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Abstract

In this paper, we determine all trees with the property that adding a
particular edge will result in exactly two Laplacian eigenvalues increas-
ing respectively by 1 and the other Laplacian eigenvalues remaining
fixed. We also investigate a situation in which the algebraic connec-
tivity is one of the changed eigenvalues.
Keywords: tree, Laplacian eigenvalues, spectral integral variation,
algebraic connectivity.
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V = V (G) ={v1, v2, . . . , vn}
and edge set E = E(G) = {e1, . . . , em}. Denote by d(v) the degree of v ∈ V
in the graph G. Then the Laplacian matrix of G is L(G) = D(G) − A(G),
where D(G) is the diagonal matrix diag{d(v1), d(v2), . . . , d(vn)}, and A(G) is
the (0, 1) adjacency matrix of G. There is a wealth of literature on Laplacian
matrices for graphs (see [10] for a comprehensive overview). It is known
that L(G) is singular and positive semidefinite; and its eigenvalues can be
arranged as follows: λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G) = 0. The spectrum of G
is defined by the multi-set S(G) = {λ1(G), λ2(G), . . . , λn(G)}.
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Harary and Schwenk [8] initiated the study of those graphs G such that A(G)
has integral spectrum. The analogous problem for L(G) is also interesting
[6]. A graph G is said to be Laplacian integral if S(G) consists entirely of
integers. Merris [11] has shown that the degree maximal graphs are Lapla-
cian integral. For some related results, one can refer to [6, 7]. It seems to be
difficult to characterize Laplacian integral graphs or Laplacian integral eigen-
values. Assume G is Laplacian integral. In order to preserve Laplacian inte-
grality of G by adding an edge, observe first that by Lemma 3.1 in following
Section 3 the eigenvalues do not decrease, and therefore the changed eigen-
values of G must move up respectively by an integer as one of the following
two cases (see [13, 2]):

(A) one eigenvalue of G increasing by 2 (and other n−1 eigenvalues remain
unchanged);

(B) two eigenvalue of G increasing by 1 (and other n−2 eigenvalues remain
unchanged).

Now dropping the assumption of G be Laplacian integral, and adopting the
terminology of [2], we say that the spectral integral variation occurs to G
in one or two places by adding an edge if case (A) or case (B) occurs to
G. The problem of characterizing spectral integral variation occurring in
one place was solved by So [13]. Subsequently, for certain subclasses of
graphs, Fan [2, 3] has characterized spectral integral variation occurring in
two places. Recently, Kirkland [9] characterizes all graphs with spectral
integral variation occurring in two places. The characterization is written
in the form of matrix equations and can be rephrased in graph theoretic
language; see Theorem 2.5 in Section 2.

In this paper, we focus on the problem of determining all trees with
spectral integral variation occurring in two places by adding a particular
edge. By Fan’s result [2] and Kirkland’s result [9], we solve the problem and
find all these trees. In addition, we also investigate a situation in which the
algebraic connectivity is one of the changed eigenvalues.

2. Spectral Integral Variation of Trees

Lemma 2.1 [13]. Let G = (V, E) be a simple graph with V = {v1, v2, . . . , vn}.
Then spectral integral variation occurs to G in one place by adding an edge
e = {vi, vj} /∈ E if and only if N(vi) = N(vj), where N(v) = {u ∈ V :
{u, v} ∈ E}.
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Lemma 2.2 [2]. Let G = (V,E) be a simple graph with V = {v1, v2, . . . , vn}.
If spectral integral variation occurs to G in two places by adding an edge
e = {vi, vj} /∈ E and the changed eigenvalues of G are λk, λl, then

λk + λl = d(vi) + d(vj) + 1, λkλl = d(vi)d(vj) + dij ,

where dij is the cardinality of the set N(vi) ∩N(vj).

Theorem 2.3 (Matrix-Tree Theorem, see [1, p. 39]). Let G be a simple
graph on n vertices, and t(G) the number of the spanning trees of G. Then
t(G) = (1/n)

∏n−1
i=1 λi(G).

Lemma 2.4. Let T = (V, E) be a tree with with V = {v1, v2, . . . , vn} and
e = {vi, vj} /∈ E. Let δ be the distance from vi to vj. If spectral integral
variation occurs to T in two places by adding e, and the changed eigenvalues
of T are λk, λl (λk ≥ λl), then

d(vi) = d(vj) = 1; δ = 4; λk = 1/λl = (3 +
√

5)/2.

Proof. If δ=2, then by Lemma 2.2, we have

(2.1) λk + λl = d(vi) + d(vj) + 1, λkλl = d(vi)d(vj) + dij .

Note that the number of spanning trees of T +e is δ+1 as T +e has a unique
cycle with length δ+1. By Theorem 2.3, we have

t(G + e)
t(G)

=
(λk + 1)(λl + 1)

λkλl
= δ + 1 = 3.

Then by (2.1) we have d(vi)+d(vj) = 2d(vi)d(vj), and hence d(vi) = d(vj) =
1. Therefore N(vi) = N(vj), which is a contradiction by Lemma 2.1.

Otherwise, δ ≥ 3. Then dij=0 in Lemma 2.2. By a similar discussion
to former case, we have

4 ≥ 1
d(vi)

+
1

d(vj)
+

2
d(vi)d(vj)

= δ ≥ 3.
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Then δ = 4 if and only if d(vi) = d(vj)=1, and hence

λk = 1/λl = (3 +
√

5)/2.

It is obvious that the case of δ = 3 cannot happen.

Next we introduce Kirkland’s result [9], which gives a characterization of
the spectral integral variation occurring to a graph in two places.

Theorem 2.5 [9]. Let G be a graph on n vertices v1, v2, . . . , vn, with Lapla-
cian matrix L given by

(2.2) L =




d1 0 −1T 0T −1T 0T

0 d2 0T −1T −1T 0T

−1 0 L11 L12 L13 L14

0 −1 L21 L22 L23 L24

−1 −1 L31 L32 L33 L34

0 0 L41 L42 L43 L44




,

where d1 = d(v1), d2 = d(v2), the blocks L11, . . . , L44 are respectively of sizes
d1− d12, d2− d12, d12, n− 2− d1− d2− d12, and 1,0 are respectively column
vectors of all 1’s and all 0’s of suitable size. Suppose that d1 ≥ d2. From
G+e from G by adding the edge between the vertices v1 and v2. Then spectral
integral variation occurs in two places under the addition of that edge if and
only if the follow conditions hold:

(2.3)

L111− L121 = (d2 + 1)1,

L211− L221 = −(d1 + 1)1,

L311− L321 = −(d1 − d2)1,

L411− L421 = 0.

Denote by Pn = Pv1v2 · · · vn a path on vertices v1, v2, · · · , vn with edges
{vi, vi+1} for i = 1, 2, . . . , n− 1.

Theorem 2.6. Let T = (V, E) be a tree with V = {v1, v2, . . . , vn} and
e = {v1, v2} /∈ E. Then spectral integral variation occurs to T in two places
by adding the edge e if and only if T has following properties:

(1) d(v1) = d(v2) = 1;
(2) the path from v1 to v2 has length 4 (say it to be Pv1v3v5v4v2);
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(3) T is obtained from the path Pv1v3v5v4v2 by identifying v5 with some
vertex of a tree on n− 4 vertices; or equivalently T has the structure of
the tree of Figure 2.1 where the additional edge is {v1, v2}.

e e e e e
v1 v3 v5 v4 v2

'

&

$

%

T1

Figure 2.1. T1 is a tree on n− 4 vertices with some vertex identified with the
vertex v5.

Proof. Assume that spectral integral variation occurs to T in two places
by adding the edge e = {v1, v2}. By Lemma 2.4, d(v1) = d(v2) = 1; and T
contains a path of length 4 which joins v1 and v2, say it to be Pv1v3v5v4v2.
By Theorem 2.5, in the matrix (2.2), we find that L11 = d(v3), L22 = d(v4),
both of size 1; and L33, together with the row and column that it lies, are
vanished; and L44 is of size n− 4. Then

L(T ) =




1 0 −1 0 0T

0 1 0 −1 0T

−1 0 d(v3) 0 L14

0 −1 0 d(v4) L24

0 0 L41 L42 L44




.

By (2.3),

d(v3) = d(v2) + 1 = 2, d(v4) = d(v1) + 1 = 2, N(v3) ∩N(v4) = {v5};

and the necessity holds. The sufficiency is easily verified by (2.3) of Theo-
rem 2.5.

3. Changed Algebraic Connectivity

Let G = (V, E) be a graph on n vertices v1, v2, . . . , vn. For convenience, we
adopt the following terminology from [5]: for a vector x = (x1, x2, . . . , xn) ∈
Rn, we say x gives a valuation of the vertices of V , that is, for each vertex
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vi, we associate the value xi, i.e., x(vi) = xi. Then λ is an eigenvalue of
G corresponding to the eigenvector x if and only if x 6= 0 and for each
i = 1, 2, . . . , n,

(3.1) [d(vi)− λ]x(vi) =
∑

{vi,vj}∈E

x(vj).

Recall that the algebraic connectivity of G is α(G) = λn−1(G) [4]. In par-
ticular the algebraic connectivity α(G) > 0 if and only if G is connected.
Suppose that spectral integral variation occurs to a tree T in two places with
λk and λl (λk ≥ λl) both increasing 1 by adding a particular edge. This
section gives an equivalent condition that algebraic connectivity of T is a
changed eigenvalue (that is, λl = α(T ) = (3−√5)/2 by Lemma 2.4).

Lemma 3.1 [12]. Let G be a simple graph on n vertices, and let G + e be
the graph obtained from G by adding an edge e. Then

λ1(G + e) ≥ λ1(G) ≥ λ2(G + e) ≥ λ2(G) ≥ λ3(G + e)

≥ . . . ≥ λn(G + e) = λn(G) = 0.

Lemma 3.2. Let T be a tree and v be a pendant vertex of T . Then
α(T − v) ≥ α(T ).

Proof. Let e be the pendant edge incident to v. Then T − e contains
exactly two components: v, and T − v on n− 1 vertices; and

0 = λn(T − e) = λn−1(T − e) = λn−1(T − v),

λn−2(T − e) = λn−2(T − v) = α(T − v).

Then by Lemma 3.1, λn−2(T − e) ≥ λn−1(T ) and the result follows.

Consider the graph H1 of Figure 3.1. Let λ be an eigenvalue of H1 cor-
responding to the eigenvector x. Observing the symmetric property of H1

and by (3.1), we may assume that x satisfies one of the following conditions
(3.2) and (3.3):

(3.2)
x(v1) = x(v2) =: y1, x(v3) = x(v4) =: y2,

x(v5) =: y3, x(v6) =: y4, x(v7) = x(v8) =: y5;
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(3.3) x(v1) = −x(v2), x(v3) = −x(v4), x(v7) = −x(v8), x(v5) = x(v6) = 0.

d d d d d
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¡¡ @@d d

H1

v1 v2v5 v4v3

v6

v7 v8

d d
u21 d

w
d

u22 d
¡¡ @@

H2 (k ≥ 2, p ≥ 0)

@
@

¡
¡

d
u31 d

u3p

du2k du23

¡¡ @@d
u1k

d
u13

. . .

. . . . . .

v1(= u11) v2(= u12)

Figure 3.1

Now assume λ 6= 1. If x satisfies (3.3), by (3.1),

(1− λ)x(v1) = x(v2), (2− λ)x(v2) = x(v1).

We get λ = (3±√5)/2 as x(v1) 6= 0, x(v2) 6= 0. If x satisfies (3.2), by (3.1)
we have

(3.4)





(1− λ)y1 = y2,

(2− λ)y2 = y1 + y3,

(3− λ)y3 = 2y2 + y4,

(3− λ)y4 = 2y5 + y3,

(1− λ)y5 = y4.

Finding the solutions of λ of (3.4) is equivalent to find the roots of the
polynomial f(λ) as follows:

f(λ) = det




1− λ −1 0 0 0
−1 2− λ −1 0 0
0 −2 3− λ −1 0
0 0 −1 3− λ −2
0 0 0 −1 1− λ




.

We get that

f(λ) = λ(−8 + 35λ− 32λ2 + 10λ3 − λ4) =: λg(λ),
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and g(0) = −8, g((3 − √5)/2) =
√

5 − 1 > 0. Therefore g(λ), hence f(λ),
has a root less than (3−√5)/2. So α(H1) < (3−√5)/2.

Suppose that spectral integral variation occurs to a tree T in two places
and one changed eigenvalue is α(T ). Then by Lemma 2.4, α(T ) = (3 −√

5)/2. This implies that tree T cannot contain H1 as a subgraph; otherwise
by Lemma 3.2, under a sequential deletion of the pendent vertices, we get
α(T ) ≤ α(H1) < (3−√5)/2. We call H1 a forbidden subgraph of T .

Lemma 3.3 ([1, p. 187], or [10]). Let T be a tree with diameter d. Then

α(T ) ≤ 2{1− cos[π/(d + 1)]}.

Theorem 3.4. Let T = (V, E) be a tree with V = {v1, v2, . . . , vn} and
e = {v1, v2} /∈ E. Suppose that spectral integral variation occurs to T in
two places with changed eigenvalues λk and λl (λk ≥ λl) by adding the edge
e. Then λl = α(T ) if and only if T is obtained from a vertex, k (≥ 2)
paths of length 2 and p (≥ 0) paths of length 1 by identifying that vertex
with one pendent vertex of each path; or equivalently, T has the structure of
H2 of Figure 3.1, where that vertex is w, k paths of length 2 are Pu11u21w
(u11 = v1), Pu12u22w (u12 = v2), · · · ,Pu1ku2kw, and p paths of length 1 are
Pu31w, · · · , Pu3pw, and the additional edge is {v1, v2}.

Proof. By Theorem 2.6, T has the structure of the graph in Figure 2.1;
and by Lemma 2.4, λl = (3 − √

5)/2. Assume that λl = α(T ). Then
α(T ) = (3 −√5)/2. By Lemma 3.3, the diameter of T is at most 4. Since
the graph H1 of Figure 3.1 is forbidden in T by the prior discussion, T has
the structure of H2 of Figure 3.1 and the necessity follows.

Next assume that T = H2 of Figure 3.1. We shall prove that λl =
α(T ) = α(H2). This is equivalent to show α(H2) = (3−√5)/2. Suppose that
λ is an eigenvalue of T corresponding to the eigenvector x. For convenience,
we relabel the vertices of H2 as in Figure 3.1. Then we may assume that x
has one of the following properties:

(A) x(v11) = · · · = x(v1k) =: y1, x(v21) = · · · = x(v2k) =: y2, x(v31) = · · · =
x(v3p) =: y3;

(B) x(v11) + · · · + x(v1k) = 0, x(v21) + · · · + x(v2k) = 0, x(v31) + · · ·+
x(v3p) = 0, x(w) = 0.
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Now assume that λ 6= 1 and p ≥ 1. If x satisfies (B), then by (3.1), for each
i = 1, 2, . . . , k,

(1− λ)x(v1i) = x(v2i), (2− λ)x(v2i) = x(v1i);

and hence λ = (3±√5)/2. If x satisfies (A), let x(w) = y4, and by (3.1) we
get

(3.5)





(1− λ)y1 = y2,

(2− λ)y2 = y1 + y4,

(1− λ)y3 = y4,

(k + p− λ)y4 = ky2 + py3.

Let

f(λ) = det




1− λ −1 0 0
−1 2− λ 0 −1
0 0 1− λ −1
0 −k −p k + p− λ


 .

Then

f(λ) = λ[−(1 + 2k + p) + (4 + 3k + 3p)λ− (4 + k + p)λ2 + λ3] =: λg(λ).

g((3 − √
5)/2) = −k < 0, g(1) = p > 0, g(3) = 2 − 2k − p < 0 and

g(k + p + 2) = (k + p)2 + p − 1 > 0. So g(λ), and hence f(λ) has no
eigenvalues less than (3−√5)/2. By above discussion, α(H2) = (3−√5)/2,
and the sufficiency holds.

If λ 6= 1 and p = 0, then by (B) we also get λ = (3±√5)/2. From (A)
we obtain 3 equations from (3.5) by dropping the 3rd equation and replacing
p by 0. By a similar discussion, we also get α(H2) = (3−√5)/2. The result
follows.
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