Discussiones Mathematicae
Graph Theory 26 (2006) 91-101

THE USE OF EULER’S FORMULA
IN (3,1)*-LIST COLORING

YONGQIANG ZHAO

Department of Mathematics
Shijiazhuang College
Shijiazhuang 050801, P.R. China

e-mail: yqzhaol1970Q@Qyahoo.com

AND
WENJIE HE

Applied Mathematics Institute
Hebei University of Technology
Tiangin 300130, P.R. China

e-mail: he_wenjie@yahoo.com

Abstract

A graph G is called (k,d)*-choosable if, for every list assignment
L satisfying |L(v)| = k for all v € V(G), there is an L-coloring of G
such that each vertex of G has at most d neighbors colored with the
same color as itself. Ko-Wei Lih et al. used the way of discharging to
prove that every planar graph without 4-cycles and i-cycles for some
i€ {5,6,7} is (3,1)*-choosable. In this paper, we show that if G is 2-
connected, we may just use Euler’s formula and the graph’s structural
properties to prove these results. Furthermore, for 2-connected planar
graph G, we use the same way to prove that, if G has no 4-cycles, and
the number of 5-cycles contained in G is at most 114 [}~ 5 2522 |V;|],
then G is (3, 1)*-choosable; if G has no 5-cycles, and any planar embed-
ding of G does not contain any adjacent 3-faces and adjacent 4-faces,
then G is (3,1)*-choosable.

Keywords: list improper coloring, (L, d)*-coloring, (m, d)*-choosable,
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1. INTRODUCTION

All graphs considered in this paper are finite simple graphs. For a plane
graph G, we denote its vertex set, edge set, face set, and minimum degree
by V(G), E(G), F(G) and 6(G), respectively. For z € V(G) U F(G), let
d(x) denote the degree of x in G. A vertex (or face) of degree k is called a
k-vertex (or k-face). Let N(u) denote the set of neighbors of a vertex u in
G. Two faces of a plane graph are said to be adjacent if they have at least
one common boundary edge. A vertex v and a face f are said to be incident
if v lies on the boundary of f. For x € V(G)UF(G), we use Fj(x) to denote
the set of all k-faces that are incident or adjacent to x, and Vi (x) to denote
the set of all k-vertices that are incident or adjacent to z. For f € F(G),
we write f = [ujug - uy| if ui,ug,...,u, are the boundary vertices of f
in the clockwise order. A 3-face [ujuqus] is called an (mj, mg, ms)-face if
d(u;) =m; for i =1,2,3.

Let m > 1 be an integer. A graph G is (m, d)*-colorable, if the vertices of
G can be colored with m colors so that each vertex has at most d neighbors
colored with the same color as itself. An (m,0)*-coloring is an ordinary
proper m-coloring. A list assignment of GG is a function L that assigns a list
L(v) of colors to each vertex v € V(G). An (L, d)*-coloring is a mapping ¢
that assigns a color ¢(v) € L(v) to each vertex v € V(G) such that v has at
most d neighbors colored with ¢(v). A graph is (m, d)*-choosable, if there
exist an (L, d)*-coloring for every list assignment L with |L(v)] = m for
all v € V(G). Obviously, (m,0)*-choosability is the ordinary m-choosability
introduced by Erdos, Rubin and Taylor [2], and independently by Vizing [8].

The notion of list improper coloring was introduced independently by
Skrekovski [5] and Eaton and Hull [1]. This class of problems has been
studied widely [1, 3, 4, 5, 6, 7, 9] since its introduction. Ko-Wei Lih et al. [3]
used the way of discharging to prove that every planar graph without 4-cycles
and i-cycles for some ¢ € {5,6,7} is (3, 1)*-choosable. In this paper, we show
that if G is 2-connected, we may just use Euler’s formula and the graph’s
structural properties to prove these results. Furthermore, for 2-connected
planar graph G, we use the same way to prove that, if G has no 4-cycles,
and the number of 5-cycles contained in G is at most 11+ Y55 2524 |V;|],
then G is (3, 1)*-choosable; if G has no 5-cycles, and any planar embedding
of G does not contain any adjacent 3-faces and adjacent 4-faces, then G is
(3,1)*-choosable. In Section 2 we provide some lemmata, and in Section 3
we prove our main results.
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2. LEMMATA

We first cite a useful lemma from [3].

Lemma 1 (Lih et al. [3]). Let G be a graph and d > 1 an integer. If G
is not (k,d)*-choosable but every subgraph of G with fewer vertices is, then
the following facts hold:

1. §(G) > k;

2. If u € V(G) is a k-vertex and v is a neighbor of u, then d(v) > k + d.

The following corollary is obvious.

Corollary 2 (Lih et al. [3]). If G is a plane graph and is not (3,1)*-
choosable with the fewest vertices, then the following facts hold:

1. §(G) > 3;

2. G does not contain two adjacent 3-vertices;

3. G does not contain a (3,4, 4)-face.

Corollary 3. Let G be a 2-connected plane graph without adjacent 3-faces.
If G is not (3,1)*-choosable with the fewest vertices, then

(1) Va(F) + [F5(f)] < d(f)
for any f € F(G).

Proof. Suppose that graph G is not (3, 1)*-choosable with the fewest ver-
tices. Note that if G is 2-connected, then the boundary of every face of G
forms a cycle, and every vertex v € V(G) is incident to exactly d(v) distinct
faces. Let f be a face of G. If d(f)=3, then the result is obvious by 2 of
Corollary 2 and the assumption. So we suppose d(f) > 4. If all the faces
adjacent to f are 3-faces, then |F3(f)| = d(f), and |V3(f)| = 0. Otherwise,
there will exist two adjacent 3-faces, which contradicts the assumption. By
2 of Corollary 2, it is easy to see that whenever |F5(f)| lessens 1, |V3(f)]
increases by at most 1. So (1) holds for any f € F(G). |

Given a plane graph G, let V; (Fj, respectively) be the set of all i-vertices
(i-faces, respectively) of G, V31 the set of all 3-vertices of GG that are not
incident to any 3-face, and VZ = V3 \ V3.
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Lemma 4. Let G be a 2-connected plane graph that is not (3,1)*-choosable
with the fewest vertices.

1. If G does not contain 4-cycles, then

(2) 3|Vy | + 2|V | + 6| 3| < 2|E(G)|.

2. If G contains neither 4-cycles nor 6-cycles, then

(3) B|Vi | + 2|V | + 6| 3| + 3| Fs| < 2|E(G).

3. If G contains neither 4-cycles nor 7-cycles, then

(4) 3|Vy |+ 2|VZ| + 6| Fy| + 2| Fs| + 3| F| < 2| B(G)].

Proof. Case 1. Suppose that G does not contain 4-cycles, then G contains
neither 4-faces nor adjacent 3-faces. So by (1),

STEWNI+ D IENIS DD df).

d(f)=5 d(f)=5 d(f)=5
Since 32p)>5 [Va(f)] = 3|V5| + 2|V and 2d(py=s [F3(f)| = 3|F3], then

3V +2[VE| +3|Fs[ < ) d(f),
d(f)=>5

or

BIVE [+ 2(VE| +3|Fs| + > d(f)< D d(f)+ DY df).
d(f)

d(f)=3 >5 d(f)=3
Since 3 p)=3 d(f) = 3|F3| and that G does not contain any 4-face, then

3|Vy | + 2|Vi| + 6| F3| < 2B(G).

Case 2. Suppose that GG is a plane graph without 4-cycles and 6-cycles,
then any 3-face is not adjacent to a 5-face in G. So

ST ENI+ D] IFNI= D] IVa(f)] < 2|k
d(f)=5 d(f)=5 d(f)=5
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By (1),
STOEWNI+ D IENIS DD df).

d(f)=7 d(f)=7 a(f)=7
Combining the two equalities above,

STVEAI+ D IVEHI+ D0 IF(HI+ D [F(HI < D d(f) +2|F5.
a(f)=>7 (f)=5 a(f)>7

d d(f)=7 d(f)=5

By the same cases used in the proof of Case 1, we have

BV |+ 2[VE| +3|Fs| < Y d(f) +2|F5),
d(f)>7

and

3|V + 2|V + 6| Fs| + 3|F5| < > d(f) + 5| F5| + 3| F3| = 2|E(G)|.
da(f)>7

Case 3. Suppose that G contains neither 4-cycles nor 7-cycles, then any
5-face is adjacent to at most one 3-face in G. So

Yo W+ D0 ()] < 3|Fs),

d(f)=5 d(f)=5
and
ST OVENI+ D IFs(f)] < 3| Fl.
d(f)=6 d(f)=6
By (1),

Yo WD+ D 1B Yo dlf).

d(f)>8 d(f)>8 d(f)=8

Combining these three equalities above, we have

oD+ DY 1B Y d(f) + 3| Fs| + 3| F-
d(f)>5 d(f)>8

d(f)=5
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Furthermore,

3|Va |+ 2(VE |+ 3|F5| < > d(f) + 3|F5| + 3| F|.

d(f)=>8
So
3|V | + 2| V| + 6| Fs| + 2| F5| + 3| Fg|
< > d(f) + 3| Fs] + 5| F5| + 6] F| = 2|E(G)].
d(f)=>8
The proof is complete. [

Lemma 5. If G is a plane graph without adjacent 3-faces and is not (3,1)*-
choosable with the fewest vertices, then

1 .
(5) VE[ < 5 ilVil.
25

Proof. By 2 and 3 of Corollary 2, if v is a 3-vertex of GG incident to a
3-face, then v must be adjacent to a vertex whose degree is at least 5. So
for a vertex v € V(G), d(v) > 5, let

Vi(v) = {ulu € N(v)NVZ, and wv is a triangle’s edge},

then V2 = Ud(w)>5 V3 (v). Since G does not contain adjacent 3-faces and
adjacent 3-vertices, then |V (v)| < $d(v). Therefore

—_

W< Y Mol Y dw) =5 il
d

d(v)>5 (v)=5 25 [ |

3. MAIN RESULTS

In this section we just use Euler’s formula and the lemmata provided in the
previous section to prove the theorems.

Theorem 6 (Lih et al. [3]). If G is a 2-connected planar graph without
4-cycles and i-cycles for some i € {5,6,7}, then G is (3,1)*-choosable.
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Proof. Suppose that GG is a counterexample with the fewest vertices, and
we consider the planar embeddings of G. By Euler’s formula

V(@) + [F(G)] = |E(G)| +2

or

SOIVil+ ) IE| = |E(G)] +2,

i>3 i>3

we have

1 1 1 3
= STV = 2 Y6 - 4)|Vil + S|P
1l 3 2l - - Ol + Gl

i>5

!F4\+ !F5!+ Z |F| > |E(G)] + 2,
z>3

ie.,
1 20E(G)| 1 ) 1
- - = —YH|Vi| + = |F:
Il 25 = 6 - O+ IR

2|E(G)|
6

1 1
+§|F4|+6|F5|+ > |E(G)]| + 2

or

(6)  3|Va| —3> (i —4)|Vi| + 6|Fs| + 4| Fy| + 2| F5| > 2|E(G)| + 24.
i>5

Case 1. G has no 4-cycles and 5-cycles. By (2) and (6),

3|Vs| = 3 (i — 4)|Vi| + 6| F3] > 3|V3'| + 2|Vi’| + 6| F3| + 24,
1>5
ie.,
VZ[ =3 (i —4)|V;| > 24.
1>5

,Z Vil =3 (i — 4)|Vi| > 24,

1>5 1>5
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ie.,

> (123 iz

i>5
which is impossible, since 12 — %z < 0 when 7 > 5.

Case 2. G has no 4-cycles and 6-cycles. By (3) and (6),

3[Va| — 3 (i — 4)|Vi| + 6|Fs| + 2|F5| > 3|V5'| + 2|Vi¥| + 6| F3| + 3|F5| + 24,

i>5
ie.,
V] =33 (i — 4)|V;| > |F5| + 24.
i>5
By (5), ,
5 > ilVil =3> (i — 4)|Vi| > |F5| + 24,
i>5 i>5
ie.,

5
Z (12 - 2i> |Vi| > | F5| + 24,

i>5

which is impossible.
Case 3. G has no 4-cycles and 7-cycles. By (4) and (6),
3|Vs| — 3> (i — 4)|Vi| + 6| F3| + 2| F5|

i>5

> 3|V3' | + 2|VE| + 6|F3| + 2| F5| + 3|Fg| + 24,

ie.,
VS| =3 (i — 4)|Vi| > 3|Fg| + 24.
i>5
By (5), ,
5 2 Vil =32 (i = )[Vi] = 3| Fg| + 24,
1>5 1>5
ie.,

5
5 (12 51) il > 3l + 24,

i>5

which is impossible. The proof is complete. [
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Theorem 7. Let G be a 2-connected planar graph.

L. If G has no 4-cycles, and the number of 5-cycles contained in G is at
most 11+ |37;55 B2\ |, then G is (3,1)*-choosable.

2. If G has no 5-cycles, and any planar embedding of G does mot contain
any adjacent 3-faces and adjacent 4-faces, then G is (3,1)*-choosable.

Proof. 1. Suppose that G is a 2-connected planar graph without 4-cycles
and is not (3, 1)*-choosable with the fewest vertices. We consider the planar
embeddings of G. By (2) and (6),

3|Vs| — 3 (i — 4)|Vi| + 6| F3| + 2| F5| > 3|V3'| + 2|Vi| + 6| F3| + 24,

1>5
ie.,
VE| =38 (i = 4)|Vi| + 2|F5| > 24.
i>5
By (5), ,
5 Yo ilVil =3 (i = 4)|Vi| + 2| F5| > 24
i>5 i>5
o 5i — 24
i —
[F5| > 12+ ) Vil
1>5 4

a contradiction.

2. Suppose that G is a counterexample with the fewest vertices, and we
consider the planar embeddings of G. Since G has no 5-cycles, then there
is no 3-face adjacent to a 4-face in any planar embedding of G. By 2 of
Corollary 2, G does not contain adjacent 3-vertices. So for any f € F(G),
we have

(7) Va(NI + [Es (NI + [Fa(H)] < d(f)-

When d(f) = 3,4, (7) trivially holds. So we suppose d(f) > 6. If F;(f) = ¢
for i > 5, then |F3(f)| + |Fa(f)| = d(f) and |V3(f)| = 0 by the conditions
of the theorem. It is easy to see that whenever |F5(f)| + |Fa(f)| lessens 1,
|V3(f)| increases by at most 1. So (7) holds for any f € F(G).

By (7),

Yo WO+ > IBAI+ Do IERWI< Y df)
()4 a4

d(f)=4 d(f)=4
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or
3IVE' |+ 2| V5| + 3| Fy| + 4| Fy| <> i|Fy.
i>4
Therefore
(8) 3|Vi'| + 2|V | + 6| F5| + 4|Fy| < 2|E(G)|.

By (6) and (8),

3|Vs| — 3> (i — 4)|Vi| + 6| Fs| + 4| Fy| > 3|V3'| + 2|Vi’| + 6| F5| + 4| Fy| + 24,

i>5
ie.,
VZ[ =3 (i —4)|V;| > 24.
125
By (5), ,
52 Vil =3 (i — 4)|Vi| > 24
i>5 i>5
ie.,
> (12 — z) V| > 24,
125
which is impossible, since 12 — 51’ < 0 when @ > 5. [
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