AN ANTI-RAMSEY THEOREM ON EDGE-CUTS

Juan José Montellano-Ballesteros
Instituto de Matemáticas, U.N.A.M.
Ciudad Universitaria, Coyoacán 04510
México, D.F. México
e-mail: juancho@math.unam.mx

Abstract

Let $G=(V(G), E(G))$ be a connected multigraph and let $h(G)$ be the minimum integer k such that for every edge-colouring of G, using exactly k colours, there is at least one edge-cut of G all of whose edges receive different colours. In this note it is proved that if G has at least 2 vertices and has no bridges, then $h(G)=|E(G)|-|V(G)|+2$.

Keywords: anti-Ramsey, totally multicoloured, edge-cuts.
2000 Mathematics Subject Classification: 05C15, 05C40.

In this note we consider finite undirected graphs with multiple edges allowed. Let $G=(V(G), E(G))$ be a connected graph. Given $Z \subseteq E(G), G-Z$ denotes the graph obtained from G by deleting the edges in Z. A set $Z \subseteq$ $E(G)$ will be called an edge-cut if $G-Z$ is a disconnected or a trivial graph, and an edge $e \in E(G)$ will be called a bridge if $\{e\}$ is an edge-cut. A subgraph H of G is said to be a cut-subgraph if $E(H)$ is an edge-cut of G.

By an edge-colouring of G we will understand a function $c: E(G) \rightarrow \mathcal{C}$ where \mathcal{C} is a set of "colours". If $|c[E(G)]|=k$, then c will be called a k-edgecolouring of G. Given an edge-colouring of G, a subgraph H of G is said to be Totally Multicoloured (TMC) if no pair of edges of H have the same colour. Problems concerning TMC subgraphs in edge-colourings of a host graph are called anti-Ramsey problems (see [1, 2, 3, 4, 5, 6, 7]). Typically, the host graph is a complete graph or some graph with a nice structure, and the property which defines the set of TMC subgraphs in consideration is that they are isomorphic to some graph H. When the host graph is a graph with no specific structure, the problem becomes rather intractable unless the
graph H is very special (see [5]) or, as it happens in this note, the property which defines the set of TMC subgraphs involves strongly the structure of the host graph. Given a graph G, the problem of determining the minimum integer $h(G)$ such that every $h(G)$-edge-colouring of G produces at least one TMC cut-subgraph of G, is presented in this note. Observe that if G has only one vertex, there is no edge-cut in G, and in the case that G has a bridge, $h(G)=1$. The remaining cases are considered in the following theorem.

Theorem 1. Let $G=(V(G), E(G))$ be a connected graph of order at least 2 which has no bridges. Then $h(G)=|E(G)|-|V(G)|+2$.

Before presenting the proof, let us introduce some definitions. A k-edgecolouring of G which produces no TMC cut-subgraph will be called a good k-colouring of G. A vertex $x \in V(G)$ will be called a cut-vertex if the graph obtained from G by deleting x and all its incident edges is a disconnected graph. G will be called a block if it is connected and has no cut-vertices. A set P_{1}, \ldots, P_{r} of subgraphs of G will be called a decomposition of G if $E\left(P_{1}\right), \ldots, E\left(P_{r}\right)$ is a partition of $E(G)$, and will be called an ear-decomposition of G if it is a decomposition of G such that: P_{1} is a cycle; for $2 \leq j \leq r, P_{j}$ is a non-trivial path; and for every $2 \leq j \leq r, V\left(P_{j}\right)$ intersects $\bigcup_{i=1}^{j-1} V\left(P_{i}\right)$ in exactly the endpoints of P_{j}. It is known (see [8]) that G is a block different from K_{2} if and only if G has an ear-decomposition.

Proof of Theorem 1. Let G be a connected graph of order at least 2 which has no bridges and let $k(G)=|E(G)|-|V(G)|+1$.

Given a $(k(G)+1)$-edge-colouring of G, let H be a TMC subgraph of G of size $k(G)+1$. Since the graph $G^{\prime}=G-E(H)$ has $\left|V\left(G^{\prime}\right)\right|-2$ edges, it must be disconnected and thus H is a TMC cut-subgraph of G. Therefore $h(G) \leq k(G)+1$.

To finish the proof we only need to show a good $k(G)$-colouring of G. First suppose that G is a block (which is different from K_{2} since G has no bridges) and let P_{1}, \ldots, P_{r} be an ear-decomposition of G. Observe that $|E(G)|=\sum_{i=1}^{r}\left|E\left(P_{i}\right)\right|=\left|V\left(P_{1}\right)\right|+\sum_{i=2}^{r}\left(\left|V\left(P_{i}\right)\right|-1\right)=|V(G)|+(r-1)$ which implies that $r=k(G)$. Let c be a $k(G)$-edge-colouring of G defined as $c(e)=i$ if and only if $e \in E\left(P_{i}\right)$. It is not difficult to see that any edge-cut of G uses at least a pair of edges of some P_{i} and, therefore, c is a good $k(G)$-colouring of G.

If G has cut-vertices, then G can be decomposed in G_{0}, \ldots, G_{t} blocks, none of them isomorphic to K_{2} since G has no bridges. For each $j \leq t$, let $P_{1}^{j}, \ldots, P_{r_{j}}^{j}$ be an ear-decomposition of G_{j}. Let c be an edge-colouring of G defined as $c(e)=(j, i)$ if and only if $e \in E\left(P_{i}^{j}\right)$. As in the previous case, it can be seen that each block G_{j} receives $k\left(G_{j}\right)$ colours and has no TMC cut-subgraphs. Therefore, the number of colours used by c is $\sum_{j=0}^{t} k\left(G_{j}\right)=$ $\sum_{j=0}^{t}\left(\left|E\left(G_{j}\right)\right|-\left|V\left(G_{j}\right)\right|+1\right)=|E(G)|-(\mid V(G)+t)+(t+1)=k(G)$, and, since any edge-cut of G contains an edge-cut of some G_{j}, c is a good $k(G)$-colouring of G.

Acknowledgement

I like to thank the referee for suggesting this shorter and clearer alternative proof of the theorem.

References

[1] N. Alon, On a Conjecture of Erdös, Simonovits and Sós Concerning AntiRamsey Theorems, J. Graph Theory 7 (1983) 91-94.
[2] P. Erdös, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems, in: Infinite and finite sets (Keszthely, Hungary 1973), Colloquia Mathematica Societatis János Bolyai, 10, (North-Holland, Amsterdam, 1975) 633-643.
[3] P. Hell and J.J. Montellano-Ballesteros, Polychromatic Cliques, Discrete Math. 285 (2004) 319-322.
[4] T. Jiang, Edge-colorings with no Large Polychromatic Stars, Graphs and Combinatorics 18 (2002) 303-308.
[5] J.J. Montellano-Ballesteros, On Totally Multicolored Stars, to appear J. Graph Theory.
[6] J.J. Montellano-Ballesteros and V. Neumann-Lara, An Anti-Ramsey Theorem, Combinatorica 22 (2002) 445-449.
[7] M. Simonovits and V.T. Sós, On Restricted Colourings of K_{n}, Combinatorica 4 (1984) 101-110.
[8] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932) 339-362.

