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Abstract

A sphere of influence graph generated by a finite population of
generated points on the real line by a Poisson process is considered.
We determine the expected number and variance of societies formed
by population of n points in a one-dimensional space.
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1. Introduction

Let X = {X1, X2, . . . , Xn} be the set of n points of Rd chosen randomly
and independently with the same probability. Let

r(Xi) = min
Xj∈X\{Xi}

d(Xi, Xj)

denote the minimum distance between Xi and any other point in X. The
open ball

Bi =
{

X ∈ Rd : d(Xi, X) < ri

}

with center Xi and radius ri is the sphere of influence graph at Xi (i =
1, . . . , n). The random sphere of influence graph SIG(X) has vertex set
X with edges corresponding to pairs of intersecting spheres of influence.
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In other words two vertices, say Xi and Xj , are connected by an edge if and
only if

r(Xi) + r(Xj) > d(Xi, Xj).

The definition of the sphere of influence graph was introduced in [10] by
Touissant. These graphs have been widely investigated recently. It is known
that on the Euclidean plane the sphere of influence graph always has a vertex
of degree at most 18 (see [5], for related results see [1, 7]). Fűredi [4] showed
that the expected number of edges E(n,N ) of the random sphere of influence
graph on n vertices in normed space N is equal to

E(n,N ) = C(d)n + o(n),

where C(d) is a constant depending only on the dimension of the space and

π

8
2d < C(d) <

(
1 +

1
2d

)π

8
2d.

This result was also proved independently by Chalker et al in [2]. In [6]
Hitczenko, Janson and Yukich proved analogue result for variance. They
showed

c(d)n ≤ V ar(n,N ) ≤ C(d)n,

where constants c(d) and C(d) depend only of the space dimension.
Consider a population of n points generated by some random process in

Rd and its resulting sphere of influence graph. We thereby generate clusters
of points that are connected by edges. We call these clusters societies. The
following questions arise:

• Let M denote the number of societies formed. What is the distribution
of M?

• Let N denote the size of society, i.e., the number of individuals (points)
in a society. What is the distribution of N?

• Form the convex hull of each society. What is

• the content (area, volume) covered by a society?
• the fraction of Rd that is contained in some society, as n →∞?

In this paper our main concern is with the random variable M .
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2. One-Dimensional Societies

Let the population consist of n points, Xi, 1 ≤ i ≤ n, generated on the real
line by a Poisson process. Let X(i) denote the corresponding order statistics
and let

Ai = X(i+1) −X(i), 1 ≤ i ≤ n− 1,

denote the lengths of the spacings between adjacent points. Societies are
determined by the relative magnitudes of the spacings. The Ai are identi-
cally distributed. Moreover, the distribution of the vector of ranks of the Ai

is discrete uniform.
Consider now the number of societies M formed by a population of n

points. Clearly, M satisfies 1 ≤ M ≤ bn
2 c. For fixed n, let

Pn(M = m) = Pn(m)

denote the distribution of M. Obviously, P2(1) = P3(1) = 1.
The following technical lemma will be helpful in the proof of the main

theorem.

Lemma 1. Let 2 ≤ m ≤ bn
2 c. If for n ≥ 4

Pn(m) =
n−2∑

i=2

1
4
Pi(1)Pn−i(m− 1)

and for n ≥ 2
Pn(1) = (n− 1)22−n

then

Pn(m) = 22−n

(
n− 1

2m− 1

)

for n ≥ 2.

Proof. Let m = 2. Then

Pn(2) =
n−2∑

i=2

1
4
Pi(1)Pn−i(1) =

n−2∑

i=2

1
4
22−i(i− 1)22−n+i(n− i− 1)

= 22−n
n−3∑

i=1

i(n− i− 2) = 22−n

(
n− 1

3

)
.
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Assume that lemma is true for m ≤ j and let m = j + 1. Then by induction

Pn(j + 1) =
n−2∑

i=2

1
4
Pi(1)Pn−i(j) =

n−2∑

i=2

1
4
22−i(i− 1)22−n+i

(
n− i− 1
2j − 1

)

= 22−n
n−3∑

i=1

i

(
n− i− 2
2j − 1

)
= 22−n

(
n− 1
2j + 1

)

which completes the proof.

Theorem 2. Let En(M) and V arn(M) denote the mean and the variance
of the number of societies formed in a population of n individuals. Then

En(M) =





2 for n = 2,

n + 1
4

for n ≥ 3,

and

V arn(M) =





0 for n = 2, 3,

n− 1
16

for n ≥ 4 .

Proof. Let us assume that An−1 ≥ An−2. Then independently from the
value of An−3, vertices X(n−1) and X(n−2) are connected by an edge. So
by the above assumption the number of societies formed by population of n
points is equal to one with probability

1
2
Pn−1(1).

Now, let An−1 < An−2. In this case the existence of only one society formed
by n points, under condition that first n − 2 points formed one society,
depends on lengths An−3, An−2, An−1. Notice that two vertices X(n−1) and
X(n−2) are not connected by an edge if the following inequality holds

An−1 + An−3 < An−2.

Assume that An−3 + An−2 + An−1 = l. Then the probability of the event

An−2 >
1
2
l,
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i.e., probability that vertices X(n−1) and X(n−2) are not connected by an
edge, is equal to

P
(
An−2 >

1
2
l
)

=
1
8 l2

1
2 l2

=
1
4

.

Thus we obtain that if An−1 < An−2, the number of societies formed by
population of n points is equal to one with probability

1
2
Pn−1(1)− 1

4
Pn−2(1).

Consequently population of n individuals forms one society with the prob-
ability

Pn(1) = Pn−1(1)− 1
4
Pn−2(1).

Solving this recurrence equation and considering boundary conditions we
obtain

(∗) Pn(1) = (n− 1)22−n, n ≥ 2.

Let Bi denote the event that two vertices, say X(i) and X(i+1), are the first
ones that are not connected by an edge in the sphere of influence graph. It
means that the number of societies formed by population of first i vertices
is equal to one, while population of first i+2 vertices form two societies and
the number of societies formed by population of last n− i points is equal to
m− 1, assuming that M = m. Then

Pn(M = m|Bi) = Pn−i(M = m− 1).

Therefore for n ≥ 4

Pn(M = m) =
n−2∑

i=2

Pn(m|Bi)P (Bi)

=
n−2∑

i=2

1
4
Pi(1)Pn−i(m− 1) .

This and (∗) imply (see Lemma 1) that

Pn(m) = 22−n

(
n− 1

2m− 1

)

for 1 ≤ m ≤ bn
2 c.
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Now we can calculate the expected value of number of societies formed by
n points. For n ≥ 3 we have

En(M) =
bn

2
c∑

i=1

iPn(i) =
bn

2
c∑

i=1

22−n

(
n− 1
2i− 1

)
i

= 21−n

bn
2
c∑

i=1

(
n− 1
2i− 1

)
2i = 21−n

(
2n−2 + (n− 1)2n−3

)

=
n + 1

4
.

Consequently

En(M) =





2 for n = 2,

n + 1
4

for n ≥ 3 .

The second moment (for n ≥ 4) is equal to

En(M2) =
bn

2
c∑

i=1

i2Pn(i) =
bn

2
c∑

i=1

22−n

(
n− 1
2i− 1

)
i2

= 2−n

bn
2
c∑

i=1

(
n− 1
2i− 1

)
(2i)2

= 2−n
(
n2n−2 + (n− 1)2n−3 + (n− 1)(n− 2)2n−4

)

=
n(n + 3)

16
.

And thus we obtain

V arn(M) =





0 for n = 2, 3,

n− 1
16

for n ≥ 4 .

Although we formulated the problem for Rd, we provided results only for the
one-dimensional case. Even for simpler model of nearest neighbour graph
(see [11] and [3]), higher-dimensional situations become complex enough to
require simulation.
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