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Abstract

Median graphs have many interesting properties. One of them is—
in connection with triangle free graphs—the recognition complexity.
In general the complexity is not very fast, but if we restrict to the pla-
nar case the recognition complexity becomes linear. Despite this fact,
there is no characterization of planar median graphs in the literature.
Here an additional condition is introduced for the convex expansion
procedure that characterizes planar median graphs.
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1. Introduction and Preliminaries

Partial cubes are isometric subgraphs of hypercubes and have been largely
investigated, see the book [5] and the references therein. Most important
subclass of partial cubes are median graphs. There are over 50 characteriza-
tions of median graphs, see the survey [7]. Both classes are also interesting
from recognition point of view. In particular the recognition complexity for
median graphs is closely connected with the recognition complexity of tri-
angle free graphs, see [6, 5]. For planar median graphs the time complexity
is linear [6]. Thus we can recognize for a given graph very fast whether it is
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planar median or not. Despite this fact no characterization of planar median
graphs is known.

Here we give a characterization of planar median graphs. For this we
use the famous Mulder’s convex expansion theorem [9, 10] and a special
condition on it, which assures planarity. The same condition is not enough
any more in the case of other graph classes that can be obtain by some other
expansion procedure. For more about these classes of graphs we recommend
[2] and the references therein.

The distance dG(u, v) between two vertices u and v in a graph G is
defined as the number of edges on a shortest u, v-path. A subgraph H of
G is called isometric, if dH(u, v) = dG(u, v) for all u, v ∈ V (H) and H is
convex if for every u, v ∈ V (H) all shortest u, v-paths belong to H. Convex
subgraphs are clearly isometric.

The Cartesian product G2H of two graphs G and H is the graph with
vertex set V (G)×V (H) where the vertex (a, x) is adjacent to (b, y) whenever
ab ∈ E(G) and x = y, or a = b and xy ∈ E(H). Hypercubes or n-cubes Qn

are Cartesian products of n copies of K2. Isometric subgraphs of hypercubes
are called partial cubes.

A graph G is a median graph if there exists a unique vertex x to every
triple of vertices u, v, and w of G such that x lies on a shortest u, v-path,
on a shortest u,w-path, and on a shortest v, w-path. Trees and n-cubes are
median graphs.

Let G1 and G2 be a cover of a graph G with nonempty intersection
G1∩G2 = G′. Note that there is no edge from G1\G′ to G2\G′. Graph H is
an expansion of G with respect to G1 and G2 as follows. Take disjoint copies
of G1 and G2 and connect every vertex from G′ in G1 with the same vertex
of G′ in G2 with an edge. Such pairs of vertices will be called expansions
neighbors. Expansion is peripheral if G1 = G (or G2 = G). In that case
G′ = G2 and we say that H is a peripheral expansion of G with respect to
G′. We say that expansion is convex (isometric, connected, arbitrary) if G′

is convex (isometric, connected, arbitrary). It is not hard to see that copies
of G′ in G1 and in G2 and new edges between those two copies form the
Cartesian product G′2K2.

In [9, 10] Mulder has shown that G is median if and only if it can be
obtained from K1 by a sequence of convex expansions, in [11] he has shown
that we can restrict to pheripheral expansions, and in [3] Chepoi has shown
that G is a partial cube if and only if it can be obtained from K1 by a
sequence of arbitrary expansions (if G1 and G2 are isometric subgraphs).
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We say that a bipartite graph G satisfies the quadrangle property if for any
vertices u,w, x, y of G with d(u, x) = d(u, y) = k = d(u,w) − 1 and w is a
common neighbor of x and y, there exists a common neighbor v of x and y
with d(u, v) = k−1. Median graphs are precisely connected bipartite graphs
that fulfill the quadrangle property and contain no induced K2,3, cf. [7].

Graph G is planar if it can be drawn in the plane such that any two edges
cross only in an endvertex (if they are incident with the same endvertex).
Such drawings are called plane drawings of G. Any plane drawing of G
divides the plane into regions which are called faces. One of those faces
is unbounded and is called the exterior or the outer face, the others are
interior or inner faces. Vertices that lie on an outer face are called outer
vertices and other are inner vertices. Note that the boundary of every face
of some plane drawing can be boundary of an outer face of some other plane
drawing of the same graph.

A graph G is outerplanar if it is planar and embeddable into the plane so
that all vertices lie on the outer face of the embedding. Such an embedding
is called an outerplanar embedding of G. In [1] Behzad and Mahmoodian
have shown that G is outerplanar if and only if G2K2 is planar. For more
information about planar graphs (or more general graphs on surfaces) we
recommend [8].

2. Face Expansions

Vertex u of a graph G is a cut vertex if G − u has more components as G,
while edge e is a bridge if G − e has more components as G. (We remove
only edge e without endvertices.)

Let G be a planar graph. We construct graph G− as follows. First delete
all bridges from G. Let u be a cut vertex in the obtained graph. We delete
u, add copies of u back to all components incident with u in the natural way
and denote this graph with G−

u . With G− we denote the graph that remains
from G after this procedure is executed for all cut vertices of G. For a tree
T on n vertices we have totally disconnected graph on n vertices for T−.
Another example is on Figure 1.

We say that a face F is (non)induced, if the cycle that contain edges
of F is (non)induced in G. Vertices of any induced cycle are clearly in the
same component of G−.

With this terminology we can write a simple lemma for drawings of a
graph. The rather technical proof is omitted.
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Figure 1. Graphs G and G−.

Lemma 1. Let D be a planar drawing of a graph G and F some noninduced
face with boundary u0, u1, . . . , uk. Suppose that there exists edge u0ui, i ∈
{2, . . . , k − 1}. Then there exists a planar drawing D′ of G with a face F ′

on vertices u0, ui, ui+1, . . . , uk.

Let H be an expansion of a planar graph G with respect to G1 and G2.
Then H is a face expansion of G if all vertices of G′ = G1 ∩G2 are on one
face of some plane drawing of G. We need another lemma before our main
result.

Lemma 2. Let H be a peripheral expansion of a planar graph G with respect
to G′. Suppose that among any two incident edges e = uv and f = vw from
G′ at least one is a bridge in G or v is a cut vertex and e and f are in different
connected components of G−. Then H is a peripheral face expansion of G
with respect to G′.

Proof. Clearly G′ does not contain any cycle and is a tree. In each com-
ponent Ci of G− is at most one edge of G′. If there is such an edge ei in Ci,
choose any face Fi in Ci that contains ei and draw Ci in such a way that Fi

is an outer face of Ci. Draw all others components in any planar way. The
only thing to consider is that every vertex, that is adjacent with a vertex in
G′ with a bridge, is drawn on an outer face. All edges of G′ that are still
missing in G− are bridges. Return those bridges to G− and join all copies
of cut vertices of G′. Clearly G′ is on outer face of this drawing. We add
all other bridges of G to this drawing and join all other cut vertices of G
that have been disjoint. The outer face of the obtained drawing of G still
includes G′ and thus H is a peripheral face expansion.

Theorem 3. A graph G is a planar median graph if and only if G can be
obtained from K1 by a sequence of convex peripheral face expansions.
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Proof. Suppose that G can be obtained from K1 by a sequence of convex
peripheral face expansions. Then G is median by Mulder’s convex expansion
theorem. We will show that face expansions preserve planarity by induc-
tion on the number of expansions. Let H0 = K1 and denote with Hk the
graph obtained after k peripheral expansions with corresponding subgraph
H ′

k for the next peripheral expansion. Suppose that Hk is planar and that
it is drawn in such a way that Hk+1 can be obtained from Hk with a face
expansion. Denote this face with F . Then H ′

k is outerplanar and H ′
k2K2 is

planar by the result of Behzad and Mahmoodian. Draw Hk and H ′
k so that

F is an outerface for both of them and that drawings do not intersect. Now
just connect by an edge every vertex of H ′

k in the drawing of Hk with the
same vertex in the drawing of H ′

k. Clearly this can be done so that a new
drawing of Hk+1 is planar. Hence G is planar.

Suppose now that G is planar and median. Then G can be obtain by
a sequence of convex peripheral expansions from K1 by Mulder’s theorem.
Assume that one of this expansions, say Hk to Hk+1 with respect to H ′

k, is
not a face expansion for every drawing of a graph Hk. Choose index k to
be the smallest of all such expansions and fix one drawing D.

By Lemma 2 there are at least two incident edges in H ′
k that are in the

same component of H−
k . We distinguish three cases:

Case 1. In H ′
k are three edges that are all incident with vertex u1 and

are in the same component of H−k .

Let u1 be a vertex in H ′
k with at least three neighbors u2, u3, u4 ∈ H ′

k in the
same connected component Cj of H−

k . Clearly these three edges are all not
on the same face of D.

We will use the following notation. Let x1, x2, . . . , xp, y1, y2, . . . , yq and
z1, z2, . . . , zr be neighbors of u1 in Cj such that xi, yi and zi lie on D between
u2 and u3, between u3 and u4, and between u4 and u2, respectively. Denote
with u5 the expansion neighbor of u1. We claim that {u1, u2, u3, u4, u5} form
a subdivision of K5—a contradiction with planarity of G.

Vertex u1 is a neighbor of u2, u3, u4, and u5. Let u′2, u′3, and u′4 be
expansions neighbors of u2, u3, and u4 in Hk+1, respectively. Then u5u

′
2u2,

u5u
′
3u3, and u5u

′
4u4 are edge disjoint paths from u5 to u2, u3, and u4 re-

spectively. Even more, none of edges on those paths are in Hk.
For u2 = x0 and u3 = xp+1 the path xiu1xi+1 is on the same face F 23

i ,
for i ∈ {0, 1, . . . , p}. Then F0\{u2u1u3} is a u2, u3-path if p = 0 and the
symmetric sum
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F 23
0 \{u2u1} ⊕ F 23

p \{u3u1} ⊕p−1
i=1 F 23

i

forms a u2, u3-path if p > 0. Analogously for u3 = y0 and u4 = yq+1 the path
yiu1yi+1 is on the same face F 34

i , for i ∈ {0, 1, . . . , q}. Then F 34
0 \{u3u1u4}

is a u3, u4-path if q = 0 and the symmetric sum

F 34
0 \{u3u1} ⊕ F 34

q \{u4u1} ⊕q−1
i=1 F 34

i

forms a u3, u4-path if q > 0. And finally for u4 = z0 and u2 = zr+1 the path
ziu1zi+1 is on the same face F 42

i , for i ∈ {0, 1, . . . , r}. Then F 42
0 \{u4u1u2}

is a u4, u2-path if r = 0 and the symmetric sum

F 42
0 \{u4u1} ⊕ F 42

r \{u2u1} ⊕r−1
i=1 F 42

i

forms a u4, u2-path if r > 0. Clearly all these paths are disjoint and we have
a subdivision of K5 in H−

k+1 and thus in G, which is impossible.

Case 2. H ′
k has two incident edges that are in the same connected

component of H−
k and are not on a four cycle.

We will show that no two such edges of H ′
k lie on the same face. Assume

contrary that edges e = uv and f = vw that are in the same component
Cj of H−

k are on the same face F of D. Then there exists some u, w-path
other than uvw. Among all such paths choose the shortest one and denoted
with P . Clearly P has even length and cycle wvuP is isometric. Let x be
a middle vertex of P . For |P | = 2 vertices uvwx form a four cycle and
if |P | > 2 there exist a vertex z so that uvwz form a four cycle by the
quadrangle property for x, u, w, v. In each case H ′

k contains a cycle, since
the expansion is convex, contrary to the assumption.

Thus there are two edges e = u1u2 and f = u1u3 in H ′
k which are not on

the same face in D. Denote with x1, x2, . . . , xp and y1, y2, . . . , yq neighbors
of u1 in Cj in H−

k , where xi are on the one side and yj on the other side
of the path u2u1u3 on drawing D. Since u2 and u3 are not on the same
face of D, we have p ≥ 1 and q ≥ 1. Let v1 = x1, v2 = y1, and v3 be the
expansion neighbor of u1. We will show that {u1, u2, u3} and {v1, v2, v3}
form a partition of subdivision of K3,3.

Vertex u1 is a neighbor of v1, v2, and v3. Let u′2 and u′3 be expansions
neighbors of u2 and u3 in Hk+1, respectively. Then v3u

′
2u2 and v3u

′
3u3 are
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edge disjoint paths from v3 to u2 and u3, respectively. Even more, none of
edges on those paths are in Hk.

For u2 = x0 and u3 = xp+1 path xiu1xi+1 is on the same face Fi of
Cj , for i ∈ {0, 1, . . . , p}. The path F0\{u2u1v1} is a v1, u2-path, the path
F1\{u2u1v1} is a v1, u3-path if p = 1, and the symmetric sum

F1\{u1v1} ⊕ Fp\{u1u3} ⊕p−1
i=2 Fi

is a v1, u3-path if p > 1. Analogously for u3 = y0 and u2 = yq+1 the path
yiu1yi+1 is on the same face Ei, for i ∈ {0, 1, . . . , q}. The path E0\{u3u1v2}
is a v2, u3-path, the path E1\{u3u1v2} is a v2, u2-path if q = 1, and the
symmetric sum

E1\{u1v2} ⊕ Eq\{u1u2} ⊕q−1
i=2 Ei

is a v2, u2-path.
All these paths are edge disjoint and we have a subdivision of K3,3 in

H−
k+1 and thus in G, which is impossible.

Case 3. H ′
k has a four cycle C4 = uvxy.

Suppose that this cycle is not a boundary of any face on any drawing of
G. We claim that at most two incident edges of H ′

k are on the same face.
Indeed, if there are three edges of H ′

k on the face F , F is not induced. By
Lemma 1 there exists a drawing D′ where H ′

k is a boundary of a face. We
do the same if two nonincident edges lie on the same face. However this is
not enough. We have to show also that any two incident edges of H ′

k are
not on the same face. Suppose they are. Without loss of generality we may
assume that there exist an u, x-path P and a v, y-path Q. Denote with P ′

the shortest u, x-path that does not contain vertices v and y. P ′ must have
even length. If P ′ = uwx has length two, vertices u, v, x, y, w form a K2,3

which is impossible. So let |P ′| > 2. Then there exists a common neighbor z
of u and x by the quadrangle property for vertices u, x, v, and for the middle
vertex of P ′. Again u, v, x, y, z form a K2,3, a contradiction for a median
graph.

As in Case 2 we thus have two edges e = u1u2 and f = u1u3 in H ′
k

which are not on the same face in D′. We proceed as in Case 2 and the
proof is complete.

As already mentioned the same argument does not hold for graphs obtain-
able from K1 by a sequence of isometric (connected, any) expansions. Coun-
terexample due to Klavžar for isometric expansion is a graph H that is an
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isometric expansion of the cube Q3 with respect to two graphs Q−
3 , so that

Q′
3 is isometric C6. (Q−

3 is a cube Q3 minus a vertex.) Clearly H is planar
but the mentioned expansion is not a face expansion and also can not be
obtained from face expansions.
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