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Abstract

Let G = (V, E) be a graph and let k € Z*. A total k-subdominating
function is a function f: V' — {—1,1} such that for at least k vertices v
of G, the sum of the function values of f in the open neighborhood of
v is positive. The total k-subdomination number of G is the minimum
value of f(V) over all total k-subdominating functions f of G where
f(V) denotes the sum of the function values assigned to the vertices
under f. In this paper, we present a cubic time algorithm to compute
the total k-subdomination number of a tree and also show that the
associated decision problem is NP-complete for general graphs.
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1. INTRODUCTION

Our mathematical model is a finite, simple graph G = (V, E) with vertex
set V and edge set E of order n(G) = |V| and size m(G) = |E|.

A set S is a dominating set of G if every vertex of V — S is adjacent to
some vertex of S. The domination number, denoted by v(G), is defined as
the minimum cardinality of a dominating set of G.

If every vertex of a graph is adjacent to some vertex of a set S, then
S is called a total dominating set of G. For 6(G) > 1, the total domination
number, denoted by 7:(G), is defined as the minimum cardinality of a total
dominating set of G. If §(G) > 3, then, by a result of Lam and Wei [17],
(@) < L.

The open neighborhood of a vertex v is N(v) = {u|uv € E}. The closed
neighborhood of v is N[v] = N(v) U {v}. An opinion function on G is a
function f:V — {—1,+1}; f(v) is the opinion of the vertex v. The weight
w(f) of an opinion function f is the sum of its values, i.e., w(f) = >,y f(v),
and for S C V we define f(S) = >, cq f(v), so w(f) = f(V). For a vertex
v in V, we denote f(N(v)) by f[v] for notational convenience.

For a positive integer k, Cockayne and Mynhardt [4] define a k-subdomi-
nating function of G as an opinion function such that the sum of the function
values, taken over closed neighborhoods of vertices, is at least one for at
least k vertices of G. The minimum weight of such a function is defined
as the k-subdomination number of G and denoted by 7xs(G) (studied in
[3, 4] and elsewhere). In the special case where k = |V|, we have the signed
domination number which is studied in [5, 6, 7, 11, 12, 13, 16, 18, 21, 23]
and elsewhere. When k = [|V|/2], we have the weak majority number (also
called the majority domination number) studied in [1, 2, 19] and elsewhere.
When k = [(|]V]+1)/2], we have the strict majority function studied in [15]
and elsewhere.

An analogous theory for total k-subdominating functions that arise
when “closed” neighborhood in the definition of a k-subdominating function
is changed to “open” neighborhood was introduced in [10]. Here, the vote
of a vertex v is defined as the sum of the opinions in N (v), the open neigh-
borhood of v. When the vote is positive, we say that v votes aye; otherwise,
v votes nay. A total k-subdominating function of a graph G is an opinion
function for which at least k of the vertices vote aye. The weight of an opin-
ion function is the sum of its values. The total k-subdomination number of
G, denoted by s(G), is the minimum weight of a total k-subdominating
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function of G. The weight of a total k-subdominating function is small
when, in our original scenario, the number of individuals with positive opin-
ions needed to produce a global positive decision is small. If f is a total
k-subdominating function of a graph G, we let C¢(G) = {v € V' | f[v] > 1},
and when the graph G is clear from context, we denote C¢(G) simply by
Cy. In the special case where k = |V, the total k-subdomination number
is the signed total domination number v{(G) which is studied in [9, 14, 22].
Specifically, a linear time algorithm to compute the total signed domination
number of a tree appears in [9].

The motivation for studying the total k-subdomination number is rich
and varied from a modeling perspective. For example, by assigning the
values —1 or 41 to the vertices of a graph we can model networks of people
or organizations in which global decisions must be made (e.g. positive or
negative responses or preferences). We assume that each individual has
one vote and that each individual has an initial opinion. We assign +1 to
vertices (individuals) which have a positive opinion and —1 to vertices which
have a negative opinion. We also assume, however, that an individual’s
vote is affected by the opinions of neighboring individuals. In particular,
each individual gives equal weight to the opinions of neighboring individuals
(thus individuals of high degree have greater “influence”). A voter votes
‘aye’ if there are more vertices in its (open) neighborhood with positive
opinion than with negative opinion, otherwise the vote is ‘nay’. We seek
an assignment of opinions that guarantee at least k vertices voting aye. We
call such an assignment of opinions a k-positive assignment. Among all k-
positive assignments of opinions, we are interested primarily in the minimum
number of vertices (individuals) who have a positive opinion. The total k-
subdomination number is the minimum possible sum of all opinions, —1 for
a negative opinion and +1 for a positive opinion, in a k-positive assignment
of opinions. The total k-subdomination number represents, therefore, the
minimum number of individuals which can have positive opinions and in
doing so force at least k£ individuals to vote aye.

In this paper, we present a cubic time algorithm to compute the total
k-subdomination number of a tree and also show that the decision problem

TOTAL SUBDOMINATING FUNCTION (TSF)

INSTANCE: A graph G = (V, E), positive integers ¢, d such that
ged(c,d) =1 and 0 < § <1 and an integer .
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QUESTION: Is there a total subdominating function f such that f(V) <t
and |Cy| > [471]?
is NP-complete by describing a polynomial transformation from the follow-

ing problem:

TOTAL DOMINATING SET, RESTRICTED TO 4-REGULAR
GRAPHS (TDS)

INSTANCE: A 4-regular graph G = (V, E) and a positive integer k < %
QUESTION: Is there a total dominating set of cardinality k or less for G?

2. COMPLEXITY REsSuULT

In this section we will show that TSF is NP-complete by describing a
polynomial transformation from TDS.

We first show that TDS is NP-complete by describing a polynomial
transformation from the decision problem DOMINATING SET.

DOMINATING SET, RESTRICTED TO PLANAR CUBIC
GRAPHS (DS)

INSTANCE: A planar cubic graph G = (V,E) and a positive integer
k<L
QUESTION: Is there a total dominating set of cardinality k or less for G?

Starting with the graph G, take two copies of the vertex set of G (which
will be independent sets), and join a vertex to all vertices in the other
copy that are in its closed neighborhood in G. The resulting graph has
total domination number equal to twice the domination number of G. This
construction transforms a cubic graph into a 4-regular graph. Since DS is
NP-complete [8], TDS is NP-complete.

If 5 =1, then TSF is the NP-complete problem TOTAL SIGNED
DOMINATION (see [9]). Hence, we also assume that 0 < § < 1. For con-
venience, we set ¢ = 5, and denote min{ f(V(G))| f is a total subdominating
function with |C¢| > [¢q|V(G)] by v4(G).

We will need the following lemma.

Lemma 1. Ifc,d, p are positive integers such that 0 < q = § < 1, then there
exist positive integers { and r such that 8 <€ < d*([5]144), r < d*([5]+4)

_ _Dp*r
and q = 57
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Proof. Since ¢ < d, we have ¢ > 1, d > 2 and d—c > 1. Let t =
[£]1 +4. Then dt(d — c¢) > 2t and cdt > 2t. However, 2t > p + 8, whence
dt(d—c) > p+8and edt > p. Let t be the smallest positive integer such that
dt(d —c) > p+ 8 and cdt > p. It follows that ¢ < [B] +4. Let r = cdt — p
and ¢ = ddt — cdt — p. Note that r and £ are both positive integers such that

r, < ddt < d2(f%1 + 4). Furthermore, £ > 8 and ¢ = 2;1:1[ -

Theorem 1. The decision problem TSF is NP-complete.

Proof. Obviously, TSF is in NP.

Let G be a 4-regular graph, p = n(G) and k be an integer such that
k < p/2. By Lemma 1, there exists positive integers r, ¢ such that ¢ > 8
and ¢ = szj:; :LZ. Let H be the graph constructed from G as follows: Take
a complete graph F on p + ¢ vertices, a fixed subset U C V(F') with |U| =
3 and an empty graph L on r vertices, and let H be obtained from the
disjoint union of F', G, and L by joining each vertex of U to every vertex in
V(G)UV/(L). Since n(H) =2p+r+{ < 2(p+ d*([5] +4)), the graph H
can be constructed from G in polynomial time.

We start by showing that if S is a total dominating set of G of cardinality
at most k, then there is a total subdominating function f of H of weight at
most 2k —2p —r — £+ 6 such that |Cf| > gn(H). Define f : V(H) — {—1,1}
by f(v) =1if v € SUU, while f(v) = —1 otherwise.

Let v € V(G). Since S is a total dominating set of G, v is adjacent to
some vertex u € S for which f(u) = 1. Since G is 4-regular and f(U) = 3,
we have f[v] > 1. It is clear that f[w] = 3 for each vertex w € V(L), so that
flv] > 1 for at least p+1r = q(2p+1r+¥¢) = qn(H) vertices. This shows that
f is a total subdominating function of H of weight 2|S| —2p—r — 0+ 6 <
2k —2p —r — { + 6.

For the converse, assume that v,(H) < 2k —2p —r — £+ 6. Among all
the minimum total subdominating functions of H, let f be one that assigns
the value +1 to as many vertices of U as possible. Let P and M be the sets
of vertices in H that are assigned the values +1 and —1, respectively, under
f. Then |P|+ |M|=2p+r+¥, and |P| — |M| = ~,(H). Before proceeding
further we prove three claims.

Claim 1. |P| <k + 3.

Proof. Suppose |P| > k+ 4. Then |M| < 2p+r + ¢ — k — 4, so that
vq(H) = |P| — |M| > 2k — 2p — r — £ + 8, which contradicts the fact that
vo(H) <2k —2p—1r—{+6. &
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Claim 2. f[v] <0 for all v € V(F).

Proof. Suppose there exists a v € V(F) such that f[v] > 1. If v € U,
then, since v dominates H, it follows that 0 = 1 — 1 < flv] + f(v) =
f(V(H)) =~4(H) <2k —2p—7r—{+6, whence k < & < p+F§ <k, which
is a contradiction. Hence v € V(F) — U. Since N(v) = V(F) — {v} and
flv] > 1, it follows that more than half of the vertices of the set V(F') — {v}
have the value 1 assigned to them under f. This implies that |P| > pTM =
g—i—% > £+4. By Claim 1 and the fact that k < &, it follows that |P| < £43,
which is a contradiction. &

As fv] > 1 for at least gn(H) = q(2p+r+{) = p+r vertices, and f[v] < 0 for
all v € V(F) (cf. Claim 2), it follows that f[v] > 1 for all v € V(G) UV (L).

Claim 3. f(U) = 3.

Proof. Suppose that f(u) = —1 for some u € U. If f(v) = —1 for all
v € V(G), then flv] < =3 for all v € V(G), which is a contradiction. It
follows that there exists a v € V(G) such that f(v) = 1. Define g : V(H) —
[=1,1} by g(w) = f(w) if w € V(H) — {u,v}, g(v) = —1 and g(u) = 1,
and consider a vertex x € V(G) U V(L). Note that if x ¢ N(v) or x = v,
then g[z] = f[z] 4+ 2, while if z € N(v), then g[z] = flz]. It follows that
g[v] > 1 for at least ¢ of the vertices of H while the weights of g and f are
equal. Hence g is a total subdominating function of H of weight v,(H) that
assigns the value +1 to more vertices of U than does f, contradicting our
choice of f. &

Let S = PNV(G). Since f[v] > 1 for all v € V(G), it follows that every
v € V(Q) is adjacent to some vertex in S, which shows that S is a total
dominating set of G. Since f(U) = 3, Claim 1 implies that |S| < k, which
completes the proof. ]

3. COMPUTING 74s(T) FOR A TREE T

In this section, we will present a cubic time algorithm to compute the total
signed k-subdomination number of a tree.

The tree T will be rooted and represented by the resulting parent array
parent[l ... n|]. We make use of the well-known fact that the tree T’ can
be constructed recursively from the single vertex Kj using only one rule of
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composition, which combines two trees (G, z) and (H,y), by adding an edge
between z and y and calling x the root of the larger tree F'. We express
this as follows: (F,z) = (G,x) o (H,y). With each such subtree (F,x), we
associate the following data structure:

1. record[z].numvertices: the number of vertices in the subtree (F,x).
2. record|z].degree: degp(z).

3. record[z].sum[f(z),t, k]: the minimum weight of a function f : V(F) —
{—1,1} such that = is assigned f(x), |t| < degp(z) — degp(z) (repre-
senting all possible sums of assignments of —1 and +1 to the vertices of
Nr(x)—Np(z) and [{v| f(Np(v))+t > 1 when v = z and f(Np(v)) > 1
when v # x}| > k, where 1 < k < record[z].numvertices.

Our input consist of the order of the tree T, say n, and the parent ar-
ray of the tree, rooted at a certain vertex. The root of the tree T is
labeled with 1, the vertices on the next level are labeled with 2 through
2 plus the number of vertices on level 2, and so on. Using the parent
array, we compute degp(x) for each vertex z, x = 1,...,n. We then
initialize the variable record[z] for each vertex x, where z = 1,...,n.
Let = be an arbitrary vertex of T. Initially, (F,z) = (Ki,z), whence
record[z].numvertices=1 and record[z].degree=0. Suppose ¢ is an in-
teger such that |t| < degp(x) — degp(x) = degy (), representing all possible
sums of assignments of —1 and +1 to the vertices of Np(x) — Np(z) =
Nr(x). Then t € {—degp(x), —degp(x) + 2,...,degy(z)}. The only way
for f(Np(z))+t =1t > 1, is for t > 1 if degp(x) is odd and for ¢ > 2 if
degp () is even. Thus, we have the following initializations:

Case 1. degp(z) is odd and t € {1,3,...,degp(x)} or degy(z) is even
and t € {2,4,...,degp(x)}. Then record[z].sum[f(z),t,1] =
record[z].sum]|f(z),t,0] = f(x) where f(z) € {—1,1}.

Case 2. degp(z) is odd and t € {—degyp(z), —degp(z) +2,..., -1}
or degp(z) is even and t € {—degy(z), —degr(z) + 2,...,0}. Then
record[z].sum[f(x),t,1] is undefined, and record[z].sum[f(z),t,0]=f(x)
where f(z) € {—1,1}.

Inputting the parent array takes O(n) steps, while computing the de-
gree array from the parent array also takes O(n) steps. Initializing the
array record takes
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0(' 3 degr(x)) = O@m(1)) = O(2(n ~ 1)) = O(n)
x=1

steps. Thus, the overall complexity here is O(n).
Our next result shows that our algorithm is correct.

Theorem 2. Suppose (G,x) and (H,y) are two disjoint rooted subtrees,
and let (F,x) = (G,x) o (H,y). Let s € {—1,1}, t be an integer such that
[t] < degyp(z) — degp(x) with t = degy(x) — degp(x)(mod 2), and k be an
integer with 0 < k < |V(F)|. Then

record[z].sum][s, ¢, k]= min{record[z].sum[s,t + ¢, j| + record[y].sum
[¢',s,k —j]|s" € {-1,1},0 < j < k} = min{record[z].sum][s,t + ¢, j]+
record[y].suml[s’, s,k — j] |¢ € {-1,1}, max{0,k — |[V(H)|} < j <
min{k, |V (G)|}.

Moreover, |t| < degyp(z)—degp(x) if and only if —(degp(z) —degq(z)—1) <
t < degy(z) — degg(z) — 1.

Proof. Suppose f: V(F) — {—1,1} such that
f(V(F)) = record|z].sum][s, t, k].

Let g (respectively, h) be the restriction of f on V(G) (respectively, V(H))
and s* = h(y) = f(y). Note that f(Np(z)) +t = g(Ng(x)) +t + s*
and f(Np(v)) = g(Ng(v)) for all v € V(G) — {z}, while f(Np(y)) =
h(Ng(y)) + s and f(Np(v)) = g(Ng(v)) for all v € V(H) — {y}. Thus,
E<|{v|f(Np(v))+t>1whenv=uzand f(Np(v)) > 1 when v # z}| =
{v]g(Ng(v)) +t+ s* > 1 when v = x and g(Ng(v)) > 1 when v # z}| +
{v|h(Ng(v)) + s > 1 when v =y and h(Ng(v)) > 1 when v # y}|. If j =
{v]g(Ng(v))+t+s* > 1 when v =z and g(Ng(v)) > 1 when v # x}|, then
k—j < |{v|h(Ng(v))+s > 1whenv = yand h(Ng(v)) > 1 whenv # y}|. It
now follows that record[z].sum([s, ¢+ s*, j| + record[y].sum[s*, s, k —j] <
g(V(GQ)) +h(V(H)) = record[z].sum(s, ¢, k]. Hence, min{ record[z].sum
[s,t + &', j] + record[y].sum[s’, s,k — j] | € {-1,1},0 < j < k} <
record[z].sum]s, t, k].
On the other hand, suppose ¢: V(G) — {—1,1} such that

g(V(G)) = record|z].sum|s, t + ¢, j]
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and h: V(H) — {—1,1} such that
h(V(H)) = record[y].sumls’, s, k — j].

Define f : V(F) — {—1,1} by f(v) = g(v) if v € V(G) and f(v)
h(v) for all v € V(H). As before, f(Np(z)) +t = g(Ng(z)) +t +
and f(Np(v)) = g(Ng(v)) for all v € V(G) — {x}, while f(Nr(y))
h(Ng(y)) + s and f(Np(v)) = g(Ng(v)) for all v € V(H) — {y}. Thus,
H{v| f(Np(v)) +¢ > 1 when v = z and f(Np(v)) > 1 when v # z}| =
Hv]g(Ng(v)) + ¢+ s > 1 when v = = and g(Ng(v)) > 1 when v #
z}H 4+ {v|h(Ng(v))+s > 1 when v =y and h(Ng(v)) > 1 when v # y}| >
j + (k —j) = k. Hence, record[z].sum[s,t,k]< f(V(F)) = g(V(Q)) +
h(V(H)) = record[z].sum(s,t + ¢, j| + record[y].sum]s’, s, k — j]. Thus,
record[z].sum](s, ¢, k] < min{record[z].sum [s,t + ¢, j|+record[y].sum
[s',s,k—j] |8 €{-1,1},0 < j < k}.

Since 0 < j < |[V(G)] and j < k, we have 0 < k —j < |V(H)], so
that 0 > j — k > —|V(H)|, whence j > k — |V(H)|. We conclude that
max{0,k — |V(H)|} < j < min{k, |V(G)|}.

Lastly, [t| < degp(z) —degp(x) if and only if — degp(x) +degg(z)+1 <
t < degp(z) — degy(x) — 1, since degp(x) = dege(x) + 1. u

V)
~

At the conclusion of our algorithm, 7" = F', and so t = 0. Clearly, v1s(T") =
min{ record[l].sum(1,0, k],record[1]. sum|[—-1,0,k] }.
We now present the algorithm, omitting the initialization phase.

Algorithm: To compute 7 (T) for a tree T'.

for oldRoot < n downto 2 do
begin
resultRecord.numvertices «— record[oldRoot].numvertices +
record[parent [01dRoot]] .numvertices
resultRecord.degree « record[parent[oldRoot]].degree + 1
range <« degree[parent[oldRoot]] - resultRecord.degree
for newRootValue «— -1 to 1 step 2 do
for newRootExcess «— -range to range step 2 do
for k¥ «— 0 to resultRecord.numvertices do
begin
minimum < oo
startValue «— max(0, k - record[oldRoot] .numvertices)
stopValue <« min(k, record[parent[oldRoot]].numvertices)
for j < startValue to stopValue do
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begin

for oldRootValue « -1 to 1 step 2 do

begin
number <« degree[parent[oldRoot]]

- record[parent [0ldRoot]] .degree - 1
if -number < newRootExcess < number then
begin
summandl < record[parent[oldRoot]].
sum[newRootValue, newRootExcess + oldRootValue, jl
summand? <« record[oldRoot].
sum[oldRootValue, newRootValue, k-j]

temp < summandl + summand?2

end

if (temp < minimum)

then minimum < temp

end
end
resultRecord.sum[newRootValue, newRootExcess, k] « minimum
end
record[parent [o1dRoot]] <« resultRecord
end
for k — 0 to n do

output (k, min(record[1].sum[1, 0, k],record[1].sum[-1, O, k]))

The complexity of the above part of the algorithm, excluding the output

phase, is
< n—oldroot=0

:O<4n2 > degT(v)>

veV(T)

= 0 (4n*2m(T)) = (4n* x 2 x (n — 1))

(n—2)

Q

2 x degy [parent[oldroot]] x n x n x 2)

while the complexity of the output phase is O(n). Thus, the overall com-
plexity of the algorithm is O(n?).
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4. A CuBIC ALGORITHM TO COMPUTE 7s(T) OF A TREE T

A “quadratic” time algorithm to compute the signed k-subdomination num-
ber of a tree appears in [20]. Unfortunately, the initialization phase of the
algorithm is omitted and other aspects of the algorithm are not clear either.
Also, the complexity analysis of the algorithm seems to be incorrect. In this
section, we present a cubic algorithm to compute vxs(7) of a tree T. The
approach here is similar to what we described in the previous section. Here
we have the following data structure, associated with the subtree (F, z).

1. record[z].numvertices: the number of vertices in the subtree (F,z).
2. record[z].degree: degp(x).

3. record[z].sum|f(z),t, k]: the minimum weight of a function f : V/(F') —
{—1, 1} such that z is assigned f(z), |t| < degp(x) —degp(x) (represent-
ing all possible sums of assignments of —1 and +1 to the vertices of
Nr(z) — Np(z) and [{v| f(Np[v]) +¢t > 1 when v = z and f(Np[v]) > 1
when v # z}| > k, where 1 < k < record[z].numvertices.

The initialization phase here proceeds as follows.

Let x be an arbitrary vertex of T'. Initially, (F,x) = (Ki,x), whence
record[z].numvertices=1 and record[z].degree=0. Suppose t is an in-
teger such that |t| < degp(x) — degp(x) = degy (), representing all possible
sums of assignments of —1 and +1 to the vertices of Np(x) — Np(z) =
Nr(z). Then t € {—degyp(z), —degp(z) +2,...,degp(x)}. The only way
for f(Np(z))+ f(z) +t = f(x)+t > 1,is for t > 2 — f(x) if degyp(z) is
odd and for ¢t > 1 — f(x) if degp(x) is even. Thus, we have the following
initializations:

Case 1. degp(z) is odd and t € {2 — f(x),4 — f(x),...,degp(z)} or
degr(x) is even and t € {1 — f(z),3 — f(x),...,degp(z)}. Then
record[z].sum|[f(z),t,1] = record[z].sum|[f(z), ¢, 0] = f(z) where f(x)
e {-1,1}.

Case 2. degp(x) is odd and t € {—degp(z), —degp(x) +2,...,—f(x)
or degp(z) is even and t € {— degp(x), — degp(z)+2,...,—1— f(x)}. Then
record[z].sum|[f(z),t, 1] is undefined, and record|[z]. sum[f( ),t,0] = f(z)
where f(x) € {—1,1}.

A result analogous to Theorem 2 appears in [20].

We are now in a position to state the algorithm, again omitting the pseu-
docode for the initialization phase. Note that the initialization phase of the

—
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algorithm has complexity

0( > degT(v)> =0(2m(T)) = 0(2(n — 1)) = O(n).

veV(T)
Thus, the overall complexity of the algorithm is also O(n?).

Algorithm: To compute (T for a tree T

for oldRoot «— n downto 2 do
begin
resultRecord.numvertices «— record[oldRoot].numvertices +
record[parent [01dRoot]] .numvertices
resultRecord.degree «— record[parent[oldRoot]].degree + 1
range <« degree[parent[0ldRoot]] - resultRecord.degree
for newRootValue «+ -1 to 1 step 2 do
for newRootExcess « -range to range step 2 do
for k¥ <+ 0 to resultRecord.numvertices do
begin
minimum <« 0O
startValue «— max(0, k - record[oldRoot] .numvertices)
stopValue <« min(k, record[parent[oldRoot]].numvertices)
for j «— startValue to stopValue do
begin
for oldRootValue « -1 to 1 step 2 do
begin
number <« degree[parent[0ldRoot]]
- record[parent [o1dRoot]] .degree - 1
if -number < newRootExcess < number then
begin
summandl «— record[parent[0ldRoot]].
sum[newRootValue, newRootExcess + oldRootValue, j]
summand2 <« record[oldRoot].
sum[oldRootValue, newRootValue, k-j]
temp < summandl + summand?2
end
if (temp < minimum)
then minimum < temp
end
end
resultRecord.sum[newRootValue, newRootExcess, k] <« minimum
end
record [parent [o1dRoot]] « resultRecord
end
for k < 0 to n do

output (k, min(record[1].sum[-1, 0, k],record[1].sum[1, O, k1))
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