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Abstract

An infinite class of counterexamples is given to a conjecture of
Dahme et al. [Discuss. Math. Graph Theory, 24 (2004) 423–430.] con-
cerning the minimum size of a dominating vertex set that contains
at least a prescribed proportion of the neighbors of each vertex not
belonging to the set.
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1. Introduction

Let α be a fixed real number, 0 < α ≤ 1. In a graph G = (V,E), an α-domi-
nating set is a vertex subset D ⊆ V such that each v ∈ V \ D is adjacent
to at least α · d(v) vertices of D. (As usual, d(v) denotes the degree of v.)
The α-domination number, denoted γα(G), is the minimum cardinality of
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an α-dominating set in G. For every natural number k, let us define

γα(n, k) = max {γα(G) : |V (G)| = n, G is k-connected}.

For simplicity, we shall write γα(n) for γα(n, 1). Since the α-domination
number of a disconnected graph is just the sum of those of its components,
we disregard the case k = 0 in the present context.

The graph invariant γα was introduced by Dunbar et al., who proved
among other results that γ1/2(n) = bn/2c ([2, Corollary 10]). Dahme, Rau-
tenbach and Volkmann [1] remarked that this can be extended for every
α < 1 to the more general inequality

γα(n) ≤ n ·
(

1− 1
d 1

1−αe

)
(1)

that follows from a result of Cowen and Emerson (Theorem 5.1 in [3]) ; a
self-contained proof is given in Theorem 2.1 of [1].

The authors of [1] noted (Observation 2.4) that the general upper bound
(1) is essentially tight, and formulated the open problem (Conjecture 2.5)
that a substantial improvement to γα(G) ≤ dα ·(n−1)e is possible whenever
G is supposed to be 2-vertex-connected, for all 0 < α < 1.

The goal of the present note is to point out that the conjecture is false
in a general sense. We prove in Theorem 1 that for almost all α, the —
exact or asymptotic — upper bound αn cannot hold, no matter how high
connectivity is assumed. In fact, all the positive exceptions are covered in
Equation (1), namely those values where 1

1−α is an integer.
The 2-connected case is discussed in Section 2, and then in Section 3

we show how to extend the ideas for higher connectivity. Some related
comments and open problems are given in Section 4.

2. The 2-Connected Construction

Let k ≥ 3 be any integer. Consider the following k-regular 2-connected
graph, denoted Gm,k, for each m ≥ 2. Begin with m vertex-disjoint copies
K1, . . . , Km of Kk+1 − e, i.e., one edge deleted from the complete graph of
order k + 1. Let ui, vi denote the two nonadjacent vertices of Ki.
We join these subgraphs in a cyclic manner, with the edges u1v2, u2v3,
. . . , um−1vm, umv1.
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The graphs Gm,k provide 2-connected counterexamples to the conjecture of
[1] for almost all values of α. This fact will be deduced from the following
observation.

Proposition 1. If α > j
k for some 0 ≤ j ≤ k − 2, then

γα(Gm,k) ≥ j+1
k+1 |V (Gm,k)|.

Proof. Let D be an α-dominating set in G = Gm,k. The proof will be
done if we show that each Ki contains at least j + 1 vertices of D. Since G
is k-regular, each vertex v /∈ D should be adjacent to at least dαke ≥ j + 1
vertices of D. Thus, if |V (Ki)∩D| ≤ j, then Ki−D ⊆ {ui, vi} should hold,
which implies that D contains at least min (k − 1, j + 1) = j + 1 vertices
of Ki.

From the above, we deduce

Theorem 1. If α is not of the form 1− 1
` for some natural number `, then

there exists a constant c = c(α) > 0 such that γα(n, 2) > (α+ c) ·n for every
sufficiently large n.

Proof. We consider the infinite class of graphs Gm,k, for m ≥ 2 and
k ≥ 2. The assertion for values α in the open interval

(
k−2

k , k−1
k+1

)
follows

from Proposition 1, taking j = k−2. The values uncovered so far are of the
form α = 2`−1

2`+1 . For them, we observe

2`2 − 1
2`2 + 2`

<
2`− 1
2` + 1

<
2`2

2`2 + 2` + 1
.

Thus, the proof can be completed by Proposition 1 with k = 2`2 + 2` and
j = 2`2 − 1.

3. Higher Connectivity

In this section we show how graphs of arbitrarily high connectivity can be
constructed, to obtain counterexamples to the conjecture of [1]. Our goal
will be to build an infinite class of k-regular k-connected graphs whose α-
domination number is relatively large. Throughout this section, we restrict
our attention to the case of k even.
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The local v → K replacement. Let G be a k-connected graph, and v
a vertex of degree k. We denote the neighbors of v with v1, . . . , vk. The
local replacement deletes v and inserts a subgraph K ∼= Kk+1 − k

2K2, a
maximum matching removed from the complete graph of order k + 1. We
shall adopt the convention that the edges x1x2, x3x4, . . . , xk−1xk have been
removed from Kk+1, and its last vertex is x. We join this graph to G − v
with the k edges xivi, 1 ≤ i ≤ k.

The structure of the graph after this local replacement v → K may
depend on the order how the neighbors of v are labeled. The next assertion
ensures that a suitable labeling exists.

Lemma 1. There is a way to perform the v → K replacement to yield a
k-connected graph, whenever the initial graph G is k-connected.

Proof. By assumption, G−v has connectivity at least k−1 ≥ k/2. Let us
split the ex-neighbors of v into two sets, say A and B, of size |A| = |B| = k/2.
As a consequence of Menger’s theorem, there exist k/2 disjoint paths from
A to B. We label the vertices in A ∪ B in such a way that the ith path
(i = 1, . . . , k/2) joins vertex v2i−1 with v2i ; and then join each xi of K to
vi of G− v.

We are going to show that the graph remains k-connected after this
modification, i.e., that there exist k internally disjoint paths between any
two vertices. This property easily follows by the k-connectivity of G when
at least one of the two vertices involved, say w, is outside K. Indeed, there
are k disjoint paths from w to {x1, . . . , xk}, that correspond to the original
k paths from w to v in G. If the vertex to be reached from w is x, these k
paths directly extend to the w–x paths required. And if it is some xi, say x1,
then k−2 of the paths can be completed with the edges x1x3, x1x4, . . . , x1xk,
one with the path x1xx2, and one ends in x1 itself.

Between x and x1 there are k − 2 paths xxix1 (3 ≤ i ≤ k), the edge
xx1, moreover xx2 completed with the v1–v2 path inside G − v. Similarly,
between x1 and x2 there are k− 1 paths of length 2 inside K, and one path
extending the v1–v2 path of G− v.

Finally, consider two adjacent vertices of K−x, say x1 and x3. They are
joined by an edge, and by k − 3 paths of length 2 inside K. To obtain two
further paths, we complete the v1–v2 path and the v3–v4 path of G− v with
the edge v2v3 and v1v4, respectively. By the assumption on the labeling,
these paths are disjoint.
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We say that a v → K replacement is feasible if it keeps the graph k-
connected.

The G → G+ construction. Starting with any k-regular k-connected
graph G, a graph G+ is obtained by subsequently applying a feasible v → K
replacement for each vertex v of G. By the repeated application of the
previous lemma, this can be done for any G.

Proposition 2. Let G+ be a k-regular k-connected graph obtained by the
G → G+ construction. If α > j

k , where j ≤ k − 2 is an even integer, then
γα(G+) ≥ j+1

k+1 |V (G+)|.

Proof. Let D be an α-dominating set of G+, and consider the local v → K
replacement that has been performed at any vertex v of G. It will suffice to
prove that the set DK := D ∩ V (K) has at least j + 1 elements.

Suppose for a contradiction that |DK | ≤ j. Then x ∈ DK , because
x has no neighbors outside K. Assume next x1 /∈ DK . Since x1 has just
one neighbor outside K, it must have j neighbors in DK . We obtain, in
particular, that x2 /∈ DK . It follows that a nonadjacent vertex pair of K
is either completely inside D or completely outside of D. This leads to the
contradiction that |DK \ {x}| = j − 1 should be even.

4. Concluding Remarks

(1) We have characterized the values α such that γα(n, 2) ≤ αn for all n.
It remains an open problem, however, to determine the exact or asymptotic
value of γα(n, k) as a function of n, for k ≥ 2. General lower bounds can be
obtained from the constructions presented in Sections 2 and 3.

(2) The assertion of Proposition 1 does not hold true for j = k− 1. Indeed,
γα never exceeds the number of vertices minus the independence number, for
any graph. This means, e.g. for m even, that an α-dominating set of Gm,k is
obtained by deleting ui and vi for each i odd, and one vertex of Ki−ui− vi

for each i even. In this way we obtain that the ratio of γα and the number
of vertices in Gm,k is 2k−1

2k+2 < k−1
k for k > 2.

(3) Though stated in [2], it is not true that for α > 0 every α-dominating
set is a dominating set. Indeed, the latter must contain all isolated vertices,
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while the former need not. This is one reason why general upper bounds
like (1) can be formulated without excluding isolated vertices.
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