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Abstract

To study the block structure of a connected graph G = (V, E),
we introduce two algebraic approaches that reflect this structure: a
binary operation + called a leap operation and a ternary relation L
called a leap system, both on a finite, nonempty set V . These algebraic
structures are easily studied by considering their underlying graphs,
which turn out to be block graphs. Conversely, we define the operation
+G as well as the set of leaps LG of the connected graph G. The
underlying graph of +G, as well as that of LG, turns out to be just the
block closure of G (i.e., the graph obtained by making each block of G
into a complete subgraph).
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1. Introduction

An important aspect of a connected graph G is the structure of the con-
nection of its blocks via its cut-vertices. Recall that a block in a graph
is a maximal connected nonseparable subgraph, where nonseparable means
without cut-vertices. A bridge with its ends is called a trivial block. There
exist various ways to study this block structure. The classical one is probably
the intersection graph H(G) of the blocks of G, see [2, 3]. This intersection
graph is called the block graph of G. It is easily seen that all blocks in H(G)
are complete. This is the origin of the term block graph being a connected
graph, in which all blocks are complete. Another recent approach was taken
in [1] involving the all-paths transit function of a graph. A transit function is
a function on a graph that returns a nonempty set for each pair of vertices.
The all-paths transit function returns, for the pair u, v, the set of vertices
on the u,v-paths.

In this paper we propose two different algebraic methods to study the
block structure: a binary operation called leap operation and a ternary re-
lation called leap system. Both methods involve the idea of leaping from
vertex to vertex, instead of walking along edges. Although there are differ-
ences between the two approaches, they are closely related. Therefore, in
both cases, we use the same term ‘leap’. They are based on two different
characterizing properties of blocks. The underlying idea for the leap oper-
ation is the following. Let u and w be two distinct vertices in G. Now we
want to know which vertices can be avoided by some u,w-walk, and which
vertices are necessarily on every u,w-walk. A feature of a non-trivial block
is that, for any three distinct vertices r, s, t in the same block, there exists a
path between r and t avoiding s, see [3]. On the other hand, if r and t are
in different blocks, then all cut-vertices “between” r and t are necessarily on
any r, t-walk. If we can avoid a vertex, then we can sort of “leap” over that
vertex in going from u to w. Within a block we can leap to any vertex. In
going from one block to another we first leap to the cut-vertex in the first
block joining it to the rest of the graph where the other block is located. For
any two vertices u and w in different blocks, the leap operation produces
the cut-vertex z in the block of u on the way to w; in algebraic notation
u+w = z. If u and w are in the same block, then u+w = w. Thus, if u 6= w,
we leap from u to the first vertex distinct from u that is on all u, w-walks.

For the other approach we use the following characterizing property of
blocks: for any three distinct vertices r, s, t in the same block, there exists a
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path between r and t passing through s, see [3]. Let u and w be two distinct
vertices in the same block, and let v be any other vertex in the same block.
Then, in going from u to w we might make a detour along v; otherwise
stated, we might leap to v first. In algebraic notation: (u, v, w) is a leap. If
u and w belong to different blocks, then we may leap to any vertex distinct
from u as long as we do not leap over a cut-vertex. In algebraic terms,
(u, v, w) is a leap if and only if u and v are two distinct vertices in the same
block of G, and u is not a cut-vertex between v and w (because otherwise
we would leap in the ‘wrong direction’). Note that thus the set of leaps is a
ternary relation on the vertex set of the graph.

Now the problem is how to translate these approaches in purely algebraic
terms, i.e., in terms of operations or relations. We propose sets of axioms for
both the operation and the relation. In both cases we define the underlying
graph of the algebraic structure, and we study the algebraic and the graphic
side of this approach.

Throughout this paper V is a finite nonempty set, and G = (V,E)
is a graph, i.e., undirected, simple, and without loops, cf. [3]. The block
closure of G is the graph obtained from G by turning every block of G
into a complete subgraph. Note that according to the above definition of
block a complete graph consists of exactly one block, and in a non-complete
graph any bridge with its ends forms a block, whereas all other blocks are
2-connected.

2. The Leap Operation

In this section we introduce the leap operation. The underlying idea of this
operation is that it should reflect the following operation on a graph. Let
G = (V,E) be a connected graph. If we walk from vertex u to vertex v,
then we have lots of freedom of choice how to walk, but there are certain
restrictions. For instance, we have to pass through any cut-vertex lying
between u and v. If we are only interested in these forced vertices on any
walk from u to v, then we could skip all other vertices, and just leap from
cut-vertex to cut-vertex between u and v. So our first “leap” from u carries
us to the first cut-vertex w encountered on any u, v-path. If there is no such
cut-vertex, then we just leap to v. We can think of the leap operation as
pointing us to this first cut-vertex. Keeping this metaphor in mind, we hope
that the axioms for the leap operation are easier to read.

The symbol + denotes a binary operation on the set V . The underlying
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graph G+ = (V, E+) of + is defined by

uv ∈ E+ if and only if u 6= v, u + v = v and v + u = u.

In the sequel we will consider the following axioms for such a binary opera-
tion.

(lo1) (u + v) + u = u for u, v in V ,

(lo2) if u 6= v, then (u + v) + v 6= u for u, v in V ,

(lo3) if u + v 6= v, then ((u + v) + v) + u 6= u for u, v in V ,

(lo4) if u 6= v = u + v, u + w 6= v and v + w 6= u, then u + w = v + w
for u, v, w in V .

In a different context the following basic lemma was proved in [10]. For the
sake of completeness, we include its proof here.

Lemma 1. Let + satisfy (lo1) and (lo2). If u, v ∈ V , then

u + v = u if and only if u = v,

u + v = v if and only if v + u = u.

Proof. First we prove the second property. If u + v = v, then, by axiom
(lo1), we have v +u = (u+ v)+u = u. Similarly, if u+ v = u, then we have
u + v = (u + v) + v = v.

To prove the first property, let u, v ∈ V . By (lo1), we have (u+u)+u =
u, so that ((u + u) + u) + u = u + u. Now with (u + u) playing the role of
u and u that of v in (lo2), we have u + u = u. Hence, if u + v = u, then it
follows that (u + v) + v = u + v = u, and therefore, by (lo2), we have u = v.
Conversely, if u = v, then it follows that u + v = u.

Let + be a binary operation on V , and let + satisfy (lo1) and (lo2). Consider
u, v ∈ V such that u+v 6= v. Then we have u 6= v, for otherwise, by Lemma
1, we have u + v = u = v, which is impossible.

A leap operation on V is a binary operation + satisfying the axioms
(lo1), (lo2), (lo3), (lo4). Note that, by Lemma 1, the underlying graph
G+ = (V,E+) of a leap operation + can be defined by

uv ∈ E+ if and only if u 6= v and u + v = v.
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For a connected graph G = (V, E), we define the access operation +G of G
by u +G v = w, where w = v, whenever u and v are in the same block of G,
and w is the cut-vertex (distinct from u) in the block of u on any u, v-path,
whenever u and v are in different blocks of G. The next Proposition follows
immediately from the definition of the access operation.

Proposition 2. Let G = (V, E) be a connected graph with block closure
B. Then the access operation +G of G and the access operation +B of B
coincide on V .

Proposition 3. Let G = (V, E) be a connected graph, and let + be the
access operation of G. Then + is a leap operation on V .

Proof. Let u, v, w be vertices in G, and put x = u + v. There exists a
block H of G containing u and x. Obviously if u 6= x, then H is determined
uniquely.

(lo1): Clearly, x = u + v and u are both in H, whence, by definition,
we have u = x + u = (u + v) + u.

(lo2): If v is in H, then x = v, and x + v = v 6= u, by the definition of
the access operation. If v is not in H, then x is the cut-vertex in H between
u and v. Moreover, x + v is not in H, so that (u + v) + v = x + v 6= u.

(lo3): Now u+v 6= v implies that u 6= v, and v is not in H and x = u+v
is the cut-vertex in H between u and v. Moreover, y = (u + v) + v is not in
H, so y + u is either x or not in H, so that y + u = ((u + v) + v) + u 6= u.

(lo4): First u + v = v means that v is in H. Second u + w 6= v means
that v 6= w, but also that v is not a cut-vertex between u and w. Finally
v + w 6= u means that u is not a cut-vertex between v and w. Now if w is
in H, then, by definition, we have u + w = w = v + w. So assume that w
is not in H. Let z be the cut-vertex between w and any vertex in H. Then
we have u + w = z = v + w.

This concludes the proof that the access operation + of G is a leap
operation.

Let u and v be any two vertices of a connected graph G. By N1(u, v) we
denote the set of neighbors x of u with d(x, v) = d(u, v)− 1, that is, the set
of neighbors of u that lie on some u, v-geodesic in G. Recall that a geodetic
graph is a connected graph G in which there is a unique shortest u, v-path,
for any two vertices u and v in G. Obviously, every block graph is a geodetic
graph.
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Theorem 4. Let + be a leap operation on a finite nonempty set V , and
let H be the underlying graph of +. Then H is a block graph and + is the
access operation of H.

Proof. Consider an arbitrary component F of H.
We first prove that

(1) N1(u, v) = {u + v} for all distinct u, v ∈ V (F ).

We proceed by induction on d(u, v). Put n = d(u, v). The case n = 1 follows
immediately from the definitions. Let n > 1. Obviously, N1(u, v) 6= ∅.
Consider an arbitrary x ∈ N1(u, v). We want to prove that x = u + v.
Clearly, there exist u0, u1, . . . , un ∈ V (F ) such that u0 = u, u1 = x, un = v
and u0 → u1 → . . . → un is a shortest u, v path in F . Suppose, to the
contrary, that u1 6= u0 + v. Since d(u1, v) = n− 1, the induction hypothesis
implies that N1(u1, v) = {u1 + v} = {u2}, and thus u0 6= u1 + v. By virtue
of (lo4) (with u = u0, and u1 in the role of v, and v in the role of w), we
conclude that u0+v = u1+v. Now d(u1+v, v) = n−2, so that by induction
we have u1 + v = u2. Hence u0 + v = u2. Thus, by (lo1), we have

u2 + u0 = (u0 + v) + u0 = u0.

By Lemma 1, we have
u0 + u2 = u2.

Hence, by the definition of H, the vertices u0 and u2 are adjacent. Since
this would imply that d(u0, v) = 1 + d(u2, v) = 1 + n − 2 = n − 1 < n, we
get a contradiction. This proves (1).

It follows from (1) that F is a geodetic graph and + restricted to V (F )
is the leap operation of F .

Next we prove that F is a block graph. Assume the contrary, and let
B be a block of F with diameter k ≥ 2. Let w be a vertex of B having
vertices at distance k in B. Let Z be the set of vertices in B at distance k
from w. Since B is a block, there exists a cycle through w and some vertex
in Z. Let C be such a cycle of minimal length. Going from w along C, let
v be the first vertex on C in Z, let x be the vertex on C just before v, and
let u be the vertex on C just after v. Note that x is not in Z, so that we
have d(w, x) = k − 1 = d(w, v) − 1. Since F is geodetic, B is geodetic too,
so we know that d(w, u) ≥ k. Hence, k being the diameter of B, we have
d(w, u) = k, so that u lies in Z as well. If u were adjacent to x, then we could
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delete v from C obtaining a shorter cycle through w and Z. This contradicts
the minimality of C, so that u and x are not adjacent. Let y be the neighbor
of u with d(w, y) = k − 1. Then we have u 6= v, v = u + v, u + w = y 6= v,
and v + w = x 6= u. So, by (lo4), we must have y = u + w = v + w = x,
which is a contradiction. This proves that F is a block graph.

Finally, assume that H is not connected, and let z be a vertex in V −
V (F ). Choose an arbitrary vertex w in V (F ). Then there exists an infinite
sequence (w0, w1, w2, . . .) such that w0 = w and

wh+1 = wh + z for each i ≥ 0.

It follows from (lo1) that w0 → w1 → . . . → wi is a walk in F , for each
i ≥ 0. Moreover, it follows from (lo2) that wj 6= wj+2 for each j ≥ 0. Since
V (F ) is finite, there exist k and m, with 0 ≤ k < m− 2, such that wk = wm

and wk → wk+1 → . . . → wm−1 → wm is a cycle in F . All the vertices
on this cycle are in the same block of F , so that, F being a block graph,
they are mutually adjacent. In particular, we have wk+2 + wk = wk. Thus
((wk + z) + z) + wk = wk,, which contradicts (lo3). Hence G is connected.

Since H is connected, we have N1(u, v) = {u + v}, for all distinct u and
v in V . Moreover, + is the access operation of H. This completes the proof.

In mathematical shorthand we could write Theorem 4 as follows: Let + be
a leap operation on V . Then G+ is a block graph and + = +G+.

Obviously, every block graph is a geodetic graph. A similar result as
Theorem 4 was obtained already in Nebeský [9], see also [11]. This result is
not as strong as Theorem 4, but on the other hand it concerns all geodetic
graphs.

Now we can sharpen Proposition 2 a little bit.

Theorem 5. Let G = (V, E) be a connected graph, and let + be the access
operation of G. Then + is a leap operation on V and the underlying graph
of + is the block closure of G.

Proof. First note that, by Proposition 3, the operation + is a leap opera-
tion on V . Let B be the block closure of G. By Proposition 2, the operation
+ is also the access operation of B. Note that, by the definition of the access
operation of the block graph B, we have u + v = v if and only if u = v or u
and v are adjacent in B. By the definition of the underlying graph of a leap
operation, we conclude that B is the underlying graph of +.
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In mathematical shorthand this reads as follows: Let G be a connected graph,
then G+G = BG.

We recapitulate the above results in a slightly different way, thus ob-
taining an algebraic approach to block graphs.

Theorem 6. Let + be a binary operation on a finite nonempty set V , and
let H be the graph of +. Then H is a block graph and + is the access
operation of H if and only if + is a leap operation on V .

3. Leap Systems

In this section we introduce another algebraic approach to the block struc-
ture of a connected graph G. Take any two vertices u,w in G. If we can
find a u,w-path passing through a vertex v, then, while going from u to w,
we can first ‘leap’ to v. But we do not allow leaps over vertices that cannot
be avoided, that is, we cannot leap over cut-vertices between u and w. So
what are all the possible leaps in G? We start at u, and going to w we can
leap to any vertex in the same block as u (in the ‘direction’ of w). If u and
w are in the same block, we can also leap from u to w. If u and w are not in
the same block, then the closest we can get to w is to leap to the cut-vertex
z in the block of u that is on a u,w-path. Because the structure underlying
this algebraic approach is the same as in the case of the leap operation we
again use the term leap.

Let V be a finite set, and let L be a ternary relation on V . We consider
the following axioms for L.

(ls0) if u 6= v, then there exists exactly one y ∈ V with the property
that (u, y, v) ∈ L and (y, u, v) 6∈ L (u, v ∈ V );

(ls1) if (u, v, w) ∈ L, then (v, u, u) ∈ L (u, v, w ∈ V );

(ls2) if (u, v, w) ∈ L, then u 6= w (u, v, w ∈ V );

(ls3) if (u, v, w), (u,w, w) ∈ L and v 6= w, then (v, u, w) ∈ L
(u, v, w ∈ V );

(ls4) if (u, v, w), (v, x, w), (x, u, u) ∈ L, then (v, u, w) ∈ L
(u, v, w, x ∈ V );

(ls5) if (u, v, v) ∈ L and u 6= w 6= v, then (u, v, w) ∈ L or (v, u, w) ∈ L
(u, v, w ∈ V );
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(ls6) if (u, v, w), (v, u, w) ∈ L then there exists z ∈ V such that
(u, z, w), (v, z, w) ∈ L and (z, u, w), (z, v, w) 6∈ L (u, v, w ∈ V ).

Let V be a finite nonempty set, and let L be a ternary relation on V satisfy-
ing (ls0). The basic operation of L is the binary operation +L on V defined
as follows:

u +L u = u, for any u in V ,

u+L v is the unique element y in V such that (u, y, v) ∈ L and (y, u, v) /∈ L,
for u, v in V with u 6= v.

A leap system on V is a ternary relation L on V satisfying the axioms (ls0)–
(ls6). By the underlying graph of a leap system L we mean the underlying
graph of the basic operation +L of L.

Proposition 7. Let L and M be leap systems on a finite nonempty set V
with +L = +M . Then L = M .

Proof. Assume to the contrary that L 6= M . Then there exists u, v, w
in V such that (u, v, w) ∈ L \ M or (u, v, w) ∈ M \ L. Without loss of
generality, let (u, v, w) ∈ L \ M . Since (u, v, w) ∈ L, it follows from (ls2)
that u 6= w. Let + denote the basic operation of L and M . If we would have
(v, u, w) /∈ L, then, by (ls0), we would have v = u+w, so that (u, v, w) ∈ M ,
which is not the case. Hence (v, u, w) ∈ L. If we would have (v, u, w) ∈ M ,
then, by (ls0), we would have u = v + w, so that, (u, v, w) being in L, we
have (v, u, w) /∈ L, which is impossible. So (v, u, w) /∈ M .

Since (u, v, w), (v, u, w) ∈ L, axiom (ls6) implies the existence of z in
V such that (u, z, w), (v, z, w) ∈ L and (z, u, w), (z, v, w) 6∈ L. From (ls0)
we infer that this element z is unique. Moreover, the definition of the basic
operation of L tells us that z = u + w = v + w.

Now + is also the basic operation of M . So (u, z, w), (v, z, w) ∈ M .
By (ls2), we have u 6= w 6= v. Since (u, v, w) ∈ L, it follows from (ls1)
that (u, v, v) ∈ L. By (ls2), we have u 6= v, and therefore (v, u, v) /∈ L.
Combining (ls0) with the definition of +, we get u + v = v. Since + is also
the basic operation of M , we have (u, v, v) ∈ M . Since u 6= w 6= v, it follows
from (ls5) that (u, v, w) ∈ M or (v, u, w) ∈ M . Since this is impossible, we
have a contradiction, which settles the proof.

Theorem 8. Let L be a leap system on a finite nonempty set V , and let +
be the basic operation of L. Then + is a leap operation on V .
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Proof. In the sequel let u and v be elements in V with u 6= v. By (ls0),
there exists a unique element y in V such that (u, y, v) ∈ L and

(2) (y, u, v) 6∈ L.

So, by definition, we have y = u + v.
We check the four axioms of a leap operation.
(lo1): First we have (u + u) + u = u + u = u, by definition. So the case

u 6= v remains. By (ls1), we have (y, u, u) ∈ L. Hence, by (ls2), we have
y 6= u. Now by (ls0), we deduce the existence of a unique t in V such that
(y, t, u) ∈ L and (t, y, u) 6∈ L. Hence t = y + u. Suppose that t 6= u. Since
(y, u, u), (y, t, u) ∈ L, axiom (ls3) would imply that (t, y, u) ∈ L, which is
a contradiction. Hence it follows that t = u and the verification of (lo1) is
complete.

(lo2): If y = v, then (u + v) + v = y + y = y = v 6= u. So assume that
y 6= v. Then, by (ls0), there exists a unique x in V such that (y, x, v) ∈ L
and (y, x, v) 6∈ L. Hence

(3) x = y + v = (u + v) + v.

If x = u, then (y, u, v) ∈ L, which contradicts (2). Hence x 6= u, by which
we have verified (lo2).

(lo3): Let u + v 6= v. Then u 6= v. We have y 6= v. Let x be defined as
in the verification of (lo2). Then (y, x, v) ∈ L. Assume to the contrary that
u = ((u+v)+v)+u = x+u. Hence u = x+u. Then, by definition, we have
(x, u, u) ∈ L. Recall that (u, y, v) ∈ L. Since (y, x, v) ∈ L, it follows that
(ls4) implies that (y, u, v) ∈ L, which contradicts (2). Thus the verification
of (lo3) is complete.

(lo4): Let u + v = v, u + w 6= v and v + w 6= u. Then we have v 6= w.
Since u + v = v, Lemma 1 implies that v + u = u. This implies that w 6= u.
By (ls5), we have (u, v, w) ∈ L or (v, u, w) ∈ L. Without loss of generality,
let (u, v, w) ∈ L. If (v, u, w) 6∈ L, then v = u + w; a contradiction. Thus
(v, u, w) ∈ L. By (ls6), there exists z ∈ V such that (u, z, w), (v, z, w) ∈ L
and (z, u, w), (z, v, w) 6∈ L. By virtue of (ls0), u + w = z = v + w, which
completes the verification of (lo4).

Let G = (V,E) be a connected graph. Then, for u, v, w in V , the triple
(u, v, w) is a leap in G if v belongs to a u,w-path in G, and u 6= v, and there
is no cut-vertex in G separating u and v. Note that, in a leap (u, v, w), the
vertices u and v belong to the same block. Moreover if u, v, w are in the
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same block with u distinct from v and w, then (u, v, w) is always a leap in G.
Clearly, the set LG of all leaps in G is a ternary relation on V . The following
lemma is an easy consequence of the definition and of these observations.

Lemma 9. Let G be a connected graph with block closure B. Then the set
of leaps LG in G is identical with the set of leaps LB in B.

In mathematical shorthand this reads as follows: Let G be a connected graph.
Then LG = LBG

.
There is a close connection between the set of leaps of a connected

graph G and the all path transit function of G, which was characterized
by Changat, Klavžar and Mulder [1]. This connection is similar to the
connection between the interval function of G (widely studied in Mulder [5]
and characterized in Nebeský [7]) and the set of all steps in G (introduced
and characterized in Nebeský [8]). Note that the all-paths transit function
and the interval function are important instances of transit functions in the
sense of Mulder [6]; another instance of a transit function was studied by
Morgana and Mulder [4].

Theorem 10. Let G = (V, E) be a connected graph, and let L be the set of
leaps in G. Then L is a leap system on V .

Proof. By Lemma 9, we may assume without loss of generality that G is
a block graph. This means that, if r 6= s and (r, s, t) is a leap in G, then
s is a neighbor of r on some r, t-path. From this observation we deduce
immediately axioms (ls0), (ls1), and (ls2).

(ls3): Let (u, v, w), (u,w,w) ∈ L and v 6= w. Then u is adjacent to v as
well as w, so v → u → w is a path in G. Hence (v, u, w) is a leap in G.

(ls4): Let (u, v, w), (v, x, w), (x, u, u) ∈ L. Then uv, vx, vu ∈ E. There-
fore u, v, x induce a triangle in G, and hence are in the same block, say S.
Since (v, x, w) ∈ L, we have v 6= w. If w lies in S, then we have (v, u, w) ∈ L.
Assume that w does not belong to S. Since (v, x, w) ∈ L, it follows that v
is not a cut-vertex between x and w. Now, since u, v, x induce a triangle, it
follows again that (v, u, w) ∈ L.

(ls5): Let (u, v, v) be a leap in G, so that u and v are adjacent, and let
w be a vertex distinct from u and v. If w is in the same block as u and v,
then both (u, v, w) and (v, u, w) are leaps in G. So assume that w is not
in the same block. If u is not a cut-vertex between v and w, then there
exists a path between u and w with v as second vertex on that path. Hence
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(u, v, w) is a leap. Otherwise, if u is a cut-vertex between v and w, then, by
definition, (v, u, w) is a leap.

(ls6): Let (u, v, w) and (v, u, w) be leaps in G. Then u and v are adjacent
and u 6= w 6= v. Let F be the block of G containing u and v. Note that
F is complete, G being a block graph. If w does not belong to F , then
there is a cut-vertex z in F such that w and the edge uv belong to different
components of G− z. If w belongs to F , then we set z = w. In both cases
we have (u, z, w), (v, z, w) ∈ L and (z, u, w), (z, v, w) /∈ L.

Proposition 11. Let G = (V, E) be a connected graph, and let L be the set
of leaps in G. Then the basic operation +L of L and the access operation
+G of G are identical.

Proof. We have to prove that u +L v = u +G v, for all u and v in V . By
Theorem 10, L satisfies axioms (ls0)–(ls6).

Choose any two vertices u and v in V . If u = v, then, by definition, we
have u +L v = u +L u = u as well as u +G v = u +G u = u.

So assume that u 6= v. By the definition of the basic operation +L of
L, the element u +L v is the unique vertex x in G such that (u, x, v) is a
leap in G and (x, u, v) is not. First let u and v be in the same block H of
G. Then (u, v, v) is a leap and (v, u, v) is not, so x = v. On the other hand
u +G v = v, by definition of the access operation of a graph. Now let u and
v be vertices that are not in the same block of G, and let x be the cut-vertex
in the same block as u separating u and v. Then, by the definition of +G,
we have u +G v = x. Moreover, by the definition of L, we have (u, x, v) in
L but (x, u, v) not in L. So, by virtue of axiom (ls0), we have u +L v = x,
which completes the proof.

In mathematical shorthand this reads as follows: Let G = (V,E) be a con-
nected graph. Then +LG

= +G.
We conclude this paper by restating the above results in a series of the-

orems and corollaries, so as to have a different perspective on these results.

Theorem 12. Let L be a leap system on a finite nonempty set V , and let
H be the underlying graph of L. Then H is a block graph and L is the set
of leaps of H.

Proof. Let + denote the basic operation of L. By definition, H is the
underlying graph of +. By Theorem 8, the operation + is a leap operation
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on V . From Theorem 4 we infer that H is a block graph and that + is the
access operation of H. Let M denote the set of leaps in H. By Theorem
10, M is a leap system on V . By Proposition 11, + is the basic operation
of M . From Proposition 7 we infer that L = M , which concludes the proof.

In mathematical shorthand this reads as follows: Let L be a leap system.
Then LGL

= L.

Theorem 13. Let G be a connected graph with set of leaps L. Then the
underlying graph GL of L and the block closure B of G are identical.

In mathematical shorthand this reads as follows: Let G be a connected graph.
Then GLG

= BG.
We recapitulate the above results in a slightly different way, thus ob-

taining another algebraic approach to block graphs.

Theorem 14. Let L be a ternary relation on a finite nonempty set V with
underlying graph H. Then H is a block graph with set of leaps L if and only
if L is a leap system on V .

Finally, we restate Theorems 6 and 14 as a characterization of block graphs
in terms of leap operations and leap systems.

Theorem 15. Let G = (V, E) be a graph. Then the following statements
are equivalent:
(a) G is a block graph,
(b) G is the underlying graph of a leap operation on V ,
(c) G is the underlying graph of a leap system on V .
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