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Abstract

In a given graph G = (V, E), a set of vertices S with an assignment
of colors to them is said to be a defining set of the vertex coloring of
G, if there exists a unique extension of the colors of S to a c ≥ χ(G)
coloring of the vertices of G. A defining set with minimum cardinality
is called a minimum defining set and its cardinality is the defining
number, denoted by d(G, c).

The d(G = Cm × Kn, χ(G)) has been studied. In this note we
show that the exact value of defining number d(G = Cm × Kn, c)
with c > χ(G), where n ≥ 2 and m ≥ 3, unless the defining number
d(K3 × C2r, 4), which is given an upper and lower bounds for this
defining number. Also some bounds of defining number are introduced.
Keywords: graph coloring, defining set, cartesian product.
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1. Introduction

A c-coloring (proper c-coloring) of a graph G is an assignment of c different
colors to the vertices of G, such that no two adjacent vertices receive the
same color. The vertex chromatic number of a graph G, denoted by χ(G),
is the minimum number c, for which there exists a c-coloring for G. The
maximum degree of the vertices in G is ∆(G) and the minimum degree is
δ(G) and G is regular if ∆(G) = δ(G). It is k-regular graph if the common
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degree is k (see [9]). In a given graph G = (V, E), a set of vertices S with
an assignment of colors to them is said to be a defining set of the vertex
coloring of G, if there exists a unique extension of the colors of S to a
c ≥ χ(G) coloring of the vertices of G. A defining set with the minimum
cardinality is called a minimum defining set and its cardinality is the defining
number, denoted by d(G, c). We will use standard notations such as Kn for
the complete graph on n vertices, Cm for the cycle of size m and G × H
for cartesian product of G and H. There are some papers on defining set of
graphs, especially d(Kn ×Kn, χ) (the critical set of Latin squares of order
n), d(Cm ×Kn, χ), d(G,χ = k) where G is a k-regular graph and defining
set on block designs. The interested reader may see [1, 4, 5, 7, 8] and their
references.

The following results can be found in [3]:

(1) d(Cm ×K3, χ) = bm
2 c+ 1,

(2) m ≤ d(Cm ×K4, χ) ≤ m + 1,
(3) d(Cm ×K5, χ) = 2m for even m and 2m ≤ d(Cm ×K5, χ) ≤ 2m + 1

for odd m.

The following results can be found in [7]:

(4) d(Cm ×K5, χ) = 2m, for odd m(≥ 5),
(5) d(Cm ×K4, χ) = m + 1.

The following results can be found in [6]:

(6) d(Cm ×Kn, χ) = m(n− 3) for n ≥ 6,
(7) d(C2n+1 ×K2, χ) = n + 1.

The followings are useful.

Definition A [2]. A graph G with n vertices, is called a uniquely 2-list
colorable graph, if there exists S1, S2, · · ·Sn, a list of colors on its vertices,
each of size 2, such that there is a unique coloring for G from this list of
colors.

Theorem B [2]. A connected graph is uniquely 2-list colorable if and only
if at least one of its blocks is not a cycle, a complete graph, or a complete
bipartite graph.

Let G be a k-regular graph and vertex colored with k colors. Let C be a
cycle in G, then each vertex of C has at least two choice for coloring, in other
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words C is at least 2-list vertex colorable, if all vertices of V (G)\V (C) have
been already colored. So by Theorem B the cycle C is not uniquely 2-list
colorable. Now we have

Lemma C [6]. If G is k-regular graph and which is colored with k colors,
then every cycle in G has a vertex in defining set of G.

If G = Cm ×Kn then, each subgraph Kn of G is said to be a row and each
subgraph Cm of G is said to be a column. If G = Kn × Cm then, each
subgraph Kn of G is said to be a column and each subgraph Cm of G is said
to be a row.

It is well known that χ(Cm ×Kn) = χ(Kn × Cm) = n for n > 2 or for
n = 2 and even m. Also χ(C2r+1 ×K2) = χ(K2 × C2r+1) = 3.

2. d(Cm ×Kn, n + i)

In this section we derive d(Cm × Kn, n + i) for n, m ≥ 4 and i ≥ 0. We
start with the following lemma.

Lemma 2.1. If G = Cm × Kn is colored with n + i colors for 0 ≤ i ≤ 3,
then for each row, there exist at least, n + i− 3 vertices in defining set.

Proof. Assume that, there exists a row for which the defining set contains
k < n + i − 3 vertices and all other rows are completely colored. The
induced subgraph of the non colored vertices of this row is a complete graph
and cannot be uniquely colored by Theorem B.

In the following arrays the non indexed labels denote the colors of the vertices
in the defining set of the graph Cm×Kn, the indexed labels denote the colors
of the vertices out of defining set and the indices denote the ordering of the
coloring of these vertices.

Theorem 2.1. For n,m ≥ 4, d(Cm ×Kn, n + 1) = m(n− 2).

Proof. Let G = Cm × Kn. From Lemma 2.1 we obtain d(G,n + 1) ≥
m(n− 2). To show equality we give a defining set S of size m(n − 2) as in
following arrays.
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(1) For m ≥ 4 and n = 4, consider the arrays




1 2 41 52

24 43 5 3
4 1 25 56

28 57 3 4


,




1 2 41 52

24 43 5 3
35 1 46 5
4 37 2 18

29 5 3 410




,




1 2 41 52

24 43 5 3
4 1 36 25

37 28 1 5
2 4 59 310

412 511 3 1




and




1 2 41 52

24 43 5 3
56 1 35 4
3 57 2 18

510 4 19 3
2 312 5 111

513 114 3 4




for C4 × K4, C5 × K4, C6 × K4 and C7 × K4 respectively with 5 = 4 + 1
colors.

(2) For m ≥ 4 and n = 5, consider the arrays




1 2 3 62 41

24 33 4 5 6
3 1 2 66 45

28 37 6 4 5


,




1 2 3 41 52

33 14 4 5 6
2 45 5 3 16

58 6 17 4 3
310 1 2 6 49




,




1 2 3 42 51

24 33 4 5 6
3 1 2 65 46

18 27 6 4 5
2 3 1 59 610

312 111 5 6 4




and




1 2 3 62 41

33 14 4 5 6
2 45 5 3 16

58 6 17 4 3
49 1 2 6 510

3 411 5 112 2
413 6 2 314 5




for C4 × K5, C5 × K5, C6 × K5 and C7 × K5 respectively with 6 = 5 + 1
colors.
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(3) For m ≥ 4 and n ≥ 6, consider the following arrays,




1 2 3 4 5 · · · n− 4 n− 3 n− 2 (n + 1)2 (n− 1)1
24 33 4 5 6 · · · n− 3 n− 2 n− 1 n n + 1
4 1 5 6 7 · · · n− 2 3 n5 2 (n− 1)6
57 48 6 7 8 · · · n− 1 2 n + 1 3 n


,




1 2 3 4 5 · · · n− 4 n− 3 n− 2 (n + 1)2 (n− 1)1
24 33 4 5 6 · · · n− 3 n− 2 n− 1 n n + 1
4 1 5 6 7 · · · n− 2 3 n5 2 (n− 1)6
28 6 7 8 9 · · · n 1 n + 1 57 3
(n + 1)9 5 6 7 8 · · · n− 1 210 3 4 n




,




1 2 3 4 5 · · · n− 4 n− 3 n− 2 (n + 1)2 (n− 1)1
24 33 4 5 6 · · · n− 3 n− 2 n− 1 n n + 1
4 1 5 6 7 · · · n− 2 3 n5 2 (n− 1)6
28 6 7 8 9 · · · n 1 n + 1 57 3
5 1 6 7 8 · · · n− 1 2 n9 4 (n + 1)10

212 411 5 6 7 · · · n− 2 n + 1 3 n− 1 n




and



1 2 3 4 5 · · · n− 4 n− 3 n− 2 (n + 1)2 (n− 1)1
24 33 4 5 6 · · · n− 3 n− 2 n− 1 n n + 1
4 1 5 6 7 · · · n− 2 3 n5 2 (n− 1)6
28 6 7 8 9 · · · n 1 n + 1 57 3
19 5 6 7 8 · · · n− 1 3 210 4 n
n + 1 611 7 8 9 · · · n 2 3 512 1
313 4 5 6 7 · · · n− 2 n− 1 2 114 n




for C4 ×Kn, C5 ×Kn, C6 ×Kn and C7 ×Kn respectively with n + 1 colors
(n ≥ 6). The above arrays show that d(Cm × Kn, n + 1) = m(n − 2) for
(4 ≤ m ≤ 7) and n ≥ 4.

To obtain a defining set for Cm × Kn, with m ≥ 8, one can write
m = 4t + r where 4 ≤ r ≤ 7 and t ≥ 1 are integers. We successively treat
the t above arrays for C4 ×Kn and then treat to with the one for Cr ×Kn.
So d(Cm ×Kn, n + 1) = m(n− 2) for n, m ≥ 4.

Theorem 2.2. For n,m ≥ 4, d(Cm ×Kn, n + 2) = m(n− 1).
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Proof. Let G = Cm × Kn. From Lemma 2.1 we obtain d(G,n + 2) ≥
m(n− 1). To show equality we give a defining set, S of size m(n− 1) as in
following arrays.

(1) For m ≥ 4 and n = 4, consider the arrays




1 2 3 61

4 32 6 5
63 1 2 3
5 6 14 4


,




1 2 3 61

2 4 62 5
3 63 1 2
24 5 4 1
6 35 1 4




,




1 2 3 61

2 4 62 5
3 63 1 2
24 5 4 1
6 45 1 2
26 3 5 4




and




1 2 3 61

2 4 62 5
3 63 1 2
64 5 4 1
2 65 1 4
4 3 66 2
6 17 5 4




for C4 × K4, C5 × K4, C6 × K4 and C7 × K4 respectively with 6 = 4 + 2
colors.

(2) For m ≥ 4 and n = 5, consider the arrays




1 2 3 4 71

2 3 5 72 6
3 4 73 1 2
7 14 6 3 5


,




1 2 3 4 71

2 3 5 72 6
3 4 73 1 2
7 54 6 2 1
45 3 2 6 5




,




1 2 3 4 71

2 3 5 72 6
3 4 73 1 2
7 54 6 2 1
55 3 1 6 4
2 4 66 7 5




and




1 2 3 4 71

2 3 5 72 6
3 4 73 1 2
5 74 6 3 1
75 2 4 6 3
1 56 6 3 4
2 7 47 1 5




for C4 × K5, C5 × K5, C6 × K5 and C7 × K5 respectively with 7 = 5 + 2
colors.
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(3) For m ≥ 4 and n ≥ 6, consider the following arrays,




1 2 3 · · · n− 5 n− 4 n− 3 n− 2 n− 1 (n + 2)1
2 3 4 · · · n− 4 n− 3 n− 2 n (n + 2)2 n + 1
4 5 6 · · · n− 2 n− 1 n + 1 (n + 2)3 1 2
54 6 7 · · · n− 1 n + 1 n + 2 3 2 n


,




1 2 3 · · · n− 5 n− 4 n− 3 n− 2 n− 1 (n + 2)1
2 3 4 · · · n− 4 n− 3 n− 2 n (n + 2)2 n + 1
4 5 6 · · · n− 2 n− 1 n + 1 (n + 2)3 1 2
2 6 7 · · · n− 1 n 44 3 5 1
45 5 6 · · · n− 2 n− 1 n + 2 n + 1 3 n




,




1 2 3 · · · n− 5 n− 4 n− 3 n− 2 n− 1 (n + 2)1
2 3 4 · · · n− 4 n− 3 n− 2 n (n + 2)2 n + 1
4 5 6 · · · n− 2 n− 1 n + 1 (n + 2)3 1 2
5 6 7 · · · n− 1 n (n + 2)4 3 2 4
4 7 8 · · · n 5 1 (n + 1)5 6 2
56 6 7 · · · n− 1 n + 1 2 n + 2 3 n




and




1 2 3 · · · n− 5 n− 4 n− 3 n− 2 n− 1 (n + 2)1
2 3 4 · · · n− 4 n− 3 n− 2 n (n + 2)2 n + 1
4 5 6 · · · n− 2 n− 1 n + 1 (n + 2)3 1 2
5 6 7 · · · n− 1 n (n + 2)4 3 2 4
4 7 8 · · · n n + 1 1 (n + 2)5 6 2
(n + 2)6 6 7 · · · n− 1 n 2 5 n + 1 1
3 5 6 · · · n− 2 n + 2 1 2 47 n




for C4 ×Kn, C5 ×Kn, C6 ×Kn and C7 ×Kn respectively with n + 2 colors
where n ≥ 6. The above arrays show that d(Cm ×Kn, n + 2) = m(n − 1)
for (4 ≤ m ≤ 7) and n ≥ 4.

To obtain a defining set for Cm × Kn, with m ≥ 8, one can write
m = 4t + r where 4 ≤ r ≤ 7 and t ≥ 1 are integers. We successively treat
the t above arrays for C4 ×Kn and then treat to with the one for Cr ×Kn.
So d(Cm ×Kn, n + 2) = m(n− 1) for n, m ≥ 4.
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Lemma 2.2. Let G = (V,E) be a graph with c ≥ ∆(G) + 2. Then
d(G, c) =| V |.

Proof. Let S be a defining set of G and v be a vertex for which v 6∈ S. So
if all of the neighbors of vertex v are colored then the vertex v has at least
two choices for coloring.

Theorem 2.3. For n,m ≥ 4, d(Cm ×Kn, n + i) = mn where i ≥ 3.

Proof. The degree of any vertex in Cm×Kn is n+1, | V (Cm×Kn) |= mn
and for i ≥ 3, n + i ≥ ∆(Cm ×Kn) + 2. Now use the Lemma 2.2.

3. d(K3 × Cm, c > χ)

Note that χ(K3 × Cm) = 3.

Lemma 3.1. Let G = K3 × Cr. Then d(G, 4) ≥ r + 1.

Proof. On the contrary assume that d(G, 4) ≤ r. If S is a defining set of G
with cardinality at most r and V is the set of vertices of G then the induced
subgraph 〈V \S〉 of G has 3r−d(G, 4) vertices and has at least 6r−4d(G, 4)
edges. Since r−d(G, 4) ≥ 0 we have 6r−4d(G, 4) ≥ 3r−d(G, 4). Therefore
〈V \ S〉 has a cycle and we use Lemma C.

Theorem 3.1. Let G = K3 × Cr. Then d(G, 4) = r + 1 for even r and
r + 1 ≤ d(G, 4) ≤ r + 2 for odd r.

Proof. Let G = K3×Cr. From Lemma 3.1 we obtain d(G, 4) ≥ r + 1. We
give a defining set S of size r +1 for even r and a defining set S of size r +2
for odd r.

Let v1, v2, · · · , vr are the vertices of first row, u1, u2, · · · , ur the vertices
of the second row and w1, w2, · · · , wr the vertices of the third row.

If r = 2n then we determine the defining set with their colors as follows:

c(vm) =





1 if m ≡ 1(mod 6),
2 if m ≡ 3(mod 6),
3 if m ≡ 5(mod 6)

except for m = 2n− 1 when 2n ≡ 2(mod 6),



Defining Sets in (Proper) Vertex Colorings of ... 67

c(um) =





3 if m ≡ 2(mod 6),
1 if m ≡ 4(mod 6),
2 if m ≡ 6(mod 6)

except for m = 2n when 2n ≡ 2(mod 6). In this case we set c(u2n) = 1
when 2n ≡ 2(mod 6).

Finally, let c(w1) = 2 if 2n ≡ 0 or 4(mod 6) and if 2n ≡ 2(mod 6), we
set c(w1) = 2 and c(w2n−1) = 3. In each case we have d(G, 4) = r + 1 if r is
even.

If r = 2n + 1 then we determine the defining set with their colors as
follows:

c(vm) =





1 if m ≡ 1(mod 6),
2 if m ≡ 3(mod 6),
3 if m ≡ 5(mod 6)

except for m = 2n + 1 when 2n + 1 ≡ 1(mod 6). In this case we set
c(v2n+1) = 4 when 2n + 1 ≡ 1(mod 6),

c(um) =





3 if m ≡ 2(mod 6),
1 if m ≡ 4(mod 6),
2 if m ≡ 6(mod 6)

and if 2n + 1 ≡ 3 or 5(mod 6) we set c(w1) = 2 and c(w2n) = 4.
Finally we set c(w1) = 2 and c(w2n) = 3 if 2n + 1 ≡ 1(mod 6). Thus

r + 1 ≤ d(G, 4) ≤ r + 2 when r is odd.

We have the following

Conjecture. d(K3 × Cr, 4) = r + 2 for odd r.

Lemma 3.2. Let G = (V, E) be a graph. Let S be a defining set of G with
c = ∆(G) + 1. If v is a vertex and deg(v) ≤ ∆(G) − 1 then v ∈ S and if
deg(v) = ∆(G) then v ∈ S or all neighbors of v are in S.

Proof. If v is a vertex with deg(v) ≤ ∆(G)− 1 and v 6∈ S then there exists
at least two choices of colors for v eventually all of neighbors are colored.
If deg(v) = ∆(G), vertex u is a neighbor of v, (u, v 6∈ S) and all the other
neighbors of v are in S then we have two choices of colors for u and v.
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Theorem 3.2. Let G = K3 × Cr. Then d(G, 5) = 2r.

Proof. Let G = K3 × Cr. From Lemma 3.2 we obtain d(G, 5) ≥ 2r. To
show equality we give a defining set, S of size 2r.

Let v1, v2, · · · , vr are the vertices of first row, u1, u2, · · · , ur the vertices
of the second row and w1, w2, · · · , wr the vertices of the third row.

If r = 2n then we determine the defining set with their colors as follows:

c(vm) =





1 if m ≡ 1(mod 10),
2 if m ≡ 3(mod 10),
3 if m ≡ 5(mod 10),
4 if m ≡ 7(mod 10),
5 if m ≡ 9(mod 10)

and c(v2n) = 5 when 2n ≡ 2 or 8(mod 10),

c(um) =





5 if m ≡ 2(mod 10),
4 if m ≡ 4(mod 10),
2 if m ≡ 6(mod 10),
1 if m ≡ 8(mod 10),
3 if m ≡ 0(mod 10)

for 2 ≤ m ≤ 2n, except m 6= 2n when 2n ≡ 2 or 8(mod 10). In this case we
set c(u2n) = 2 when 2n ≡ 2(mod 10) and c(u2n) = 3 when 2n ≡ 8(mod 10),

c(wm) =





1 if m ≡ 3 or 5(mod 10),
5 if m ≡ 4 or 6(mod 10),
3 if m ≡ 2 or 7(mod 10),
2 if m ≡ 0 or 8(mod 10),
4 if m ≡ 1 or 9(mod 10)

for m 6= 1, 2, 2n − 1 and 2n. Finally, the following cases conclude the even
case.

If 2n ≡ 4 or 6(mod 10) we set c(w1) = 3, c(w2) = 4, c(w2n−1) = 1 and
c(w2n) = 5.

If 2n ≡ 2(mod 10) we set c(w1) = 3, c(w2) = 4 and c(w2n−1) = 4.

If 2n ≡ 8(mod 10) we set c(w1) = 4, c(w2) = 3 and c(w2n−1) = 1.

If 2n ≡ 0(mod 10) we set c(w1) = 4, c(w2) = 3, c(w2n) = 2 and c(w2n−1)=4.
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For r = 2n + 1 we determine the defining set with their colors as follows:

c(vm) =





1 if m ≡ 1(mod 10),
2 if m ≡ 3(mod 10),
3 if m ≡ 5(mod 10),
4 if m ≡ 7(mod 10),
5 if m ≡ 9(mod 10)

for 1 ≤ m ≤ 2n + 1 and m 6= 2n + 1 when 2n + 1 ≡ 1(mod 10). And we set
c(v2n+1) = 2 when 2n + 1 ≡ 1(mod 10),

c(um) =





5 if m ≡ 2(mod 10),
4 if m ≡ 4(mod 10),
2 if m ≡ 6(mod 10),
1 if m ≡ 8(mod 10),
3 if m ≡ 0(mod 10)

for 1 ≤ m ≤ 2n.
Furthermore let c(u2n+1) = 4 when 2n + 1 ≡ 1, 3 or 9(mod 10), let

c(u2n+1) = 2 when 2n + 1 ≡ 5(mod 10) and let c(u2n+1) = 3 when 2n + 1 ≡
7(mod 10)

c(wm) =





1 if m ≡ 3 or 5(mod 10),
5 if m ≡ 4 or 6(mod 10),
3 if m ≡ 2 or 7(mod 10),
2 if m ≡ 0 or 8(mod 10),
4 if m ≡ 1 or 9(mod 10)

for m 6= 1, 2, 2n and 2n + 1. Again some special cases completes the proof.

If 2n + 1 ≡ 1 or 3(mod 10) we set c(w1) = 3, c(w2) = 4, c(w2n) = 1.

If 2n + 1 ≡ 9(mod 10) we set c(w1) = 3, c(w2) = 4 and c(w2n) = 2.

If 2n + 1 ≡ 5(mod 10) we set c(w1) = 4, c(w2) = 3 and c(w2n) = 5.

If 2n + 1 ≡ 7(mod 10) we set c(w1) = 2, c(w2) and c(w2n) = 5.

4. d(K2 × Cm, c > χ)

Note that χ(K2 × Cm) = 3 if m is odd and χ(K2 × Cm) = 2 if m is even.
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Lemma 4.1. Let G = K2 × Cr. Then d(G, 3) ≥ b r
2c+ 1.

Proof. On the contrary, assume that d(G, 3) ≤ b r
2c. If S is a defining set

of G with cardinality at most b r
2c and V is the set of vertices of G then the

induced subgraph 〈V \ S〉 of G has 2r − d(G, 3) vertices and has at least
3r − 3d(G, 3) edges. Since b r

2c − d(G, 3) ≥ 0 we have r ≥ 2b r
2c ≥ 2d(G)

and 3r − 3d(G, 3) ≥ 2r − d(G, 3). Therefore 〈V \ S〉 has a cycle and we use
Lemma C.

Theorem 4.1. Let G = K2 × C2n. Then d(G, 3) = n + 1.

Proof. Let G = K2 × C2n. From Lemma 4.1 we obtain d(G, 3) ≥ n + 1.
To show equality we give a defining set, S of size n + 1.

If v1, v2, · · · , v2n are the vertices of first row and u1, u2, · · · , u2n the ver-
tices of the second row. We determine the defining set with their colors as
in following tables:

c(vm) =

{
1 if m = 1 and m = 2n− 2,

2 if m ≡ 0(mod 4) and 1 ≤ m ≤ 2n− 3

also

c(um) = 2 if m ≡ 2(mod 4), (m ≤ 2n− 3) and m = 2n− 1.

For 2n = 4 we say c(v1) = c(u3) = 1 and c(v4) = 2.

Theorem 4.2. If G = K2 × Cr then d(G, 4) = 2d r
2e.

Proof. Let G = K2 × Cr. From Lemma 3.2 we obtain d(G, 4) ≥ 2d r
2e. To

show equality we give a defining set, S of size 2d r
2e.

Let v1, v2, · · · , vr are the vertices of first row, u1, u2, · · · , ur the vertices
of the second row.

If r = 2n we determine the defining set with their colors as follows:

c(vm) =





1 if m ≡ 1(mod 8),
2 if m ≡ 3(mod 8),
3 if m ≡ 5(mod 8),
4 if m ≡ 7(mod 8)

except m = 2n− 1 when n ≡ 1(mod 4). In this case we set c(v2n−1) = 2,
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c(um) =





3 if m ≡ 2(mod 8),
4 if m ≡ 4(mod 8),
1 if m ≡ 6(mod 8),
2 if m ≡ 0(mod 8)

except m = 2n − 2, m = 2n when n ≡ 1(mod 4) and m = 2n when n ≡
3(mod 4), in this case we say c(u2n) = 4, c(u2n−2) = 3 when n ≡ 1(mod 4)
and we say c(u2n) = 2 when n ≡ 3(mod 4).

If r = 2n + 1 we determine the defining set with their colors as in
following tables:

c(vm) =





1 if m ≡ 1(mod 8),
2 if m ≡ 3(mod 8),
3 if m ≡ 5(mod 8),
4 if m ≡ 7(mod 8)

except m = 2n + 1 when n ≡ 0(mod 4). In this case we set c(v2n+1) = 2,

c(um) =





3 if m ≡ 2(mod 8),
4 if m ≡ 4(mod 8),
1 if m ≡ 6(mod 8),
2 if m ≡ 0(mod 8)

except m = 2n when n ≡ 0, (mod 4) in this case c(u2n) = 3 and c(u2n+1) = 4
when n ≡ 0 or 1(mod 4), c(u2n+1) = 2, when n ≡ 2 or 3(mod 4).

Corollary 4.3. d(K2 × Cr, 5) = 2r.

Proof. By Lemma 2.2, each of column has at least 2 vertices in defining
set. Therefore all vertices are in defining set.
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