
Discussiones Mathematicae 91
Graph Theory 26 (2006 ) 91–101

THE USE OF EULER’S FORMULA

IN (3, 1)∗-LIST COLORING

Yongqiang Zhao

Department of Mathematics
Shijiazhuang College

Shijiazhuang 050801, P.R. China

e-mail: yqzhao1970@yahoo.com

and

Wenjie He

Applied Mathematics Institute
Hebei University of Technology
Tianjin 300130, P.R. China

e-mail: he wenjie@yahoo.com

Abstract

A graph G is called (k, d)∗-choosable if, for every list assignment
L satisfying |L(v)| = k for all v ∈ V (G), there is an L-coloring of G
such that each vertex of G has at most d neighbors colored with the
same color as itself. Ko-Wei Lih et al. used the way of discharging to
prove that every planar graph without 4-cycles and i-cycles for some
i ∈ {5, 6, 7} is (3, 1)∗-choosable. In this paper, we show that if G is 2-
connected, we may just use Euler’s formula and the graph’s structural
properties to prove these results. Furthermore, for 2-connected planar
graph G, we use the same way to prove that, if G has no 4-cycles, and
the number of 5-cycles contained in G is at most 11+b∑i≥5

5i−24
4 |Vi|c,

then G is (3, 1)∗-choosable; if G has no 5-cycles, and any planar embed-
ding of G does not contain any adjacent 3-faces and adjacent 4-faces,
then G is (3, 1)∗-choosable.
Keywords: list improper coloring, (L, d)∗-coloring, (m, d)∗-choosable,
Euler’s formula.
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1. Introduction

All graphs considered in this paper are finite simple graphs. For a plane
graph G, we denote its vertex set, edge set, face set, and minimum degree
by V (G), E(G), F (G) and δ(G), respectively. For x ∈ V (G) ∪ F (G), let
d(x) denote the degree of x in G. A vertex (or face) of degree k is called a
k-vertex (or k-face). Let N(u) denote the set of neighbors of a vertex u in
G. Two faces of a plane graph are said to be adjacent if they have at least
one common boundary edge. A vertex v and a face f are said to be incident
if v lies on the boundary of f . For x ∈ V (G)∪F (G), we use Fk(x) to denote
the set of all k-faces that are incident or adjacent to x, and Vk(x) to denote
the set of all k-vertices that are incident or adjacent to x. For f ∈ F (G),
we write f = [u1u2 · · ·un] if u1, u2, . . . , un are the boundary vertices of f
in the clockwise order. A 3-face [u1u2u3] is called an (m1,m2,m3)-face if
d(ui) = mi for i = 1, 2, 3.

Let m > 1 be an integer. A graph G is (m, d)∗-colorable, if the vertices of
G can be colored with m colors so that each vertex has at most d neighbors
colored with the same color as itself. An (m, 0)∗-coloring is an ordinary
proper m-coloring. A list assignment of G is a function L that assigns a list
L(v) of colors to each vertex v ∈ V (G). An (L, d)∗-coloring is a mapping φ
that assigns a color φ(v) ∈ L(v) to each vertex v ∈ V (G) such that v has at
most d neighbors colored with φ(v). A graph is (m, d)∗-choosable, if there
exist an (L, d)∗-coloring for every list assignment L with |L(v)| = m for
all v ∈ V (G). Obviously, (m, 0)∗-choosability is the ordinary m-choosability
introduced by Erdös, Rubin and Taylor [2], and independently by Vizing [8].

The notion of list improper coloring was introduced independently by
Škrekovski [5] and Eaton and Hull [1]. This class of problems has been
studied widely [1, 3, 4, 5, 6, 7, 9] since its introduction. Ko-Wei Lih et al. [3]
used the way of discharging to prove that every planar graph without 4-cycles
and i-cycles for some i ∈ {5, 6, 7} is (3, 1)∗-choosable. In this paper, we show
that if G is 2-connected, we may just use Euler’s formula and the graph’s
structural properties to prove these results. Furthermore, for 2-connected
planar graph G, we use the same way to prove that, if G has no 4-cycles,
and the number of 5-cycles contained in G is at most 11 + b∑i≥5

5i−24
4 |Vi|c,

then G is (3, 1)∗-choosable; if G has no 5-cycles, and any planar embedding
of G does not contain any adjacent 3-faces and adjacent 4-faces, then G is
(3, 1)∗-choosable. In Section 2 we provide some lemmata, and in Section 3
we prove our main results.
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2. Lemmata

We first cite a useful lemma from [3].

Lemma 1 (Lih et al. [3]). Let G be a graph and d ≥ 1 an integer. If G
is not (k, d)∗-choosable but every subgraph of G with fewer vertices is, then
the following facts hold:

1. δ(G) ≥ k;
2. If u ∈ V (G) is a k-vertex and v is a neighbor of u, then d(v) ≥ k + d.

The following corollary is obvious.

Corollary 2 (Lih et al. [3]). If G is a plane graph and is not (3, 1)∗-
choosable with the fewest vertices, then the following facts hold:

1. δ(G) ≥ 3;
2. G does not contain two adjacent 3-vertices;
3. G does not contain a (3, 4, 4)-face.

Corollary 3. Let G be a 2-connected plane graph without adjacent 3-faces.
If G is not (3, 1)∗-choosable with the fewest vertices, then

(1) |V3(f)|+ |F3(f)| ≤ d(f)

for any f ∈ F (G).

Proof. Suppose that graph G is not (3, 1)∗-choosable with the fewest ver-
tices. Note that if G is 2-connected, then the boundary of every face of G
forms a cycle, and every vertex v ∈ V (G) is incident to exactly d(v) distinct
faces. Let f be a face of G. If d(f)=3, then the result is obvious by 2 of
Corollary 2 and the assumption. So we suppose d(f) ≥ 4. If all the faces
adjacent to f are 3-faces, then |F3(f)| = d(f), and |V3(f)| = 0. Otherwise,
there will exist two adjacent 3-faces, which contradicts the assumption. By
2 of Corollary 2, it is easy to see that whenever |F3(f)| lessens 1, |V3(f)|
increases by at most 1. So (1) holds for any f ∈ F (G).

Given a plane graph G, let Vi (Fi, respectively) be the set of all i-vertices
(i-faces, respectively) of G, V 1

3 the set of all 3-vertices of G that are not
incident to any 3-face, and V 2

3 = V3 \ V 1
3 .
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Lemma 4. Let G be a 2-connected plane graph that is not (3, 1)∗-choosable
with the fewest vertices.

1. If G does not contain 4-cycles, then

(2) 3|V 1
3 |+ 2|V 2

3 |+ 6|F3| ≤ 2|E(G)|.

2. If G contains neither 4-cycles nor 6-cycles, then

(3) 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 3|F5| ≤ 2|E(G)|.

3. If G contains neither 4-cycles nor 7-cycles, then

(4) 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 2|F5|+ 3|F6| ≤ 2|E(G)|.

Proof. Case 1. Suppose that G does not contain 4-cycles, then G contains
neither 4-faces nor adjacent 3-faces. So by (1),

∑

d(f)≥5

|V3(f)|+
∑

d(f)≥5

|F3(f)| ≤
∑

d(f)≥5

d(f).

Since
∑

d(f)≥5 |V3(f)| = 3|V 1
3 |+ 2|V 2

3 | and
∑

d(f)≥5 |F3(f)| = 3|F3|, then

3|V 1
3 |+ 2|V 2

3 |+ 3|F3| ≤
∑

d(f)≥5

d(f),

or
3|V 1

3 |+ 2|V 2
3 |+ 3|F3|+

∑

d(f)=3

d(f) ≤
∑

d(f)≥5

d(f) +
∑

d(f)=3

d(f).

Since
∑

d(f)=3 d(f) = 3|F3| and that G does not contain any 4-face, then

3|V 1
3 |+ 2|V 2

3 |+ 6|F3| ≤ 2E(G).

Case 2. Suppose that G is a plane graph without 4-cycles and 6-cycles,
then any 3-face is not adjacent to a 5-face in G. So

∑

d(f)=5

|V3(f)|+
∑

d(f)=5

|F3(f)| =
∑

d(f)=5

|V3(f)| ≤ 2|F5|.
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By (1), ∑

d(f)≥7

|V3(f)|+
∑

d(f)≥7

|F3(f)| ≤
∑

d(f)≥7

d(f).

Combining the two equalities above,

∑

d(f)≥7

|V3(f)|+
∑

d(f)=5

|V3(f)|+
∑

d(f)≥7

|F3(f)|+
∑

d(f)=5

|F3(f)| ≤
∑

d(f)≥7

d(f)+ 2|F5|.

By the same cases used in the proof of Case 1, we have

3|V 1
3 |+ 2|V 2

3 |+ 3|F3| ≤
∑

d(f)≥7

d(f) + 2|F5|,

and

3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 3|F5| ≤
∑

d(f)≥7

d(f) + 5|F5|+ 3|F3| = 2|E(G)|.

Case 3. Suppose that G contains neither 4-cycles nor 7-cycles, then any
5-face is adjacent to at most one 3-face in G. So

∑

d(f)=5

|V3(f)|+
∑

d(f)=5

|F3(f)| ≤ 3|F5|,

and ∑

d(f)=6

|V3(f)|+
∑

d(f)=6

|F3(f)| ≤ 3|F6|.

By (1), ∑

d(f)≥8

|V3(f)|+
∑

d(f)≥8

|F3(f)| ≤
∑

d(f)≥8

d(f).

Combining these three equalities above, we have

∑

d(f)≥5

|V3(f)|+
∑

d(f)≥5

|F3(f)| ≤
∑

d(f)≥8

d(f) + 3|F5|+ 3|F6|.
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Furthermore,

3|V 1
3 |+ 2|V 2

3 |+ 3|F3| ≤
∑

d(f)≥8

d(f) + 3|F5|+ 3|F6|.

So
3|V 1

3 |+ 2|V 2
3 |+ 6|F3|+ 2|F5|+ 3|F6|

≤
∑

d(f)≥8

d(f) + 3|F3|+ 5|F5|+ 6|F6| = 2|E(G)|.

The proof is complete.

Lemma 5. If G is a plane graph without adjacent 3-faces and is not (3, 1)∗-
choosable with the fewest vertices, then

(5) |V 2
3 | ≤

1
2

∑

i≥5

i|Vi|.

Proof. By 2 and 3 of Corollary 2, if v is a 3-vertex of G incident to a
3-face, then v must be adjacent to a vertex whose degree is at least 5. So
for a vertex v ∈ V (G), d(v) ≥ 5, let

V ∗
3 (v) = {u|u ∈ N(v) ∩ V 2

3 , and uv is a triangle’s edge},

then V 2
3 =

⋃
d(v)≥5 V ∗

3 (v). Since G does not contain adjacent 3-faces and
adjacent 3-vertices, then |V ∗

3 (v)| ≤ 1
2d(v). Therefore

|V 2
3 | ≤

∑

d(v)≥5

|V ∗
3 (v)| ≤ 1

2

∑

d(v)≥5

d(v) =
1
2

∑

i≥5

i|Vi|.

3. Main Results

In this section we just use Euler’s formula and the lemmata provided in the
previous section to prove the theorems.

Theorem 6 (Lih et al. [3]). If G is a 2-connected planar graph without
4-cycles and i-cycles for some i ∈ {5, 6, 7}, then G is (3, 1)∗-choosable.
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Proof. Suppose that G is a counterexample with the fewest vertices, and
we consider the planar embeddings of G. By Euler’s formula

|V (G)|+ |F (G)| = |E(G)|+ 2

or ∑

i≥3

|Vi|+
∑

i≥3

|Fi| = |E(G)|+ 2,

we have

1
4
|V3|+ 1

4

∑

i≥3

i|Vi| − 1
4

∑

i≥5

(i− 4)|Vi|+ 3
6
|F3|

+
2
6
|F4|+ 1

6
|F5|+ 1

6

∑

i≥3

i|Fi| ≥ |E(G)|+ 2,

i.e.,
1
4
|V3|+ 2|E(G)|

4
− 1

4

∑

i≥5

(i− 4)|Vi|+ 1
2
|F3|

+
1
3
|F4|+ 1

6
|F5|+ 2|E(G)|

6
≥ |E(G)|+ 2

or

(6) 3|V3| − 3
∑

i≥5

(i− 4)|Vi|+ 6|F3|+ 4|F4|+ 2|F5| ≥ 2|E(G)|+ 24.

Case 1. G has no 4-cycles and 5-cycles. By (2) and (6),

3|V3| − 3
∑

i≥5

(i− 4)|Vi|+ 6|F3| ≥ 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 24,

i.e.,
|V 2

3 | − 3
∑

i≥5

(i− 4)|Vi| ≥ 24.

By (5),
1
2

∑

i≥5

i|Vi| − 3
∑

i≥5

(i− 4)|Vi| ≥ 24,
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i.e., ∑

i≥5

(
12− 5

2
i

)
|Vi| ≥ 24,

which is impossible, since 12− 5
2 i < 0 when i ≥ 5.

Case 2. G has no 4-cycles and 6-cycles. By (3) and (6),

3|V3| − 3
∑

i≥5

(i− 4)|Vi|+ 6|F3|+ 2|F5| ≥ 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 3|F5|+ 24,

i.e.,
|V 2

3 | − 3
∑

i≥5

(i− 4)|Vi| ≥ |F5|+ 24.

By (5),
1
2

∑

i≥5

i|Vi| − 3
∑

i≥5

(i− 4)|Vi| ≥ |F5|+ 24,

i.e., ∑

i≥5

(
12− 5

2
i

)
|Vi| ≥ |F5|+ 24,

which is impossible.

Case 3. G has no 4-cycles and 7-cycles. By (4) and (6),

3|V3| − 3
∑

i≥5

(i− 4)|Vi|+ 6|F3|+ 2|F5|

≥ 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 2|F5|+ 3|F6|+ 24,

i.e.,
|V 2

3 | − 3
∑

i≥5

(i− 4)|Vi| ≥ 3|F6|+ 24.

By (5),
1
2

∑

i≥5

i|Vi| − 3
∑

i≥5

(i− 4)|Vi| ≥ 3|F6|+ 24,

i.e., ∑

i≥5

(
12− 5

2
i

)
|Vi| ≥ 3|F6|+ 24,

which is impossible. The proof is complete.
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Theorem 7. Let G be a 2-connected planar graph.
1. If G has no 4-cycles, and the number of 5-cycles contained in G is at

most 11 + b∑i≥5
5i−24

4 |Vi|c, then G is (3, 1)∗-choosable.
2. If G has no 5-cycles, and any planar embedding of G does not contain

any adjacent 3-faces and adjacent 4-faces, then G is (3, 1)∗-choosable.

Proof. 1. Suppose that G is a 2-connected planar graph without 4-cycles
and is not (3, 1)∗-choosable with the fewest vertices. We consider the planar
embeddings of G. By (2) and (6),

3|V3| − 3
∑

i≥5

(i− 4)|Vi|+ 6|F3|+ 2|F5| ≥ 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 24,

i.e.,
|V 2

3 | − 3
∑

i≥5

(i− 4)|Vi|+ 2|F5| ≥ 24.

By (5),
1
2

∑

i≥5

i|Vi| − 3
∑

i≥5

(i− 4)|Vi|+ 2|F5| ≥ 24

or
|F5| ≥ 12 +

∑

i≥5

5i− 24
4

|Vi|,

a contradiction.
2. Suppose that G is a counterexample with the fewest vertices, and we

consider the planar embeddings of G. Since G has no 5-cycles, then there
is no 3-face adjacent to a 4-face in any planar embedding of G. By 2 of
Corollary 2, G does not contain adjacent 3-vertices. So for any f ∈ F (G),
we have

(7) |V3(f)|+ |F3(f)|+ |F4(f)| ≤ d(f).

When d(f) = 3, 4, (7) trivially holds. So we suppose d(f) ≥ 6. If Fi(f) = φ
for i ≥ 5, then |F3(f)| + |F4(f)| = d(f) and |V3(f)| = 0 by the conditions
of the theorem. It is easy to see that whenever |F3(f)| + |F4(f)| lessens 1,
|V3(f)| increases by at most 1. So (7) holds for any f ∈ F (G).

By (7),
∑

d(f)≥4

|V3(f)|+
∑

d(f)≥4

|F3(f)|+
∑

d(f)≥4

|F4(f)| ≤
∑

d(f)≥4

d(f)
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or
3|V 1

3 |+ 2|V 2
3 |+ 3|F3|+ 4|F4| ≤

∑

i≥4

i|Fi|.

Therefore

(8) 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 4|F4| ≤ 2|E(G)|.

By (6) and (8),

3|V3| − 3
∑

i≥5

(i− 4)|Vi|+ 6|F3|+ 4|F4| ≥ 3|V 1
3 |+ 2|V 2

3 |+ 6|F3|+ 4|F4|+ 24,

i.e.,
|V 2

3 | − 3
∑

i≥5

(i− 4)|Vi| ≥ 24.

By (5),
1
2

∑

i≥5

i|Vi| − 3
∑

i≥5

(i− 4)|Vi| ≥ 24.

i.e., ∑

i≥5

(
12− 5

2
i

)
|Vi| ≥ 24,

which is impossible, since 12− 5
2 i < 0 when i ≥ 5.
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