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Abstract

Let G be a 2-connected graph of order n. Suppose that for all
3-independent sets X in G, there exists a vertex u in X such that
|N(X\{u})| + d(u) ≥ n − 1. Using the concept of dual closure, we
prove that

1. G is hamiltonian if and only if its 0-dual closure is either complete
or the cycle C7

2. G is nonhamiltonian if and only if its 0-dual closure is either
the graph (Kr ∪ Ks ∪ Kt) ∨ K2, 1 ≤ r ≤ s ≤ t or the graph
(n+1

2
)K1 ∨ K n−1

2

.

It follows that it takes a polynomial time to check the hamiltonicity or
the nonhamiltonicity of a graph satisfying the above condition. From
this main result we derive a large number of extensions of previous
sufficient conditions for hamiltonian graphs. All these results are sharp.
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1. Introduction

We use Bondy and Murty for terminology and notation not defined here and
consider simple graphs only G = (V,E). By n, α and κ we denote the order,
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the independence and the vertex-connectivity number of G. If A ⊂ V , we
denote by G[A] the subgraph induced by A.

The closed neighborhood and the degree of a vertex u are denoted N [u] =
{u} ∪ N(u) and d(u) respectively. For S ⊂ V and a ∈ V \S, we denote by
NS(a) (dS(a) resp.) the set (the number resp.) of neighbors of a in S. For
1 ≤ k ≤ α, we put Ik = {Y | Y is a k-independent set}. As in [1], for each
pair (a, b) of nonadjacent vertices of a graph G we associate

γab(G) := |NG(a) ∪ NG(b)| , λab(G) := |NG(a) ∩ NG(b)| ,

Tab(G) := V \ (NG [a] ∪ NG [b]) , tab := |Tab| , αab := 2 + tab,

δab := min {d(x) | x ∈ Tab} if Tab 6= ∅ and δab := δ(G) otherwise.

For any set X = {x1, x2, x3} ∈ I3(G), we denote by λmin(X), λmed(X) and
λmax(X) the smallest, the median and the greatest value in {λx1x2

, λx2x3
,

λx3x1
} respectively. Moreover we set Xi = X\{xi}, σX =

∑

x∈X d(x), λX =
λx1x2

+ λx2x3
+ λx3x1

and s3(X) = |N(x1) ∩ N(x2) ∩ N(x3)|. Obviously
s3 ≤ λmin ≤ λmed ≤ λmax. If no confusion arises, we omit the arguments
(G) and (X).

2. Preliminary Results

In [7], Bondy and Chvátal introduced the concept of the k-closure for sev-
eral graph properties. For hamiltonian graphs the n-closure generalizes six
earlier sufficient degree conditions. In [1], Ainouche and Christofides intro-
duced the 0-dual closure c∗0(G) as an extension of the n-closure. Schiermeyer
[15] showed that c∗0(G) is complete whenever G satisfies four more sufficient
conditions for hamiltonian graphs. The first author ([3]) improved recently
the closure condition given in [1]. In this paper, a relaxation of this strong
condition is used. To state it, we need to introduce a binary variable εab.

Definition 2.1. Let εab ∈ {0, 1} be a binary variable, associated with a pair
(a, b) of nonadjacent vertices. We set εab = 0 if and only if

1. ∅ 6= Tab and all vertices of Tab have the same degree 1 + tab,

2. one of the following two local configurations holds

(a) Tab is a clique (possibly with one element), λab ≤ 2 and there exist
u, v /∈ Tab such that Tab ⊂ N(u) ∩ N(v). Moreover λab ≤ 1 if either
{u, v} ⊂ N(a)\N(b) or {u, v} ⊂ N(b)\N(a).
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(b) Tab is an independent set (with at least two elements), λab ≤ 1 +
tab and either N(Tab) ⊆ N(a) ∩ N(b) or there exists a vertex u ∈
N(a)△N(b) such that |Tab\NTab

(u)| ≤ max(λab−1, 0). Moreover Tab

is a clique in G2, the square of G.

Lemma 2.2 (a neighborhood closure condition). Let G be a 2-connected

graph and let (a, b) be a pair of nonadjacent vertices satisfying the condition

(ncc) αab ≤ δab + εab (or equivalently γab + δab ≥ n − εab).

Then G is hamiltonian if and only if (G + ab) is hamiltonian.

The 0-dual neighborhood closure nc∗0(G) is the graph obtained from G by
successively joining (a, b) satisfying the condition (ncc) until no such pair
remains. It is easy to see that nc∗0(G) is well defined. Moreover, it is shown
in ([3]) that it takes a polynomial time to construct nc∗0(G) and to exhibit
a longest cycle in G whenever a longest cycle is known in nc∗0(G).

For simplicity we sometimes say neighborhood closure instead of 0-dual

neighborhood closure. As a direct consequence of Lemma 2.2 we have:

Corollary 2.3. Let G be a 2-connected graph. Then G is hamiltonian if

and only if nc∗0(G) is complete.

To get an idea of the strength of Corollary 2.3, we describe two infinite fam-
ilies of hamiltonian graphs for which nc∗0(G) is complete. To our knowledge
there is no known theorem from which we can draw the same conclusion.
Let p, q be nonnegative integers.

Definition 2.4. Let p ≥ 2 and q ≥ 2 be integers, A := {a0, a1, ..ap+1},
X := {x1, .., xp} be two distinct independent sets and B := {b0, b1, ..bq} be a
clique. A graph G is in A1(p, q) if it is constructed from A,B,X as follows:
N [a0] = A, G[{a1, .., ap},X] = Kp,p, N(ap+1) = {a0, b1} ∪ {x1, .., xp−1} and
N(xp) = {a1, .., ap} ∪ {bq}.

It is easy to check that n = 2p + q + 3, α(G) = p + 2 and κ(G) = 2.
To construct the closure, we start with (a0, bq). Indeed Ta0bq

= X\{xp}
and (ncc) holds for this pair of nonadjacent vertices. Then choose (xi, bq),
i = 1, 2, .., p − 1, as next pairs. It is now easy to check that nc∗0(G) = Kn.
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Definition 2.5. Let p ≥ 2 and q ≥ 1 be integers. Let A := {a0, a1, ..ap},
X := {x1, .., xq}, B := {b0, b1, ..bp} be three distinct sets. A graph G is
in A2(p, q) if it is constructed from A,B,X as follows: {a1, ..ap}, {b1, ..bp}
are independent sets, X ∪ {a1, b1} is a clique, N [a0] = A, N [b0] = B,
G[{a2, .., ap}, {b2, .., bp}] = Kp−1,p−1.

For this graph n = 2(p + 1) + q, α(G) = p + 1 and κ(G) = 2. To construct
the closure, it is necessary to start with (ai, b1) or (bi, a1), i = 2, .., p.

Ainouche and Schiermeyer [4] proved that for a larger spectra of suf-
ficient conditions for Hamiltonian graphs, the corresponding neighborhood
closure nc∗0(G) is complete. In particular, the following results are obtained.

Theorem 2.6. Let G be a 2-connected graph of order n ≥ 3. Then nc∗0(G)
is complete if

(2.6) X ∈ I3(G) ⇒ σX ≥ n + λmin(X).

Note that (2.6) is equivalent to the condition: for any X ∈ I3(G) there exists
u ∈ X such that |N(X\{u})| + d(u) ≥ n.

Theorem 2.7. Let G be a 2-connected graph of order n ≥ 3. Then nc∗0(G)
is complete if

(2.7) X = {x1, x2, x3} ∈ I3(G) ⇒

3
∑

i=1

|N(Xi)| > 2(n − 2).

Theorem 2.8. Let G be a 2-connected graph of order n ≥ 3. Then nc∗0(G)
is complete if

(2.8) ab /∈ E ⇒ 3γab + max {2, λab} > 2(n − 1).

In this paper, we go a step further by relaxing the condition of Theorem
2.6 by one unit. We prove that for a large spectra of conditions satisfied
by a graph G, its 0-dual neighborhood closure is either complete or a max-
imal nonhamiltonian graph. For graphs satisfying these various sufficient
conditions, the hamiltonian problem becomes polynomial.
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3. Main Results

Our first result provides a common generalization of Theorems 2.7 and 2.8.

Theorem 3.1. Let X = {x1, x2, x3} ∈ I3(G). If

(3.1)

3
∑

i=1

|N(Xi)| + max {2, λmax} > 2(n − 1)

then (2.6) holds unless λmin = λmax = 1, σX = n and G is constructed from

3 complete subgraphs Gi, i = 1, 2, 3 and a cycle C6 := x1, a3, x2, a1, x3, a2, x1

as follows: each vertex of {xi, ai+1, ai+2}, where the addition is modulo 3,
is joined to each vertex of Gi. In any case nc∗0(G) is complete if (3.1) holds

for all X ∈ I3(G).

To state our new results, we define the nonhamiltonian graphs G(r, s, t) and
G1 as respectively the graphs (Kr ∪ Ks ∪ Kt) ∨ K2, 1 ≤ r ≤ s ≤ t and
K(n+1

2
) ∨ K(n−1

2
), where K(n+1

2
) = (n+1

2 )K1. Moreover the graph C7 is the

cycle on 7 vertices.

Theorem 3.2. Let G be a 2-connected graph. If

(3.2) X ∈ I3(G) ⇒ σX ≥ n − 1 + λmin(X)

then nc∗0(G) ∈ {C7,Kn, G(r, s, t), G1}.

An immediate consequence of Theorem 3.2 is:

Corollary 3.3. Let G be a 1-tough graph satisfying the condition (3.2).
Then nc∗0(G) ∈ {C7,Kn}.

The next corollary can be considered as an equivalent statement of Theo-
rem 3.2.

Corollary 3.4. Let G be a 2-connected graph of order n ≥ 3 satisfying the

condition (3.2). Then G is hamiltonian if and only if nc∗0(G) ∈ {C7,Kn}
and G is nonhamiltonian if and only if nc∗0(G) ∈ {G(r, s, t), G1}.
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4. Corollaries

It happens that Theorem 3.2 covers a large spectra of new results. In par-
ticular, it generalizes all the 16 following sufficient conditions.

Corollary 4.1. Let G be a 2-connected graph of order n ≥ 3. If

(4.1) X ∈ I3(G) ⇒
3

∑

i=1

|N(Xi)| + λmax > 2(n − 2)

then nc∗0(G) ∈ {C7,Kn, G(r, s, t), G1}.

Under the condition
∑3

i=1 |N(Xi)|+ λmax > 2(n− 1), G is hamiltonian and
nc∗0(G) is complete. This is a new condition.

Corollary 4.2. Let G be a 2-connected graph of order n ≥ 3. Assume

d(x1) ≤ d(x2) ≤ d(x3) for all X = {x1, x2, x3} ∈ I3(G). If

(4.2) γx1x2
+ d(x3) ≥ n − 1

then nc∗0(G) ∈ {Kn, G(r, s, t), G1}.

Under the condition X ∈ I3(G) ⇒ γx1x2
+ d(x3) ≥ n, nc∗0(G) is complete.

This is a new condition.

Corollary 4.3. Let G be a 2-connected graph of order n ≥ 3. If

(4.3) X ∈ I3(G) ⇒

3
∑

i=1

|N(Xi)| + σX > 3(n − 2)

then nc∗0(G) ∈ {C7,Kn, G(r, s, t), G1}.

Under the condition
∑3

i=1 |N(Xi)| + σX > 3(n − 1), G is hamiltonian [2]
and nc∗0(G) is complete [4].

Corollary 4.4. Let G be a 2-connected graph of order n ≥ 3. If

(4.4) X ∈ I3(G) ⇒ |N(X)| + λmax ≥ n − 1

then nc∗0(G) ∈ {Kn, G(r, s, t), G1}.
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Under the condition |N(X)| + λmax ≥ n, nc∗0(G) = Kn. This is a new
condition.

Corollary 4.5. Let G be a 2-connected graph of order n ≥ 3. If

(4.5) X ∈ I3(G) ⇒ |N(X)| + σX > 2(n − 2)

then nc∗0(G) ∈ {Kn, G(r, s, t), G1}.

Under the condition |N(X)| + σX > 2(n − 1), G is hamiltonian [2] and
nc∗0(G) is complete [4].

Corollary 4.6. Let G be a 2-connected graph of order n ≥ 3. If

(4.6) X ∈ I3(G) ⇒

3
∑

i=1

|N(Xi)| ≥ 2(n − 2)

then nc∗0(G) ∈ {C7,Kn, G(r, s, t)}.

Under the condition
∑3

i=1 |N(Xi)| > 2(n − 2), G is hamiltonian [2] and
nc∗0(G) is complete [4]. The condition

∑3
i=1 |N(Xi)| > 2(n − 1) implying

hamiltonicity appeared in [14].

Corollary 4.7. Let G be a 2-connected graph of order n ≥ 3. If

(4.7) ab /∈ E ⇒ 3γab + max {2, λab} > 2(n − 2)

then nc∗0(G) ∈ {Kn, G(r, s, s), G1} with s ∈ {r, r + 1}.

Under the condition 3γab + max{2, λab} > 2(n − 1), G is hamiltonian [12]
and nc∗0(G) is complete [4].

Corollary 4.8. Let G be a 2-connected graph of order n ≥ 3. If

(4.8) ab /∈ E ⇒ γab + δab ≥ n − 1

then nc∗0(G) ∈ {Kn, G(r, s, t), G1}.

Under the condition γab + δab ≥ n, G is hamiltonian [1] and nc∗0(G) is
complete [4].
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Corollary 4.9. Let G be a 2-connected graph of order n ≥ 3. If

(4.9) ab /∈ E ⇒ γab + max {d(a), d(b)} ≥ n − 1

then nc∗0(G) ∈ {Kn, G(r, s, s), G1}.

Under the condition γab + max{d(a), d(b)} ≥ n, G is hamiltonian [12] and
nc∗0(G) is complete [4].

Corollary 4.10. Let G be a 2-connected graph of order n ≥ 3. If

(4.10) ab /∈ E ⇒ 3γab ≥ 2(n − 2)

then nc∗0(G) ∈ {Kn, G(r, r, r)}.

Under the condition 3γab > 2(n − 2), G is hamiltonian [2] and nc∗0(G) is
complete [4]. This is an improvement of the condition 3γab > 2(n− 1) given
in [13] and in [11].

Corollary 4.11. Let G be a 2-connected graph of order n ≥ 3. If

(4.11) X ∈ I3(G) ⇒ 2σX > 3(n − 2)

then nc∗0(G) ∈ {Kn, G(1, s, t), G1} with 3 ≤ s+ t ≤ 4.

Under the condition 2σX > 3(n − 1), G is hamiltonian [6] and nc∗0(G) is
complete [4].

Corollary 4.12. Let G be a 2-connected graph of order n ≥ 3. If

(4.12) ab /∈ E ⇒ 2γab + d(a) + d(b) > 2(n − 2)

then nc∗0(G) ∈ {Kn, G(r, s, s), G1} with s ∈ {r, r + 1}.

Under the condition 2γab + d(a) + d(b) > 2(n− 1), G is hamiltonian [8] and
nc∗0(G) is complete [4].
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Corollary 4.13. Let G be a 2-connected graph of order n ≥ 3. If

(4.13) ab /∈ E ⇒ d(a) + d(b) ≥ n − 1

then nc∗0(G) ∈ {Kn, G1}.

Under the condition d(a) + d(b) ≥ n, G is hamiltonian [16] and nc∗0(G) is
complete [4].

Corollary 4.14. Let G be a 2-connected graph of order n ≥ 3. If

(4.14) ab /∈ E ⇒ γab + δ(G) ≥ n − 1

then nc∗0(G) ∈ {Kn, G(r, r, r), G1}.

Under the condition γab + δ(G) ≥ n, G is hamiltonian [1], [10] and nc∗0(G)
is complete [4].

Corollary 4.15. Let G be a 2-connected graph of order n ≥ 3. If

(4.15) δ(G) ≥
n − 1

2

then nc∗0(G) ∈ {Kn, G1}.

Under the condition δ(G) ≥ n
2 , G is hamiltonian [9] and nc∗0(G) is complete.

Corollary 4.16. Let G be a κ-connected graph, κ ≥ 2, of order n ≥ 3. If

(4.16) ab /∈ E ⇒ γab + κ ≥ n − 1

then nc∗0(G) ∈ {Kn, G1}.

Remark 4.17. All the above results are sharp. Each one of the conditions
(4.1) to (4.16), once relaxed by one unit, is satisfied either by the Petersen
graph or the graph (mK1 ∪ K2) ∨ Km, m ≥ 3.
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Figure 1. Hierarchy among the sufficient conditions considered in this paper.

5. Proofs

P roof of Theorem 3.1.

Case 1. λmax ≥ 2.

If
∑3

i=1 |N(Xi)|+max{2, λmax(X)} > 2(n−1) then 2σX −λX +λmax(X) >
2(n − 1) and hence σX ≥ n + λmin since λmin ≤ λmed.

Case 2. λmax ≤ 1 and λX ≤ 2.

Now
∑3

i=1 |N(Xi)| > 2(n−2) is equivalent to 2σX > 2(n−2)+λX . If λX = 0
then σX = |N(X)| ≥ n− 1, a contradiction since |N(X)| ≤ n− 3. If λX = 1
then σX = |N(X)|+ 1 ≥ n− 1, a contradiction since |N(X)|+ 1 ≤ n− 2. If
λX = 2 then necessarily λmin = 0 and σX ≥ n = n + λmin.
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Case 3. λmin = λmax = 1 (i.e., λX = 3). In this case, we have σX = n
for otherwise (2.6) holds. For this particular configuration, we proved in [4]
that nc∗0(G) is complete.

P roof of Theorem 3.2. Set H := nc∗0(G) and assume H 6= Kn. We
note that if (3.2) holds for G it also holds for H. An independent triple S
whose degree sum σS is minimum will be called a suitable set. Moreover a
pair (a, b) of nonadjacent vertices is critical if αab = δab + 1 and εab = 0.
Consider a suitable set S = {a, b, x} and assume without loss of generality,
λab = λmin(S). By hypothesis we have σS ≥ n+λab−1 ⇔ γab+d(x) ≥ n−1.
By the choice of S we must have d(x) = δab. Thus γab + δab ≥ n− 1. On the
other hand, ab /∈ E(H) ⇒ γab + δab ≤ n − εab − 1. It follows that εab = 0,
γab + δab = n − 1 and hence

(1) (a, b) is critical and Tab satisfies the conditions of Definition 2.1.

For convenience we set A := N(a)\N(b), B := N(b)\N(a), D := N(a)∩N(b)
where |D| = λab, T := Tab and t = |T |. Since (a, b) is critical , T is either a
clique or an independent set. Throughout the proof, x denotes an arbitrary
vertex of T . Also and for any critical pair (y, z) of vertices we denote by
respectively u(y, z) and v(y, z) the vertices u, v mentioned in Definition 2.1
(2.a) if Tyz is a clique.

Claim 5.1. If N(T ) ∩ (A ∪ B) = ∅ then either H = (Kr ∪ Ks ∪ Kt) ∨ K2

or H = K(n+1

2
) ∨ K(n−1

2
).

For all x ∈ T, N(x) ∩ N(a) ∩ N(b) = D since λab ≤ min{λxa, λxb} and
N(T )\T ⊆ D. If T is a clique then D = {u, v} where u := u(a, b), v :=
v(a, b) /∈ T . Moreover λbx = λax = λab and replacing (a, b) by respectively
(b, x) and (a, x) we obtain that A ∪ {a} and B ∪ {b} must be cliques and
{u, v} = {u(b, x), v(b, x)} = {u(a, x), v(a, x)}. Moreover uv ∈ E(H) since
Tuv = ∅ in which case (ncc) holds. By setting {r, s} = {|A| + 1, |B| + 1},
we clearly have H = (Kr ∪ Ks ∪ Kt) ∨ K2.

Suppose next that T is an independent set with t ≥ 2 (T is a clique
if t = 1). Now N(x) = D is true for any x ∈ T since λab ≤ min{λax,λbx}.
Also A = B = ∅ since by the choice of {a, b, x} we cannot have for instance
d(a) > d(x) in which case σ{x1,x2,b} < σ{a,b,x}. To finish the proof in this case

we show that |D| = n−1
2 and D is a clique in H. Since d(x) = |D| = 1+t and

n = 3 + 2t, it follows that |D| = n−1
2 and d(u) ≥ n+1

2 is true for all u ∈ D.
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It is then easy to see that (ncc) holds for every pair {d, d′} of nonadjacent
vertices of D in H. Thus H = K(n+1

2
) ∨ K(n−1

2
) = G1.

Claim 5.2. If N(T ) ∩ (A ∪ B) 6= ∅ then there exists u ∈ A ∪ B such that
NT (u) = T and (u, b) (resp. (u, a)) is critical if u ∈ A (resp. u ∈ B).

Without loss of generality, assume A 6= ∅ and let u ∈ A be a vertex sat-
isfying the condition 2.b of Definition 2.1. This vertex exists since εab = 0.
Considering (u, b) we have:

αub ≤ |{b}|+ |A\ {N(u)}|+ |T\NT (u)| ≤ 1+d(a)−λab−dA(u)+ |T\NT (u)| .

On the other hand αub ≥ δub + εub + 1 by Lemma 2.2 since ub /∈ E(H). It
follows that

(2) dA(u) + λab + δub + εub ≤ d(a) + max (0, λab − 1) .

By the choice of S, d(a) ≤ d(a′) is true for all a′ ∈ A for otherwise we set
S := {a′, b, x} instead of {a, b, x}. Therefore d(a) ≤ δub and (2) leads to a
number of obvious observations:

(3)



















(i) εub = 0 and (u, b) is critical,

(ii) NT (u) = T and NA(u) = ∅,

(iii) λab = λmin(S) = 0 (ie D = ∅),

(iv) d(a′) = d(a) ∀a′ ∈ Tub = A\{u}.

Set A := {a1, a2, .., ar}, B := {b1, .., bs}, T := {x1, .., xt} = Tab where r =
d(a), s = d(b), t ≥ 2. Also assume throughout NT (a1) = T with a1 = u and
set Ai := A\{ai}, Bi := B\{bi} and Xi := T\{xi}.

For the remainder of the proof we may assume that λmin(S) = 0 is true
for any suitable set S.

Claim 5.3. We may assume that (ar, xt) is critical.

Suppose first NT (ai) = T for all i ≥ 1. It is then clear that for all i ≥ 1,
(ai, b) is critical and hence by (3), d(ai) = d(a) and NA(ai) = ∅, that is
A is an independent set. If T is a clique then necessarily a1 = u(a, b),
a2 = v(a, b) and r = 2 = d(a) = d(a1) = d(a2). This leads to the conclusion
that t = 1 and H is disconnected. If T is an independent set then d(a) ≤
d(x) for otherwise setting S := {x1, x2, b} we have a contradiction. On



Extension of Several Sufficient Conditions for ... 35

the other hand d(a1) = d(a) ≥ d(x) since N(a1) ⊇ {a} ∪ T and hence
d(a1) ≥ 1 + t = d(x). Therefore d(a) = d(x). It follows that for all i ≥ 1,
N(ai) = {a} ∪ T and N(xi) = A. Again H is disconnected. Assume for the
remaining arxt /∈ E(H). Clearly {ar, xt, b} is a suitable set since d(ar) = d(a)
and d(xt) = d(x). To prove the claim it suffices to show that λarxt = 0.
Otherwise choose any y ∈ N(ar)∩N(xt). If y ∈ B then λmin({ar, xt, b}) ≥ 1,
a contradiction to our assumption. If y ∈ A then y ∈ A1 = Ta1b and A1 must
be a clique. In that case a = u(a1, b) and xt = v(a1, b), implying N(xt) ⊃ A1,
a contradiction since arxt /∈ E(H). It remains to assume y ∈ T, in which
case T must be a clique. In that case, a1 = u(a, b) and ar = v(a, b), implying
N(ar) ⊃ T, a contradiction since arxt /∈ E(H). The proof of the claim is
now complete.

Claim 5.4. A1 must be a clique.

By contradiction suppose that A1 is an independent set and |A1| ≥ 2, that is
r ≥ 3. By (3.iv), d(ai) = d(a) ∀ai ∈ A1. Also d(ai) = d(a) ≥ max{d(b), d(x)}
for if d(a) < d(b), setting S′ := {a2, a3, x} we get a contradiction since then
σS′ < σS. A similar contradiction is obtained if d(a) < d(x). As a first step,
assume that T is an independent set with t ≥ 2. Then d(a) = d(x) for if
d(a) > d(x) we obtain a contradiction by setting S := {x1, x2, b}. Moreover if
d(b) = d(a) = d(x) then {x1, x2, a} would be suitable with λmin{x1,x2,a} ≥ 1,
a contradiction. Therefore we are left with d(b) < d(a) = d(x). This is a
contradiction to the fact that x1, b ∈ Tarxt and εarxt = 0 by Claim 5.3. As
(a, b) is critical we have to admit that T is a clique. Then we may assume
a1 = u(ar, xt) and set v := v(ar, xt). Now, NA∪B(xt) = {a1, v}. If NB(xt) =
∅ then {ar, xt, b} is suitable and λxtb = 0. It follows that (xt, b) is critical and
Txtb must be a clique since aar is an edge in H[Txtb]. Then we may assume
a1 = u(xt, b), in which case aa1 ∈ E(H) ⇒ ara1 ∈ E(H), a contradiction
to (3.ii). Thus we are left with v ∈ B. Set v := b1. As ai, 1 < i < r and b
are in Tarxt , we conclude that d(a) = d(ai) = d(b) since (ar, xt) is critical.
Thus |A| = |B|, N(ar) = {a} ∪ B and more precisely NB(ar) = B\{b1} for
if arb1 then {ar, xt, b} would be a suitable set with λmin{ar ,xt,b} ≥ 1. This
conclusion must clearly hold for any vertex ai, 1 < i < r. If a1b1 ∈ E then
we recognize that H ∈ A2(p, q) by setting p := r = s and q := t. It is easy
to check that H = Kn (for instance (ncc) applies to each pair (ai, b1), i > 1
and (bj, a1), j > 1). If a1b1 /∈ E then N(a1) = {a} ∪ T. By the choice of S,
d(a) ≤ d(a1) = 1 + t = d(x). Thus d(a) = d(b) = d(x) and a contradiction
arises since {a1, a2, a3} is a suitable set with λmin{a1,a2,a3} ≥ 1. With this
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last contradiction we assume for the remainder of the proof that A1 is a
clique, possibly with one vertex.

Claim 5.5. H = G = C7.

Since Ta1b = A1, we set a := u(a1, b) and v := v(a1, b). Clearly v 6= xt since
arxt /∈ E(H) by Claim 5.3. If v = xj for some j < t then necessarily t ≥ 2
and T must be an independent set. This is true for otherwise T would be
a clique since (a, b) is critical and xjar ∈ E(H) ⇒ xtar ∈ E(H). Therefore
v ∈ B and we may set v = bs. Suppose first that T is an independent
set with t ≥ 2. By Claim 5.3, (ar, xt) is critical. Thus d(x) = d(b) since
x1, b ∈ Tarxt. But now we have a contradiction since {x1, x2, a} is a suitable
set with λmin{x1,x2,a} ≥ 1. To finish the proof, we suppose that T is a clique.
Thus we may assume a1 := u(a, b) and b1 := v(a, b). Clearly v(a, b) 6= bs for
otherwise {x1, ar, b} is a suitable set with λmin{x1,ar ,b} ≥ 1. Since NT (b1) = T
then by symmetry with a1 we obtain that (a, b1) is critical, NB1

(b1) = ∅

and B1 must be a clique. But now Tbsxt
= {a} and hence d(a) = 2 by

(ncc). By symmetry we have d(b) = 2. Furthermore Tbxt
= {b1} and hence

d(b1) = 2 by (ncc). This means that N(b1) = {b, x} with T = {x}. We
have just proved that aa2b2bb1xa1a = C7. The proof of Theorem 3.2 is now
complete.

P roof of the Corollaries 4.1 to 4.16. Set H := nc∗0(G). We first note
that for the graph C7 only the conditions (3.2), (4.1), (4.3), and (4.6) are
satisfied. Moreover H 6= G1 if G satisfies condition (4.6) or (4.10) unless
H = 3K1 ∨ K2 = G(1, 1, 1).The restrictions on r, s, t in G(r, s, t) appearing
in some Corollaries are easily obtained by a simple counting argument. The
remainder of the proof consists on establishing a number of implications
among the conditions (3.2) and (4.1) to (4.16).

Claim 5.6. (4.9) ⇒ (4.2) ⇒ (3.2); (4.16) ⇒ (4.14) ⇒ (4.8) ∧ (4.12),
(4.10) ⇒ (4.7)∧ (4.6), (4.13) ⇒ (4.11)∧ (4.12), (4.12) ⇒ (4.5)∧ (4.7)∧ (4.9)
and (4.15) ⇒ (4.13) ∧ (4.14).

The proofs are straithforward. For the remaining we set X = {x1, x2, x3} if
X ∈ I3(G) and X = {a, b} if X ∈ I2(G).

Claim 5.7. (4.3) ∨ (4.4) ⇒ (4.1) ⇒ (3.2).
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(i)
∑3

i=1 |N(Xi)| + λmax > 2(n − 2) ⇔ 2σX − λX + λmax > 2(n − 2).
This leads to σX ≥ n − 1 + λmin since λX − λmax = λmin + λmed ≥ 2λmin.
Therefore (4.1) ⇒ (3.2).

(ii) By contradiction suppose that (4.3) ; (4.1). Thus
∑3

i=1 |N(Xi)| +
σX > 3(n−2) ⇔ 3σX −λX > 3(n−2) while

∑3
i=1 |N(Xi)|+λmax ≤ 2(n−2)

or equivalently 2σX −λX +λmax ≤ 2(n−2). We obtain 2λmax < λmin+λmed,
a contradiction.

(iii) To prove (4.4) ⇒ (4.1), suppose by contradiction |N(X)| + λmax >
n−2 while

∑3
i=1 |N(Xi)|+λmax ≤ 2(n−2). Then

∑3
i=1 |N(Xi)|−|N(X)| <

n − 2). Expressing
∑3

i=1 |N(Xi)| and |N(X)| in terms of si := |{u /∈ X |
|NX(u)| = i}| (see [4]) we obtain s1 + 2s2 + 2s3 = σX − s3 < n − 2. Thus
σX < n − 2 + λmin since obviously s3 ≤ λmin. This is a contradiction since
|N(X)| + λmax > n − 2 ⇔ σX > n − 2 + λmin + λmed > n − 2 + λmin.

Claim 5.8. (4.5) ∨ (4.8) ∨ (4.7) ∨ (4.6) ⇒ (4.3).

(i) (4.5) ⇒ (4.3). Otherwise suppose |N(X)| + σX > 2(n − 2) while
∑3

i=1 |N(Xi)| + σX ≤ 3(n − 2) ⇔ 3σX ≤ 3(n − 2) + λX . As |N(X)| =
σX − λX + s3(X) we obtain 3s3(X) > λX , a contradiction.

(ii) (4.6) ⇒ (4.3). By contradiction suppose
∑3

i=1 |N(Xi)| ≥ 2(n−2) but
∑3

i=1 |N(Xi)|+σX ≤ 3(n−2). Then equivalently (2s1+3s2+3s3) ≥ 2(n−2)
but (2s1 + 3s2 + 3s3) + (s1 + 2s2 + 3s3) ≤ 3(n − 2). From these inequalities
we obtain s2 = s3 = 0 and hence

∑3
i=1 |N(Xi)| = 2|N(X)| ≥ 2(n − 2) ⇒

|N(X)| ≥ n − 2, a contradiction.

(iii) (4.7) ⇒ (4.3). Suppose first λmin ≥ 1.Then using (4.7) as in (ii), we
get the required implication. Next suppose 0 = λx1x2

≤ 1 ≤ λx2x3
≤ λx3x1

.
Then 2γx1x2

+ 2σx1x2
≥ 2(n − 2), 2γx2x3

+ 2σx2x3
> 2(n − 2) and 2γx3x1 +

2σx3x1
> 2(n−2). Adding these inequalities we get 2

∑3
i=1 |N(Xi)|+2σX ≥

6n − 10, that is
∑3

i=1 |N(Xi)| + σX ≥ 3n − 5. Again we have (4.7) ⇒
(4.3). For the next case, suppose 0 = λx1x2

= λx2x3
≤ 1 ≤ λx3x1

. Now
2
∑3

i=1 |N(Xi)| + 2σX ≥ 6n − 11, that is
∑3

i=1 |N(Xi)| + σX ≥ 3n − 5 and
(4.7) ⇒ (4.3). As a last case suppose 0 = λx1x2

= λx2x3
= λx3x1

. Now
∑3

i=1 |N(Xi)| + σX = 3|N(X)| ≥ 3n − 6. Therefore |N(X)| ≥ n − 2, a
contradiction since obviously |N(X)| ≤ n − 3.

(iv) Using (4.8) for successively (x1, x2), (x2, x3), (x3, x1) and adding
we directly prove the implication (4.8) ⇒ (4.3).

Claim 5.9. (4.11) ⇒ (4.4) ∧ (4.5).
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(i) (4.11) ⇒ (4.4). Otherwise 2σX = 2(s1 + 2s2 + 3s3) > 3(n − 2) but
|N(X)|+λmax = s1+s2+s3+λmax ≤ n−2. Moreover λmax ≥ λX/3 ≥ s2/3+
s3. We reach a contradiction by getting on one hand 2

3s1 + 4
3s2 +2s3 > n−2

and on the other hand s1 + 4
3s2 + 2s3 ≤ n − 2.

(ii) (4.11) ⇒ (4.5). Otherwise 2
3s1+ 4

3s2+2s3 > n−2 but |N(X)|+σX =
2s1 + 3s2 + 4s3 ≤ 2(n − 2), that is s1 + 3

2s2 + 2s3 ≤ n− 2. Again we have a
contradiction.

6. Open Problems

These open problems are motivated by the two following results.

Theorem 6.1 [12]. A 2-connected graph G of order n ≥ 3 and satisfying

the condition

(6.1) X ∈ I3(G) ⇒ σX ≥ n + s3(X)

is hamiltonian.

Obviously (2.7) ⇒ (6.1) since s3(X) ≤ λmin(X).

Theorem 6.2 [5]. Let G be a 2-connected non hamiltonian graph of order

n. If

(6.2) X ∈ I3(G) ⇒ σX ≥ n − 1 + s3(X)

then nc∗0(G) ∈ {G1, G(r, s, t)}.

Note that (3.2) ⇒ (6.2).

Problem 6.3. Let G be a 2-connected graph satisfying (6.1). Then nc∗0(G)
is complete.

Problem 6.3 is suggested by Lemma 2.2 and Theorem 6.1.

Problem 6.4. Let G be a 2-connected graph satisfying (6.2). Then nc∗0(G) ∈
{C7,Kn, G1, G(r, s, t)}, 1 ≤ r ≤ s ≤ t.

Problem 6.4 is suggested by Theorems 3.2 and 6.2.
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