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Abstract

This paper concerns when the complete graph on n vertices can be
decomposed into d-dimensional cubes, where d is odd and n is even.
(All other cases have been settled.) Necessary conditions are that n
be congruent to 1 modulo d and 0 modulo 2d. These are known to be
sufficient for d equal to 3 or 5. For larger values of d, the necessary
conditions are asymptotically sufficient by Wilson’s results. We prove
that for each odd d there is an infinite arithmetic progression of even
integers n for which a decomposition exists. This lends further weight
to a long-standing conjecture of Kotzig.
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1. Introduction

A sequence H1,H2, . . . ,Hn of graphs with union G is called a decomposition
of G if each edge of G is in Hi for exactly one i, and in this case we write
G = H1 + H2 + · · ·+ Hn. If in addition the subgraphs Hi are all isomorphic
to H, then we write G = nH, and say that H divides G. We call such
a decomposition an H-decomposition of G. If G1 is a subgraph of G that
includes all the vertices of G and each component of G1 is isomorphic to
H, then we call G1 an H-factor of G. We denote the complete graph on n
vertices by Kn, and the complete bipartite graph with j vertices on one side
and k on the other by Kj,k. If m ≤ n by Kn\Km we mean the complete graph
on a set of n vertices with all edges internal to some subset of m vertices
(called the hole) removed. By a k-set we mean a set with k elements.
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The d-cube, denoted Qd, is the graph whose vertices can be labelled with all
the binary d-tuples, such that two vertices are adjacent if and only if they
differ in a single coordinate. It is easy to see that Qd is d-regular, bipartite,
and has 2d vertices and d2d−1 edges.

The decomposition of graphs is the focus of a great deal of research (see
[2] for a thorough discussion of the subject). In particular, decompositions
of Kn into smaller complete graphs and decompositions of Kn into cycles
have received much attention. In 1979, Anton Kotzig initiated interest in
d-cube decompositions of complete graphs by asking for which values of
d and n there exists a Qd-decomposition of Kn (Problem 15 of [12]). In
1981 he established necessary conditions on d and n for the existence of Qd-
decompositions of Kn for all d and proved the sufficiency of these conditions
for some cases [13].

Since Qd is d-regular with 2d vertices and d2d−1 edges, it is easy to
see that the following are necessary conditions for the existence of a d-cube
decomposition of Kn:
(1) if n > 1 then n ≥ 2d,
(2) d | n− 1, and
(3) d2d | n(n− 1).

For a fixed d, these necessary conditions require that n lies in certain con-
gruence classes modulo d. In 1981, Kotzig [13] proved the following results.

Theorem 1. If there exists a Qd-decomposition of Kn, then
(a) if d is even, then n ≡ 1 (mod d2d);
(b) if d is odd, then either

(i) n ≡ 1 (mod d2d), or
(ii) n ≡ 0 (mod 2d) and n ≡ 1 (mod d).

Theorem 2. There is a Qd-decomposition of Kn if n ≡ 1 (mod d2d).

These two theorems established the sufficiency of conditions (1) through (3)
for the cases when d is even and when d is odd and n is odd. Sufficiency
of these conditions in the case d = 3 was shown by Maheo [14] in 1980.
Recently, the case d = 5 was settled by Bryant et al. [4]. This however still
leaves the following unsolved problem.

Problem 1. Let d > 5 be odd and let n be such that n ≡ 0 (mod 2d) and
n ≡ 1 (mod d). Show that Qd|Kn.
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Although this problem has been cited often in the literature (see for example
[2, 10, 11, 12]), little progress was made on the case d odd and n even until
recently. Of course the well-known 1975 theorem of Wilson [15] implies that
for each d we have Qd | Kn for all sufficiently large n satisfying conditions
(1) through (3). A new technique for Qd-decompositions using partitions of
vector spaces into linearly independent sets was introduced in [6] in 1998.
This technique was used in [8] to give, for each odd d, an explicit infinite
sequence of even values of n such that Qd | Kn.

Theorem 3 [8]. Let d be odd and let s be the order of 2 (mod d). If r is
any integer with r ≥ d/s, then Qd | K2rs.

Other articles dealing with various d-cube decompositions include [1, 3] and
[9].

In this paper we prove that for each odd d there is an infinite arithmetic
progression of even integers n for which a Qd-decomposition of Kn exists.

2. Preliminaries

Let Z2 be the field of order 2. We denote Zm
2 , regarded as a vector space

over Z2, by Vm. Note that we can think of Vm as the vertex set of Qm. We
denote by 〈S〉 the subspace of Vm generated by S ⊆ Vm. For a ∈ Vm and
A,B ⊆ Vm we define a+B = {a+b : b ∈ B}, we define A+B = ∪a∈A(a+B).
If A and B are subsets of Vm with 0 6∈ B, then let G(A,B) be the graph
with vertex set A

⋃
(A + B) and edge set {{a, a + b} : a ∈ A, b ∈ B}.

The following is the k = 2 case of Lemma 1 of [6].

Theorem 4. Suppose B is a linearly independent subset of Vm with d ele-
ments. Then G(Vm, B) is a Qd-factor of the complete graph on Vm.

The following somewhat more general result appears in [4], but we repeat
the short proof here.

Lemma 5. Suppose A,B ⊆ Vm, with A ⊇ A + B, |B| = d, and B linearly
independent. Then G(A,B) is a Qd-factor of the complete graph on A.

Proof. Note that G(〈B〉 , B) ∼= Qd by Theorem 4.
Now A ⊇ A + B ⊇ (A + B) + B ⊇ . . ., and so A ⊇ A + 〈B〉, implying

A = A + 〈B〉. Also if a ∈ A, then G(a + 〈B〉 , B) = a + G(〈B〉 , B) ∼= Qd by
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the above. Furthermore the sets a+ < B > for a ∈ A are cosets of < B >,
and so either identical or disjoint. Thus G(A,B) = G(A+ < B >, B) =⋃

a∈A G(a+ < B >, B), which is the vertex disjoint union of copies of Qd.

In [8] we prove a lemma (Lemma 3), which becomes the following when
applied to Vm.

Theorem 6. Let W be a subspace of Vm, and let d1, d2, . . . , dt be integers
with 1 ≤ di ≤ m for 1 ≤ i ≤ t and

∑
i di = |Vm\W |. Then Vm\W can be

partitioned into linearly independent sets X1, X2, . . . , Xt such that |Xi| = di

for 1 ≤ i ≤ t.

Likewise Theorem 5 of [8] becomes the following when we take k = 2 and
j = n = m.

Theorem 7. Let d1, d2, . . . , dt be integers such that 1 ≤ di ≤ m for 1 ≤ i ≤ t
and

∑t
i=1 di = 2m − 1. Then K2m can be decomposed into a Qd1-factor, a

Qd2-factor, . . ., and a Qdt-factor.

3. Main Results

Theorem 8. Let d, a and b be integers with 0 < d ≤ a < b such that
2a − 1 ≡ 2b − 1 ≡ r (mod d), where 0 ≤ r < d. Then K2b\K2a can be
written as a Qr-factor on the non-hole vertices plus a graph divisible by Qd.

Proof. Let W be the subspace of Vb consisting of all vectors (x1, x2, . . . , xb)
such that x1 = x2 = . . . = xb−a = 0. Clearly W has 2a vectors and is
isomorphic to Va. We will take the vertex set of K2b\K2a to be Vb, with
hole W .

Let 2a−1 = qd+r. By Theorem 6 we can partition W\{0} into linearly
independent sets B1, B2, . . . , Bq, R, with |Bi| = d for all i and |R| = r,
and partition Vb\W into linearly independent d-sets C1, C2, . . . , Cs, where
s = (2b − 2a)/d.

Note that the hypotheses of Lemma 5 on A and B apply to each graph
G(Vb\W,R), G(Vb\W,Bi), and G(Vb, Ci). Thus the graph G(Vb\W,R) is a
Qr-factor of the complete graph on Vb\W , and the graphs G(Vb\W,Bi), and
G(Vb, Ci) are Qd-factors of the complete graphs on Vb\W and Vb, respec-
tively, for all appropriate i.
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Now we claim that the graph K2b\K2a , interpreted as the complete graph on
Vb with all edges internal to W removed, consists of the r-factor G(Vb\W,R)
of Vb\W along with (

⋃q
i=1 G(Vb\W,Bi))

⋃
(
⋃s

i=1 G(Vb, Ci)).
If A and B satisfy the hypotheses of Lemma 5, then the graph G(A,B)

contains |A||B|/2 edges. Thus G(Vb\W,R), G(Vb\W,Bi), and G(Vb, Ci)
contain (2b − 2a)r/2, (2b − 2a)d/2, and 2bd/2 edges, respectively. Then

G(Vb\W,R)
⋃ (

q⋃

i=1

G(Vb\W,Bi)

)⋃(
s⋃

i=1

G(Vb, Ci)

)

contains

(2b − 2a)r
2

+ q
(2b − 2a)d

2
+ s

2bd

2
=

(2b − 2a)(2a − 1)
2

+
(2b − 2a)2b

2

=
2b(2b − 1)

2
− 2a(2a − 1)

2

edges, which is the correct number of edges in K2b\K2a . Thus it suffices to
show that if x and y are distinct elements of Vb, but not both in W , then
the edge {x, y} is included in the above union. We can assume that x 6∈ W .

First assume that y − x ∈ W . Then y − x is in R or Bi for some i, and
{x, y} is an edge of G(Vb\W,R) or G(Vb\W,Bi), respectively.

Now assume that y − x 6∈ W . Then y − x ∈ Ci for some i, and {x, y} is
an edge of G(Vb, Ci).

The following is Theorem 4 of [7]

Theorem 9. There exists a d-cube decomposition of Kxd2d−1,yd2d−1 for all
positive integers x, y, and d.

Theorem 10. Let d and a be integers with d odd and 0 < d ≤ a such that
2a − 1 ≡ r (mod d), where 0 ≤ r < d. Let s be the order of 2 modulo d
and set b = a + s. Then for any nonnegative integer k, K2a+k(2b−2a) can be
decomposed into a Qr-factor and a graph divisible by Qd.

Proof. Let 2a − 1 = dq + r. Then by Theorem 7 the graph K2a can
be decomposed into a Qr-factor and q Qd-factors. Likewise by Theorem 8
the graph K2b\K2a can be written as a Qr-factor on its nonhole vertices
plus a graph divisible by Qd. Let 2s − 1 = dt. Then by Theorem 9 with
x = y = 2a−d+1t the graph K2b−2a,2b−2a is divisible by Qd.
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Now consider the vertex set of K2a+k(2b−2a) to be partitioned into a 2a-set X

and k (2b−2a)-sets Y1, Y2, . . . , Yk. We can consider K2a+k(2b−2a) as the union
of the complete graph K2a on X, k complete graphs with holes K2b\K2a on
the sets X

⋃
Yi with hole X, and

(
k
2

)
complete bipartite graphs K2b−2a,2b−2a

with bipartite sets Yi and Yj , i 6= j. By the previous paragraph these graphs
taken together decompose into a Qr-factor and a graph divisible by Qd.

Now we can show that if d is odd there exists an infinite arithmetic progres-
sion of integers n such that Qd divides Kn.

Theorem 11. Let d be any odd positive integer, let s be the order of 2
modulo d and let t be the least integer not less than d/s. Then Qd divides
Kn where n = 2st + k(2st+s − 2st).

Proof. We take a = st in Theorem 10. Then r = 0 and so only d-cubes
are involved in the decomposition.
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