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Abstract

In a given graph G = (V, E), a set of vertices S with an assignment
of colors to them is said to be a defining set of the vertex coloring of
G, if there exists a unique extension of the colors of S to a ¢ > x(G)
coloring of the vertices of G. A defining set with minimum cardinality
is called a minimum defining set and its cardinality is the defining
number, denoted by d(G, ¢).

The d(G = Cp, x Kp,x(G)) has been studied. In this note we
show that the exact value of defining number d(G = C,, x K,,¢)
with ¢ > x(G), where n > 2 and m > 3, unless the defining number
d(K3 x Cay,4), which is given an upper and lower bounds for this
defining number. Also some bounds of defining number are introduced.
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1. INTRODUCTION

A c-coloring (proper c-coloring) of a graph G is an assignment of ¢ different
colors to the vertices of GG, such that no two adjacent vertices receive the
same color. The vertex chromatic number of a graph G, denoted by x(G),
is the minimum number ¢, for which there exists a c-coloring for G. The
maximum degree of the vertices in G is A(G) and the minimum degree is
0(G) and G is regular if A(G) = §(G). It is k-regular graph if the common
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degree is k (see [9]). In a given graph G = (V, E), a set of vertices S with
an assignment of colors to them is said to be a defining set of the vertex
coloring of G, if there exists a unique extension of the colors of S to a
¢ > x(QG) coloring of the vertices of G. A defining set with the minimum
cardinality is called a minimum defining set and its cardinality is the defining
number, denoted by d(G, ¢). We will use standard notations such as K, for
the complete graph on n vertices, C,, for the cycle of size m and G x H
for cartesian product of G and H. There are some papers on defining set of
graphs, especially d(K,, x K,, x) (the critical set of Latin squares of order
n), d(Cp X Kn, X), d(G,x = k) where G is a k-regular graph and defining
set on block designs. The interested reader may see [1, 4, 5, 7, 8] and their
references.

The following results can be found in [3]:

(1) d(Cm x K3,x) = | 5] + 1,

(2) m <d(Cp, x K4, x) <m+1,

(3) d(Cy x K3, x) = 2m for even m and 2m < d(Cp, x K5,x) <2m+1
for odd m.

The following results can be found in [7]:

(4) d(Cy, x K3, x) = 2m, for odd m(> 5),

(5) d(Cpy x Kyq,x) =m + 1.

The following results can be found in [6]:

(6) d(Cp X Kpyx) =m(n —3) for n > 6,

(7) d(Cant1 x Ko, x) =n+ 1.

The followings are useful.

Definition A [2]. A graph G with n vertices, is called a uniquely 2-list
colorable graph, if there exists S1,.59,--- Sy, a list of colors on its vertices,
each of size 2, such that there is a unique coloring for G from this list of
colors.

Theorem B [2]. A connected graph is uniquely 2-list colorable if and only
if at least one of its blocks is mot a cycle, a complete graph, or a complete
bipartite graph.

Let G be a k-regular graph and vertex colored with k colors. Let C be a
cycle in GG, then each vertex of C' has at least two choice for coloring, in other
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words C'is at least 2-list vertex colorable, if all vertices of V(G)\ V(C) have
been already colored. So by Theorem B the cycle C' is not uniquely 2-list
colorable. Now we have

Lemma C [6]. If G is k-regular graph and which is colored with k colors,
then every cycle in G has a vertex in defining set of G.

If G = C,, x K, then, each subgraph K,, of GG is said to be a row and each
subgraph C,, of G is said to be a column. If G = K, x C,, then, each
subgraph K, of G is said to be a column and each subgraph C,, of G is said
to be a row.

It is well known that x(Cy, x K,,) = x(K, x Cp,) = n for n > 2 or for
n =2 and even m. Also x(Cor11 X K3) = x(K2 X Cgp11) = 3.

2. d(Cy x Ky, n+1)

In this section we derive d(C), x K,,n + i) for n, m > 4 and i > 0. We
start with the following lemma.

Lemma 2.1. If G = C,, x K, is colored with n + i colors for 0 < i < 3,
then for each row, there exist at least, n + i — 3 vertices in defining set.

Proof. Assume that, there exists a row for which the defining set contains
k < n 4+ 1 — 3 vertices and all other rows are completely colored. The
induced subgraph of the non colored vertices of this row is a complete graph
and cannot be uniquely colored by Theorem B. [

In the following arrays the non indexed labels denote the colors of the vertices
in the defining set of the graph C,, x K,,, the indexed labels denote the colors
of the vertices out of defining set and the indices denote the ordering of the
coloring of these vertices.

Theorem 2.1. Forn,m >4, d(Cy, X Kp,n+1) =m(n — 2).
Proof. Let G = C,, x K,,. From Lemma 2.1 we obtain d(G,n + 1) >

m(n — 2). To show equality we give a defining set .S of size m(n — 2) as in
following arrays.
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(1) For m > 4 and n = 4, consider the arrays

(1 2 4y 59 L2 45
2 43 5 3
2 43 5 3
13 1 46 5 |,

4 1 25 56 Vo o g

2% b7 3 4 7 8
L 8 2 5 3 4o
i} i 1 2 4 By ]
1 2 4 5 2 4 51 32
24 43 5 3 5 1 35 4
g ; ?6 ?5 and | 3 5, 2 1g
27 48 59 3 b0 4 19 3
4 5 39 110 2 312 5 1np
L =12 11 i _513 114 3 4

for Cy x K4, C5 x K4, Cg x K4 and C7 x K4 respectively with 5 =4 + 1

colors.
(2) For m > 4 and n = 5, consider the arrays

1 2 3 41 59

123 6 4 33 1, 4 5 6
2 33 4 5 6
12 45 5 3 14 |,
3 1 2 6g 45
e 3 6 4 5 55 6 1, 4 3
8 o7 30 1 2 6 4
i} _ 1 2 3 6
1 2 3 49 5 3, 1, 4 52
2 33 4 5 6 S L s 3
3 1 2 65 4¢ 5
and 58 6 17 4
s 2 6 4 5 L 1 2 6
2 3 1 59 610 3 4 5 1li
| 312 111 5 6 4 i 6 2 3u

for Cy x K5, C5 x K5, Cg x K5 and C7 x K5 respectively with 6 = 5+ 1

colors.
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(3) For m > 4 and n > 6, consider the following arrays,

1
24

2
33
1
4g

D U W

28

L 212 411

and

1
24
4
23 6
19 )
n+1 611
313 4

2
33
1

T Oy = W N
w

T O N Ot W

T O Ot

SN O s W

Sy = 00 O U =~

G O N O = W

o 3 O ot

~J 00 Oy Ut i~

N 00 © 3 O Ot

Sy 00 J 00 O Ut i~

N O 00 © J O ut

0 © ~J O ot

63
n—4 n—-3 n—-2 (n+1), (n—1),
n—3 n—2 n—1 n n+1
n—2 3 ns 2 (n—1)s |’
n—1 2 n+1 3 n
n—4 n—-3 n—-2 (n+1), (n—1),
n—3 n—2 n—-1n n+1
n—2 3 ns 2 (n—1)s |,
n 1 n+1 57 3
n—1 210 3 4 n
n—4 n—=3 n—2 (n+1), (n—1); ]
n—3 n—2 n—1 n n+1
n—2 3 ns 2 (n—1)g
n 1 n+1 957 3
n—1 2 ng 4 (n+1),
n—2 n+1 3 n—1 n i
n—4 n—3 n—2 (n+1), (n—1); ]
n—3 n—2 n—-1 n n+1
n—2 3 ns 2 (n—1)4
n 1 n+1 57 3
n—1 3 210 4 n
n 2 3 512 1
n—2 n—1 2 114 n ]

for Cy x Ky, C5 x K,,, Cg X K, and C% x K, respectively with n + 1 colors
(n > 6). The above arrays show that d(C,, x K,,n + 1) = m(n — 2) for

(4<m<7)and n > 4.

To obtain a defining set for C,, x K,, with m > 8, one can write
m = 4t + r where 4 < r < 7 and ¢t > 1 are integers. We successively treat
the t above arrays for Cy x K,, and then treat to with the one for C, x K.
So d(Cpy, X Kp,n+1) =m(n — 2) for n, m > 4.

Theorem 2.2. For n,m >4, d(C,, x K,,n+2) =m(n—1).
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Proof. Let G = Cy, x K,. From Lemma 2.1 we obtain d(G,n + 2) >
m(n — 1). To show equality we give a defining set, S of size m(n — 1) as in
following arrays.

(1) For m > 4 and n = 4, consider the arrays

i} 1 2 3 6
1 2 3 6 !
2 4 69 5
4 35 6 5
, |3 63 1 2 |,
63 1 2 3
5 6 1, 4 2¢ 5 4 1
L 4 116 35 1 4
i} _ 1 2 3 6]
1 2 3 6 !
2 4 69 5
2 4 69 5
3 63 1 2
3 63 1 2
and | 64 5 4 1
2 5 4 1
2 65 1 4
6 45 1 2
0 3 5 4 4 3 65 2
- <6 - |6 1; 5 4 |

for Cy x K4, C5 x K4, Cg x K4 and C7 x K4 respectively with 6 = 4 4 2
colors.

(2) For m > 4 and n = 5, consider the arrays

i} 1 2 4
12 3 4 7 3 N
2 3 5 Ty 6
23 5 Ty 6
13 4 731 2 |,
34 731 2
C L6 3 s 7 5, 6 2 1
- 4 45 3 2 6 5
i} _ 1 2 3 4 7]
1 2 3 4 7 !
2 3 5 Ty 6
2 3 5 T, 6
3 4 7351 2
3 4 731 2
and | 5 7, 6 3 1
7 54 6 2 1
7= 2 4 6 3
5 3 1 6 4
5 1 6 7 s 1 5 6 3 4
- 6 - 2 7 41 5 |

for Cy x K5, C5 x K5, Cg x K5 and C7 X K5 respectively with 7 =5+ 2
colors.
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(3) For m > 4 and n > 6, consider the following arrays,

1 23 n—5 n—-4 n—-3 n-—2 n—1 (n+2), ]
2 3 4 n—4 n—3 n—2 n (n+2), n+1
4 5 6 n—2 n—-1 n+l (n+2); 1 2 ’
| 54 6 7 n—1 n+1 n+2 3 2 n i
1 2 3 n—5 n—4 n—3 n—2 n—1 (n+2); ]
2 3 4 n—4 n—3 n—2 n (n+2), n+1
4 5 6 n—2 n—-1 n+l (n+2); 1 2 ,
2 67 n—1 n 44 3 ) 1
| 45 5 6 n—2 n—1 n+2 n+l 3 n i
1 2 3 n—5 n—4 n-—3 n—2 n—1 (n+2); ]
2 3 4 n—4 n—3 n-—2 n (n+2), n+1
4 5 6 n—2 n—1 n+1 (n+2); 1 2
5 6 7 n—1 n (n+2), 3 2 4
4 7 8 n 5 1 (n+1); 6 2
L5 6 7 n—1 n+1 2 n+2 3 n i
and
[ 1 23 - n-5n-4n-3 n-2 n-1 (n+2); ]
2 34 -+ n—-4n-3n-2 n (n+2), n+1
4 56 ---n—2n—-1mn+1 (n+2); 1 2
5 6 7 --n—1mn (n+2), 3 2 4
4 78 - n n+1 1 (n+2); 6 2
(n+2); 67 - n—1n 2 5 n+1 1
L 3 56 -+ n—-—2n+21 2 47 n i

for Cy x K,,, C5 x K,,, Cg X K,, and C% x K, respectively with n + 2 colors
where n > 6. The above arrays show that d(C,, x K,,n+2) = m(n — 1)
for (4 <m <7)and n > 4.

To obtain a defining set for C,, x K,, with m > 8, one can write
m = 4t + r where 4 < r < 7 and t > 1 are integers. We successively treat
the t above arrays for Cy x K,, and then treat to with the one for C). x K.
So d(Cy, X Kpy,n+2) =m(n—1) for n, m > 4. |
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Lemma 2.2. Let G = (V, E) be a graph with ¢ > A(G) + 2. Then
d(G,c) =V |.

Proof. Let S be a defining set of G and v be a vertex for which v € S. So
if all of the neighbors of vertex v are colored then the vertex v has at least
two choices for coloring. [

Theorem 2.3. For n,m > 4, d(C,, X K,,n + i) = mn where i > 3.

Proof. The degree of any vertex in Cy, x K, isn+1, | V(Cy, X Ky,) |= mn
and for i > 3, n+i > A(Cy, X K;;) +2. Now use the Lemma 2.2. ]

3. d(Kzx Cpyc>x)
Note that x (K3 x Cy,) = 3.
Lemma 3.1. Let G = K3 x Cy. Then d(G,4) > r+ 1.

Proof. On the contrary assume that d(G,4) < r. If S is a defining set of G
with cardinality at most r and V is the set of vertices of G then the induced
subgraph (V'\ S) of G has 3r —d(G, 4) vertices and has at least 6r —4d(G, 4)
edges. Since r — d(G,4) > 0 we have 6r — 4d(G,4) > 3r —d(G,4). Therefore
(V'\S) has a cycle and we use Lemma C. |

Theorem 3.1. Let G = K3 x C,. Then d(G,4) = r + 1 for even r and
r+1<d(G,4) <r+2 for odd r.

Proof. Let G = K3 x C,. From Lemma 3.1 we obtain d(G,4) > r+1. We
give a defining set S of size r + 1 for even r and a defining set S of size r + 2
for odd r.

Let vy, v9,---, v, are the vertices of first row, uq, us, - - -, u, the vertices
of the second row and w1, ws, - - -, w, the vertices of the third row.

If r = 2n then we determine the defining set with their colors as follows:

1 if m = 1(mod 6),
c(vm) =< 2 if m=3(mod 6),
3 if m = 5(mod 6)

~—~

except for m = 2n — 1 when 2n = 2(mod 6),
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3 if m =2(mod 6),
c(um) =< 1 if m=4(mod 6),
2 if m=6(mod 6)

except for m = 2n when 2n = 2(mod 6). In this case we set c(ug,) = 1
when 2n = 2(mod 6).

Finally, let ¢c(w;) = 2 if 2n = 0 or 4(mod 6) and if 2n = 2(mod 6), we
set c(wy) = 2 and ¢(wa,—1) = 3. In each case we have d(G,4) =r+ 1if r is
even.

If r = 2n + 1 then we determine the defining set with their colors as
follows:

1 if m = 1(mod 6),
c(vm) =< 2 if m=3(mod 6),
3 if m = 5(mod 6)

1(

except for m = 2n 4+ 1 when 2n + 1 = 1(mod 6). In this case we set

¢(v2p+1) = 4 when 2n + 1 = 1(mod 6),

3 if m =2(mod 6),
c(up) =4¢ 1 if m=4(mod 6),
2 if m=6(mod 6)

and if 2n + 1 = 3 or 5(mod 6) we set c(wq) = 2 and c(wa,) = 4.
Finally we set ¢(w1) = 2 and c¢(ws2,) = 3 if 2n+ 1 = 1(mod 6). Thus
r+1<d(G,4) <r+ 2 when r is odd. |

We have the following
Conjecture. d(K3 x C,, 4) =r + 2 for odd r.

Lemma 3.2. Let G = (V, E) be a graph. Let S be a defining set of G with
c=A(G)+ 1. Ifv is a vertex and deg(v) < A(G) — 1 then v € S and if
deg(v) = A(G) then v € S or all neighbors of v are in S.

Proof. If v is a vertex with deg(v) < A(G)—1 and v ¢ S then there exists
at least two choices of colors for v eventually all of neighbors are colored.
If deg(v) = A(G), vertex u is a neighbor of v, (u,v ¢ S) and all the other
neighbors of v are in S then we have two choices of colors for v and v. ®



68 D.A. MOJDEH

Theorem 3.2. Let G = K3 x C,. Then d(G,5) = 2r.

Proof. Let G = K3 x C,. From Lemma 3.2 we obtain d(G,5) > 2r. To
show equality we give a defining set, S of size 2r.

Let v1,v9,---,v, are the vertices of first row, uq, uo, - - -, u, the vertices
of the second row and wy,ws, - - -, w, the vertices of the third row.

If r = 2n then we determine the defining set with their colors as follows:

1 if m = 1(mod 10),
2 if m = 3(mod 10),
c(vm) =< 3 if m =5(mod 10),
4 if m = T7(mod 10),
5 if m = 9(mod 10)
and ¢(ve,) = 5 when 2n = 2 or 8(mod 10),
5 if m =2(mod 10),
4 if m = 4(mod 10),
c(um) =< 2 if m=6(mod 10),
1 if m = 8(mod 10),
3 if m = 0(mod 10)

for 2 <'m < 2n, except m # 2n when 2n = 2 or 8(mod 10). In this case we
set c¢(ugn) = 2 when 2n = 2(mod 10) and ¢(ug,) = 3 when 2n = 8(mod 10),

if m =3 or 5(mod 10),
if 'm =4 or 6(mod 10),
c(wy) = if m =2 or 7(mod 10),
if 'm =0 or 8 mod 10),
( )

if m=1or 9(mod 10

NN W ot =

for m # 1,2,2n — 1 and 2n. Finally, the following cases conclude the even
case.

If 2n = 4 or 6(mod 10) we set c¢(w;) = 3,c(w2) = 4,c(wap—1) = 1 and
c(way) = 5.

If 2n = 2(mod 10) we set ¢(w1) = 3, c(we) = 4 and c(wap—1) = 4.
If 2n = 8(mod 10) we set c(wi) = 4, c(w2) = 3 and c(wap—1) = 1.
If 2n = 0(mod 10) we set c(wy) = 4, c(w2) = 3, c(wa,) = 2 and c(wa,—1)=4.
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For r = 2n 4+ 1 we determine the defining set with their colors as follows:

c(vm)

T W N~

if
if
if
if
if

33333

for 1 <m <2n+1and m # 2n+ 1 when 2n + 1 = 1(mod 10). And we set
¢(vap+1) = 2 when 2n + 1 = 1(mod 10),

for 1 <m < 2n.

c(tm)

W = N = Ot

if
if
if
if
if

33333

Furthermore let c¢(ugp+1) = 4 when 2n + 1 = 1,3 or 9(mod 10), let
c(ugn+1) = 2 when 2n + 1 = 5(mod 10) and let c(ugp+1) =3 when 2n+1 =

7(mod 10)

c(wm)

N W Ot =

if
if
if
if
if

m = 3 or 5(mod 10),
m = 4 or 6(mod 10),
m = 2 or 7(mod 10),
m = 0 or 8(mod 10),
m =1 or 9(mod 10)

for m # 1,2,2n and 2n + 1. Again some special cases completes the proof.

If 2n 4+ 1 =1 or 3(mod 10) we set c(wq) = 3, c(wz) = 4, c(way,) = 1.

If 2n + 1 = 9(mod 10) we set c(w;) = 3, c(w2) =4 and c(wg,) = 2.

If 2n + 1 = 5(mod 10) we set c(w1) = 4, c(wz) = 3 and c(way,) = 5.

If 2n + 1 = 7(mod 10) we set c(w1) = 2, c(wz) and c(way,) = 5. |

d(K2 x Crpye > x)

Note that x (K3 x C),) = 3 if m is odd and x (K3 x Cp,) = 2 if m is even.
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Lemma 4.1. Let G = Ky x C,.. Then d(G,3) > |£] + 1.

Proof. On the contrary, assume that d(G,3) < |5]. If S is a defining set
of G with cardinality at most | 5| and V' is the set of vertices of G then the
induced subgraph (V' \ S) of G has 2r — d(G, 3) vertices and has at least
3r — 3d(G,3) edges. Since |§| — d(G,3) > 0 we have r > 2|5] > 2d(G)
and 3r — 3d(G, 3) > 2r — d(G, 3). Therefore (V' \ S) has a cycle and we use
Lemma C. [ ]

Theorem 4.1. Let G = Ky x Co,,. Then d(G,3) =n+ 1.

Proof. Let G = Ky x C9,. From Lemma 4.1 we obtain d(G,3) > n + 1.
To show equality we give a defining set, S of size n + 1.

If v, v9,-- -, vy, are the vertices of first row and uy, uo, - - -, ug, the ver-
tices of the second row. We determine the defining set with their colors as
in following tables:

(o) = 1 if m=1 and m=2n-—2,
AmI= 2 i m=0(mod4) and 1<m<2n-3

also

c(upm)= 2 if m=2(mod4), (m<2n-3) and m=2n-—1.
For 2n = 4 we say c¢(v1) = c(uz) = 1 and c(vg) = 2. |
Theorem 4.2. If G = K3 x C, then d(G,4) = 2[5].

Proof. Let G = K3 x C,. From Lemma 3.2 we obtain d(G,4) > 2[5]. To
show equality we give a defining set, S of size 2[5].

Let v1,v9, -+, v, are the vertices of first row, uq, uo, - - -, u, the vertices
of the second row.

If r = 2n we determine the defining set with their colors as follows:

1 if m=1(mod 8),

() = 2 if m = 3(mod 8),
" 3 if m =5(mod 8),

4 if m = 7(mod 8)

except m = 2n — 1 when n = 1(mod 4). In this case we set ¢(ve,—1) = 2,
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3 if m =2(mod ),
4 if m = 4(mod ),
e(um) = 1 if m = 6(mod 8),
2 if m =0(mod 8)

except m = 2n — 2, m = 2n when n = 1(mod 4) and m = 2n when n =
3(mod 4), in this case we say c(uz,) =4, ¢(uz,—2) =3 when n = 1(mod 4)
and we say c(u2,) = 2 when n = 3(mod 4).

If = 2n + 1 we determine the defining set with their colors as in
following tables:

1 if m=1(mod 8),
2 if m = 3(mod 8),
Wm) =9 3 if m=>5(mod8),
4 if m = T7(mod 8)

3 if m =2(mod 8),
4 if m = 4(mod 8),
e(um) = 1 if m=6(mod 8),
2 if m=0(mod 8)

except m = 2n when n = 0, (mod 4) in this case c¢(ugy,) = 3 and c(ugn4+1) =4
when n =0 or 1(mod 4), c(ugn+1) = 2, when n = 2 or 3(mod 4). |

Corollary 4.3. d(K3 x C,,5) = 2r.

Proof. By Lemma 2.2, each of column has at least 2 vertices in defining
set. Therefore all vertices are in defining set. |
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