)

≤ (n = |V2|).
Output: An optimal edge ranking φ.
Method:

/* Phase 1: Compute χe(Ki,j), for 1 ≤ i ≤ m and i ≤ j ≤ n */
1. χe(K1,j) ← j, for j = 1 to n;
2. for i = 2 to m do
3. for j = i to n do
4. χe(Ki,j) ← min

1≤i1<i,1≤j1<j
{i1j2+i2j1+max{χe(Ki1,j1), χe(Ki2,j2)}},

where i1 + i2 = i and j1 + j2 = j;
5. let upp and low be the separator points of Ki,j ;
6. U [i][j] ← upp; L[i][j] ← low;

/* Phase 2: Construct the minimum-height edge-separator tree Te of
Km,n */

7. Te ← ∅;
8. call MakeTree(∅,Km,n) to construct the minimum-height edge-separator

tree of Km,n; /* Note that procedure MakeTree will be presented after
the algorithm */
/* Phase 3: Rank the edges of Km,n */

9. let (r1, r2, · · · , rk) be the postorder sequence of nodes in Te;
10. for i = 1 to k do
11. let Ri be the set of edges assigned to node ri;
12. if ri is a leaf, then label edges in Ri from 1 to |Ri| arbitrarily;
13. else
14. let t1 and t2 be the largest labels of edges assigned to r1 and r2,

respectively, where r1 and r2 are the children of node ri in Te;
15. t ← max{t1, t2}+ 1;
16. label edges in Ri from t to t + |Ri| − 1 arbitrarily;
17. output the labels of all edges in Km,n, and stop.
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We will present Procedure MakeTree to construct the minimum-height edge-
separator tree Te in the following.

Procedure MakeTree(r,Ki,j)

Input: Either (∅ and Km,n) or (an internal node r of Te and a subgraph

Ki,j of Km,n).

Process: Construct a minimum-height edge-separator tree Te recursively.

Method:

1. create a node γ of Te;
2. let R be the edge set of Ki,j if i = 1 or j = 1; otherwise, let R be

the edge separator of Ki,j that separates Ki,j into KU [i][j],L[i][j] and
Ki−U [i][j],j−L[i][j];

3. assign R to node γ;
4. if r = ∅, then let γ be the root of Te; else let γ be the child of node r

in Te;
5. if i 6= 1 and j 6= 1, then
6. call MakeTree(γ, KU [i][j],L[i][j]); call MakeTree(γ, Ki−U [i][j],j−L[i][j]);

We give an example to illustrate Algorithm EdgeRank as follows. Con-
sider the complete bipartite graph K3,4 = (V1, V2, E) shown in Figure 1(a),
where V1 = {u1, u2, u3}, V2 = {v1, v2, v3, v4}, and the edge eij in E is
to connect ui with vj . Phase 1 of Algorithm EdgeRank(K3,4) computes
χe(K3,4) as follows: Initially, χe(K1,j) = j for 1 ≤ j ≤ 4. Then, it com-
putes χe(Ki,j) for 2 ≤ i ≤ 3 and i ≤ j ≤ 3. Assume that χe(Ki,j)’s
for i 6= 3 and j 6= 4 are computed. It computes χe(K3,4) below. Let
R be the edge separator of K3,4 that separates K3,4 into K1,2 and K2,2,
where X1 = {u1}, X2 = {v1, v2}, Y1 = {u2, u3}, and Y2 = {v3, v4}. Then,
R = {e13, e14, e21, e22, e31, e32} and |R| = 6. The edge ranking starting with
R uses exactly |R| + max{χe(K1,2), χe(K2,2)} = 6 + 3 = 9 labels. After
considering all possible edge separators of K3,4, it computes χe(K3,4) = 9.
Then the separator points of K3,4 are 1 and 2. During the computation of
χe(Ki,j), Algorithm EdgeRank records the separator points of Ki,j . The
edge-ranking numbers of Ki,j for 1 ≤ i ≤ 3 and i ≤ j ≤ 4 and the sep-
arator points of Ki,j are shown in Figure 1(b). In Phase 2, it constructs
the minimum-height edge-separator tree Te shown in Figure 1(c). Phase 3
labels the edges assigned to nodes of Te in a postorder sequence and gets an
optimal edge ranking of K3,4 which is shown in Figure 1(d).
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Figure 1. An optimal edge ranking of K3,4, where (a) K3,4, (b) χe(Ki,j) for 1 ≤ i ≤
3 and i ≤ j ≤ 4, (c) the minimum-height edge-separator tree Te of K3,4, and (d)
an optimal edge ranking of K3,4. Note that the data in each cell of (b) represents
the triple of χe(Ki,j), uppi, and lowj , where uppi and lowj are the separator points
of Ki,j .

Based on Theorem 3.2, Phase 1 of Algorithm EdgeRank(Km,n) computes
χe(Km,n). During the computation of χe(Ki,j) for 2 ≤ i ≤ m and i ≤
j ≤ n, it also puts down the separator points of Ki,j . Using the informa-
tion produced by Phase 1, Phases 2 and 3 of Algorithm EdgeRank(Km,n)
rank the edges of Km,n using exactly χe(Km,n) labels. Hence, Algorithm
EdgeRank(Km,n) obtains an optimal edge ranking of Km,n. Now we anaylze
the time complexity of the algorithm. When we compute χe(Ki,j), χe(Kp,q)’s
for 1 ≤ p < i and 1 ≤ q < j, need to be computed. Note that we use a
2-dimension array to store χe(Ki,j), for 1 ≤ i ≤ m and i ≤ j ≤ n. We only
compute and use the upper triangular part of the array since χe(Ki,j) =
χe(Kj,i). Thus before computing χe(Ki,j), χe(Kp,q)’s for 1 ≤ p < i and
i ≤ q < j, have been computed. It is easy to see that the time complexity
of computing χe(Ki,j) will be O(ij). Therefore, computing χe(Ki,j)’s, for
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2 ≤ i ≤ m and i ≤ j ≤ n, can be done in O(m2n2) time. On the other hand,
the separator points of Ki,j ’s for 2 ≤ i ≤ m and i ≤ j ≤ n can be found
in the same time. Hence, Phase 1 of Algorithm EdgeRank runs in O(m2n2)
time. We can easily see that Phases 2 and 3 of Algorithm EdgeRank can be
done in O(mn) time. Hence, we conclude the following theorem:

Theorem 3.3. Given a complete bipartite graph Km,n, Algorithm EdgeRank
solves the edge ranking problem in O(m2n2) time.

4. Concluding Remarks

We propose an O(|E|2)-time algorithm for finding an optimal edge ranking of
a complete bipartite graph Km,n, where |E| = mn. Our algorithm uses the
concept of edge-separator trees and is a dynamic programming algorithm.
It is interesting to know whether the approach used in this paper can be
applied to solve the edge ranking problem on other classes of graphs, such
as cographs.

For a complete bipartite graph Kn,n with n = 2k and k ≥ 1, we con-
jecture that χe(Kn,n) = 2n2+1

3 ; that is, the separator points of Kn,n are n
2 .

We have made many simulations on Kn,n, for 1 ≤ n ≤ 1000, to support this
conjecture. But, we have not yet succeeded in proving the above conjecture.
We would like to post it as an open problem to interested readers.
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