ON A SPHERE OF INFLUENCE GRAPH IN A ONE-DIMENSIONAL SPACE

Zbigniew Palka and Monika Sperling
Department of Algorithmics and Programming Adam Mickiewicz University Umultowska 87, 61-614 Poznań, Poland
e-mail: palka@amu.edu.pl
e-mail: dwight@amu.edu.pl

Abstract

A sphere of influence graph generated by a finite population of generated points on the real line by a Poisson process is considered. We determine the expected number and variance of societies formed by population of n points in a one-dimensional space.

Keywords: cluster, sphere of influence graph.
2000 Mathematics Subject Classification: Primary 60D05;
Secondary 60C05, 05C80.

1. Introduction

Let $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of n points of R^{d} chosen randomly and independently with the same probability. Let

$$
r\left(X_{i}\right)=\min _{X_{j} \in X \backslash\left\{X_{i}\right\}} d\left(X_{i}, X_{j}\right)
$$

denote the minimum distance between X_{i} and any other point in X. The open ball

$$
B_{i}=\left\{X \in R^{d}: d\left(X_{i}, X\right)<r_{i}\right\}
$$

with center X_{i} and radius r_{i} is the sphere of influence graph at $X_{i} \quad(i=$ $1, \ldots, n)$. The random sphere of influence graph $S I G(X)$ has vertex set X with edges corresponding to pairs of intersecting spheres of influence.

In other words two vertices, say X_{i} and X_{j}, are connected by an edge if and only if

$$
r\left(X_{i}\right)+r\left(X_{j}\right)>d\left(X_{i}, X_{j}\right) .
$$

The definition of the sphere of influence graph was introduced in [10] by Touissant. These graphs have been widely investigated recently. It is known that on the Euclidean plane the sphere of influence graph always has a vertex of degree at most 18 (see [5], for related results see [1, 7]). Fűredi [4] showed that the expected number of edges $E(n, \mathcal{N})$ of the random sphere of influence graph on n vertices in normed space \mathcal{N} is equal to

$$
E(n, \mathcal{N})=C(d) n+o(n),
$$

where $C(d)$ is a constant depending only on the dimension of the space and

$$
\frac{\pi}{8} 2^{d}<C(d)<\left(1+\frac{1}{2 d}\right) \frac{\pi}{8} 2^{d}
$$

This result was also proved independently by Chalker et al in [2]. In [6] Hitczenko, Janson and Yukich proved analogue result for variance. They showed

$$
c(d) n \leq \operatorname{Var}(n, \mathcal{N}) \leq C(d) n,
$$

where constants $c(d)$ and $C(d)$ depend only of the space dimension.
Consider a population of n points generated by some random process in R^{d} and its resulting sphere of influence graph. We thereby generate clusters of points that are connected by edges. We call these clusters societies. The following questions arise:

- Let M denote the number of societies formed. What is the distribution of M ?
- Let N denote the size of society, i.e., the number of individuals (points) in a society. What is the distribution of N ?
- Form the convex hull of each society. What is
- the content (area, volume) covered by a society?
- the fraction of R^{d} that is contained in some society, as $n \rightarrow \infty$?

In this paper our main concern is with the random variable M.

2. One-Dimensional Societies

Let the population consist of n points, $X_{i}, 1 \leq i \leq n$, generated on the real line by a Poisson process. Let $X_{(i)}$ denote the corresponding order statistics and let

$$
A_{i}=X_{(i+1)}-X_{(i)}, \quad 1 \leq i \leq n-1,
$$

denote the lengths of the spacings between adjacent points. Societies are determined by the relative magnitudes of the spacings. The A_{i} are identically distributed. Moreover, the distribution of the vector of ranks of the A_{i} is discrete uniform.

Consider now the number of societies M formed by a population of n points. Clearly, M satisfies $1 \leq M \leq\left\lfloor\frac{n}{2}\right\rfloor$. For fixed n, let

$$
P_{n}(M=m)=P_{n}(m)
$$

denote the distribution of M. Obviously, $P_{2}(1)=P_{3}(1)=1$.
The following technical lemma will be helpful in the proof of the main theorem.

Lemma 1. Let $2 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor$. If for $n \geq 4$

$$
P_{n}(m)=\sum_{i=2}^{n-2} \frac{1}{4} P_{i}(1) P_{n-i}(m-1)
$$

and for $n \geq 2$

$$
P_{n}(1)=(n-1) 2^{2-n}
$$

then

$$
P_{n}(m)=2^{2-n}\binom{n-1}{2 m-1}
$$

for $n \geq 2$.
Proof. Let $m=2$. Then

$$
\begin{aligned}
P_{n}(2) & =\sum_{i=2}^{n-2} \frac{1}{4} P_{i}(1) P_{n-i}(1)=\sum_{i=2}^{n-2} \frac{1}{4} 2^{2-i}(i-1) 2^{2-n+i}(n-i-1) \\
& =2^{2-n} \sum_{i=1}^{n-3} i(n-i-2)=2^{2-n}\binom{n-1}{3} .
\end{aligned}
$$

Assume that lemma is true for $m \leq j$ and let $m=j+1$. Then by induction

$$
\begin{aligned}
P_{n}(j+1) & =\sum_{i=2}^{n-2} \frac{1}{4} P_{i}(1) P_{n-i}(j)=\sum_{i=2}^{n-2} \frac{1}{4} 2^{2-i}(i-1) 2^{2-n+i}\binom{n-i-1}{2 j-1} \\
& =2^{2-n} \sum_{i=1}^{n-3} i\binom{n-i-2}{2 j-1}=2^{2-n}\binom{n-1}{2 j+1}
\end{aligned}
$$

which completes the proof.
Theorem 2. Let $E_{n}(M)$ and $\operatorname{Var}_{n}(M)$ denote the mean and the variance of the number of societies formed in a population of n individuals. Then

$$
E_{n}(M)= \begin{cases}2 & \text { for } n=2 \\ \frac{n+1}{4} & \text { for } n \geq 3\end{cases}
$$

and

$$
\operatorname{Var}_{n}(M)= \begin{cases}0 & \text { for } n=2,3 \\ \frac{n-1}{16} & \text { for } n \geq 4\end{cases}
$$

Proof. Let us assume that $A_{n-1} \geq A_{n-2}$. Then independently from the value of A_{n-3}, vertices $X_{(n-1)}$ and $X_{(n-2)}$ are connected by an edge. So by the above assumption the number of societies formed by population of n points is equal to one with probability

$$
\frac{1}{2} P_{n-1}(1) .
$$

Now, let $A_{n-1}<A_{n-2}$. In this case the existence of only one society formed by n points, under condition that first $n-2$ points formed one society, depends on lengths $A_{n-3}, A_{n-2}, A_{n-1}$. Notice that two vertices $X_{(n-1)}$ and $X_{(n-2)}$ are not connected by an edge if the following inequality holds

$$
A_{n-1}+A_{n-3}<A_{n-2} .
$$

Assume that $A_{n-3}+A_{n-2}+A_{n-1}=l$. Then the probability of the event

$$
A_{n-2}>\frac{1}{2} l,
$$

i.e., probability that vertices $X_{(n-1)}$ and $X_{(n-2)}$ are not connected by an edge, is equal to

$$
P\left(A_{n-2}>\frac{1}{2} l\right)=\frac{\frac{1}{8} l^{2}}{\frac{1}{2} l^{2}}=\frac{1}{4} .
$$

Thus we obtain that if $A_{n-1}<A_{n-2}$, the number of societies formed by population of n points is equal to one with probability

$$
\frac{1}{2} P_{n-1}(1)-\frac{1}{4} P_{n-2}(1) .
$$

Consequently population of n individuals forms one society with the probability

$$
P_{n}(1)=P_{n-1}(1)-\frac{1}{4} P_{n-2}(1) .
$$

Solving this recurrence equation and considering boundary conditions we obtain

$$
\begin{equation*}
P_{n}(1)=(n-1) 2^{2-n}, \quad n \geq 2 . \tag{*}
\end{equation*}
$$

Let B_{i} denote the event that two vertices, say $X_{(i)}$ and $X_{(i+1)}$, are the first ones that are not connected by an edge in the sphere of influence graph. It means that the number of societies formed by population of first i vertices is equal to one, while population of first $i+2$ vertices form two societies and the number of societies formed by population of last $n-i$ points is equal to $m-1$, assuming that $M=m$. Then

$$
P_{n}\left(M=m \mid B_{i}\right)=P_{n-i}(M=m-1) .
$$

Therefore for $n \geq 4$

$$
\begin{aligned}
P_{n}(M=m) & =\sum_{i=2}^{n-2} P_{n}\left(m \mid B_{i}\right) P\left(B_{i}\right) \\
& =\sum_{i=2}^{n-2} \frac{1}{4} P_{i}(1) P_{n-i}(m-1) .
\end{aligned}
$$

This and (*) imply (see Lemma 1) that

$$
P_{n}(m)=2^{2-n}\binom{n-1}{2 m-1}
$$

for $1 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Now we can calculate the expected value of number of societies formed by n points. For $n \geq 3$ we have

$$
\begin{aligned}
E_{n}(M) & =\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} i P_{n}(i)=\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} 2^{2-n}\binom{n-1}{2 i-1} i \\
& =2^{1-n} \sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{2 i-1} 2 i=2^{1-n}\left(2^{n-2}+(n-1) 2^{n-3}\right) \\
& =\frac{n+1}{4} .
\end{aligned}
$$

Consequently

$$
E_{n}(M)= \begin{cases}2 & \text { for } n=2 \\ \frac{n+1}{4} & \text { for } n \geq 3\end{cases}
$$

The second moment (for $n \geq 4$) is equal to

$$
\begin{aligned}
E_{n}\left(M^{2}\right) & =\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} i^{2} P_{n}(i)=\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} 2^{2-n}\binom{n-1}{2 i-1} i^{2} \\
& =2^{-n} \sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-1}{2 i-1}(2 i)^{2} \\
& =2^{-n}\left(n 2^{n-2}+(n-1) 2^{n-3}+(n-1)(n-2) 2^{n-4}\right) \\
& =\frac{n(n+3)}{16} .
\end{aligned}
$$

And thus we obtain

$$
\operatorname{Var}_{n}(M)= \begin{cases}0 & \text { for } n=2,3 \\ \frac{n-1}{16} & \text { for } n \geq 4\end{cases}
$$

Although we formulated the problem for R^{d}, we provided results only for the one-dimensional case. Even for simpler model of nearest neighbour graph (see [11] and [3]), higher-dimensional situations become complex enough to require simulation.

References

[1] P. Avis and J. Horton, Remarks on the sphere of influence graph, in: ed. J.E. Goodman, et al. Discrete Geometry and Convexity (New York Academy of Science, New York) 323-327.
[2] T. Chalker, A. Godbole, P. Hitczenko, J. Radcliff and O. Ruehr, On the size of a random sphere of influence graph, Adv. in Appl. Probab. 31 (1999) 596-609.
[3] E.G. Enns, P.F. Ehlers and T. Misi, A cluster problem as defined by nearest neighbours, The Canadian Journal of Statistics 27 (1999) 843-851.
[4] Z. Fúredi, The expected size of a random sphere of influence graph, Intuitive Geometry, Bolyai Math. Soc. 6 (1995) 319-326.
[5] Z. Fúredi and P.A. Loeb, On the best constant on the Besicovitch covering theorem, in: Proc. Coll. Math. Soc. J. Bolyai 63 (1994) 1063-1073.
[6] P. Hitczenko, S. Janson and J.E. Yukich, On the variance of the random sphere of influence graph, Random Struct. Alg. 14 (1999) 139-152.
[7] L. Guibas, J. Pach and M. Sharir, Sphere of influence graphs in higher dimensions, in: Proc. Coll. Math. Soc. J. Bolyai 63 (1994) 131-137.
[8] T.S. Michael and T. Quint, Sphere of influence graphs: a survey, Congr. Numer. 105 (1994) 153-160.
[9] T.S. Michael and T. Quint, Sphere of influence graphs and the L_{∞}-metric, Discrete Appl. Math. 127 (2003) 447-460.
[10] Toussaint, Pattern recognition of geometric complexity, in: Proceedings of the 5th Int. Conference on Pattern Recognition, (1980) 1324-1347.
[11] D. Warren and E. Seneta, Peaks and eulerian numbers in a random sequence, J. Appl. Prob. 33 (1996) 101-114.

