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Abstract
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1. Introduction and Results

G.A. Dirac [2] proved that for a given integer c ≥ 2 any k (1 ≤ k ≤ c) pre-
scribed vertices of a c-connected graph belong to a common cycle. However,
the complete bipartite graph Kc,c+1 shows that this is not true for c+1 pre-
scribed vertices. In [3] we investigated the length of short cycles through k
prescribed vertices with 1 ≤ k ≤ min{c, 3} in a c-connected graph G. From
A.K. Kelmans and M.V. Lomonosov [6] we know that any five vertices of
a polyhedral graph (that is a planar and 3-connected graph) belong to a
common cycle which is best possible.

For given integers k, l with 1 ≤ k ≤ 5, 3 ≤ l and k ≤ l let nk(l) denote
the minimum number n such that there exists a polyhedral graph G of order
n having a subset of k vertices with the property that the length of every
cycle containing those k vertices is at least l. In [3] we proved
(i) n1(l) = 3l − 5 for l ≥ 3,
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(ii) n2(l) = b3l−1
2 c for l ≥ 3,

(iii) n3(l) = b3l−1
2 c for l ≥ 5,

and the following results which will be proven here is a continuation of the
investigation [3] of short cycles through prescribed vertices for a polyhedral
graph.

Theorem 1.

n4(l) =





l if l ∈ {4, 8},
l + 1 if l ∈ {5, 6, 7, 9, 10},
l + 2 if l ∈ {11, 12},
d4l−5

3 e if l ≥ 13 .

Theorem 2.

n5(l) =

{
l if l = 5 or l ≥ 8,

l + 1 if l = 6 or 7.

For integers k, l with 2 ≤ k ≤ 5, 3 ≤ l and k ≤ l denote by tk(l) the
minimum number n such that there exists a plane triangulation T of order
n with certain k vertices such that the length of every cycle containing them
is at least l. Then we have nk(l) ≤ tk(l) since every plane triangulation is
3-connected and thus a polyhedral graph. Notice that even nk(l) = tk(l)
holds in every considered case. If, namely, G is any one of the here or in
[3], respectively, constructed graphs to prove an upper bound for nk(l) with
certain k and l, then we were able to construct a plane triangulation T from
G by adding edges only such that the length of a shortest cycle containing
the prescribed k vertices is at least l.

2. Proofs

For terminology and notation not defined here we refer to [5]. Let G be a
graph and A, B ⊆ V (G). A path P of G with one end-vertex in A and B,
respectively, and with |V (P )∩A| = |V (P )∩B| = 1 is called an A-B-path. If
A or B consists of a single vertex x we write x instead of {x}. We use [x, y]
to denote an x-y-path and, moreover, [x, y) or (x, y) to denote the segments
obtained from [x, y] by removing y or both end-vertices, respectively. A path
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system is a set of internally disjoint paths. For a path system P let [P] and
EV (P) denote the union of all paths and the set of all end-vertices of paths
of P, respectively. For some a ∈ V (G) and B ⊆ V (G) \ {a} a path system
P of a-B-paths is called an a-B-fan if P ∩Q = {a} for different P, Q ∈ P.

We need the following lemma which is proved in [3] in more general
form.

Lemma 1. Let G be a c-connected graph with a ∈ V (G), B ⊆ V (G) \ {a}
and a path system P of c − 1 a-B-paths. Let B′ = B \ EV (P) if this is
not empty, and B′ be an arbitrary nonempty subset of B otherwise. Then
there is a vertex b ∈ B′ and a path system Q of c a-B-paths such that
EV (Q) = EV (P) ∪ {b}, all vertices of B \ {b} are end-vertices of as many
paths of P as of Q, and Q has one more path with end-vertex b than does P.

We define five polyhedral graphs containing the vertices of a prescribed 4-
element set X as follows. Let F1 be the complete graph K4 on X. Let F2

denote the graph which is obtained from a 4-cycle C on X by connecting
an additional vertex a /∈ X with all vertices of C. Let F3 denote the graph
which results from C and two adjacent vertices a, b /∈ X by connecting two
adjacent vertices of C with a and the remaining two vertices of C with b.
The graph F4 is obtained if two non-adjacent vertices a, b /∈ X are connected
with three vertices of a 4-path P on X, respectively, such that every vertex
of X becomes degree 3. Eventually, let F5 denote the cube graph containing
the vertices of X such that no two vertices of X are adjacent.

Lemma 2. Every polyhedral graph G with X = {x1, x2, x3, x4} ⊆ V (G) has
a subgraph H which is a subdivision of some Fi with 1 ≤ i ≤ 5.

Proof of Lemma 2. Lemma 1 implies that G has an x1-x2-path sys-
tem {P1, P2, P3} which contains x3 by planarity of G, i.e., we may as-
sume that x3 ∈ V (P1). Moreover, Lemma 1 yields an x3-V (P2 ∪ P3)-fan
Q = {[x1, x3], [x2, x3], [a, x3]}, where we may assume that a ∈ V (P2). Thus,
G has a path system P = {[x1, x2], [x1, x3], [x2, x3], [a, x1], [a, x2], [a, x3]}.

Suppose first, that x4 is contained in [P]. Considering symmetries we have
to examine three different cases.

Case 1. x4 = a.
Then [P] is a subdivision of F1.
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Case 2. x4 ∈ (x1, x2).
By Lemma 1 there is an x4-V ([P]\(x1, x2))-fanQ = {[x1, x4], [x2, x4], [b, x4]}
where b ∈ V ([P] \ (x1, x2)). Let H denote the subgraph [P ∪Q] \ (x1, x2) of
G, then by symmetries there are following subcases. If b = x3 or b = a then
H is a subdivision of F1 or F2, respectively. If b ∈ (x1, x3) or b ∈ (a, x1)
then H is a subdivision of F4 or F3, respectively.

Case 3. x4 ∈ (a, x1).
Applying Lemma 1 again there is an x4-V ([P]\(a, x1))-fan Q = {[x1, x4], [a,
x4], [b, x4]} where b ∈ V ([P] \ (a, x1)). Let H denote the subgraph [P ∪Q] \
(a, x1) of G. Considering symmetries we have: If b ∈ (x1, x2) or b ∈ [x2, a)
then H is a subdivision of F4 or F1, respectively.

Suppose now, that x4 is not contained in [P] and in any other such path
system of G. Applying Lemma 1 we obtain an x4-V ([P])-fan Q = {[b, x4],
[c, x4], [d, x4]} such that each path of P contains at most one vertex of
EV (Q) and that at most one path of P with end vertex a contains a
vertex of EV (Q). Thereby and since G is planar we may assume that
b ∈ (x1, x2), c ∈ (x2, x3) and d ∈ (x1, x3) which implies that [P ∪ Q] is
a subdivision of F5.

Figure 1 contains further three polyhedral graphs which contain the vertices
of X = {x1, x2, x3, x4} and which are needed to prove Theorem 1.

Figure 1

Proof of Theorem 1. For l = 6, 7, 11 and l ≥ 13 connect a vertex a
with each vertex of a 4-cycle C = x1x2x3x4x1. Put α = b l−5

3 c and suppose
l ≡ r(mod 3) where r ∈ {0, 1, 2}. Subdivide every edge e of C with respect
to r by the number of new vertices given in Table 1. Connect every new
vertex with a and denote the so constructed polyhedral graph by G.
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Table 1

r\e x1x2 x2x3 x3x4 x4x1

0 α + 1 α + 1 α α

1 α + 1 α + 1 α + 1 α

2 α α α α

A simple calculation shows that the length of a shortest cycle in G containing
X = {x1, x2, x3, x4} is l and that the order of G is d4l−5

3 e, in every case.
For l = 4, 5, 8, 9, 10, 12 let G be F1, F4, F5, F6, F7, F8, respectively, with

X ⊆ V (G). In these special cases it is not hard to see that the length of
a shortest cycle of G containing X is l. That together with n4(l) ≤ |G|
completes the proof of the upper bound.

Suppose, now, that G is a polyhedral graph of order n with a 4-element
subset X = {x1, x2, x3, x4} of V (G) such that the length of a shortest cycle
containing X is at least l. Because of Lemma 2 it is sufficient to estimate
for i = 1, . . . , 5 the order of a subgraph H of G which is a subdivision of Fi

with X ⊆ V (Fi) and to deduce a lower bound for n4(l).
i = 1: H has three different cycles C1, C2, C3 passing each vertex of F1.

Every vertex of V (H) \ V (F1) occurs in precisely two of these three cycles.
Thus, 2|H|+ 4 ≥ |C1|+ |C2|+ |C3| ≥ 3l and, consequently, |H| ≥ d3l−4

2 e.
i = 2: H has four cycles C1, . . . , C4 containing all vertices of F2 and one

cycle C5 containing X but no other vertex of F2. Every vertex of V (H) \
V (F2) \ V (C5) occurs in precisely two and every vertex of V (C5) \ V (F2)
in precisely three of the cycles C1, . . . , C4. Thus, 2|H| + |C5| + 4 · 1 + 2 ≥
|C1|+ . . .+ |C4| ≥ 4l and, thereby, 2|H|+ |C5|+6 ≥ 4l. From |C5| ≤ |H|−1
we further obtain |H| ≥ d4l−5

3 e.
i = 3, 4: H has three different cycles C1, C2, C3 passing each vertex of

Fi. Every vertex of V (H)\V (Fi) occurs in precisely two of these three cycles.
Thus, 2|H|+ 6 ≥ |C1|+ |C2|+ |C3| ≥ 3l and, consequently, |H| ≥ d3l−6

2 e.
i = 5: H has six different cycles C1,. . . , C6 passing each vertex of F5.

Every vertex of V (H) \ V (F5) occurs in precisely four of these six cycles.
Thus, 4|H|+ 2 · 8 ≥ |C1|+ . . . + |C6| ≥ 6l and, consequently, |H| ≥ d3l−8

2 e.
Because of |G| ≥ min{|Hi| : 1 ≤ i ≤ 5} and |G| ≥ l we obtain
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n4(l) ≥





l if l ∈ {4, 5, 6, 8},
l + 1 if l ∈ {7, 9, 10},
l + 2 if l ∈ {11, 12},
d4l−5

3 e if l ≥ 13 .

In the special cases l = 5, 6 one can observe that since G has a subgraph H
which is a subdivision of Fi for some i ∈ {1, . . . , 5} the order of G can not
be smaller than 6 or 7, respectively. That proves the lower bound.

Proof of Theorem 2. For l = 5, 6, 7, 8, 9 let Gl be the polyhedral graphs
with X = {x1, . . . , x5} ⊆ V (Gl) given in Figure 2.

Figure 2

For l > 9 let Gl be the polyhedral graph which results from G9 by subdi-
viding x1x2 by l − 9 new vertices and connecting each of them with a /∈ X.
Notice that |Gl| = l if l = 5 or l ≥ 8 and |Gl| = l + 1 if l = 6 or 7. It is not
hard to see that for every l ≥ 5 the length of any cycle of Gl passing all the
vertices of X is at least l.

So, it remains to prove n5(l) > l for l = 6, 7. Let l = 6 and suppose
that there exists a polyhedral graph G of order 6 with V (G) = X ∪ {a}
such that every cycle which contains the vertices of X is a hamiltonian
one. Let C(G) denote the set of all cycles of G. Then we may suppose
that x1x2x3x4x5ax1 ∈ C(G). Clearly, x1x5 /∈ E(G) which implies that x1x3
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or x1x4 ∈ E(G). If x1x3 ∈ E(G) then x2x5 /∈ E(G) because otherwise
x1x2x5x4x3x1 ∈ C(G). Thus, x3x5 ∈ E(G) and also x1x4, x2x4 /∈ E(G)
because otherwise x1x2x3x5x4x1 or x1x2x4x5x3x1 ∈ C(G), respectively.
Thereby, x2 and x4 are connected with a which yields that {x3, a} is a
cutset, a contradiction. So, we have that x1x3 /∈ E(G) and x1x4 ∈ E(G)
which implies that x3x5 /∈ E(G) because otherwise x1x2x3x5x4x1 ∈ C(G).
That implies x2x5 ∈ E(G) and thereby dG(x3) = 2, a contradiction.

Now, let l = 7 and suppose that there exists a polyhedral graph G
of order 7 with V (G) = X ∪ {a, b} such that every cycle which contains
the vertices of X is a hamiltonian one. We may assume that C(G) con-
tains one of the cycles C1 = x1x2x3x4x5abx1, C2 = x1x2x3x4ax5bx1, C3 =
x1x2x3ax4x5bx1.

Case 1. C1 ∈ C(G).
Clearly, x1x5, x1a, x5b /∈ E(G). If x1x3 ∈ E(G) then x2x5, x2a /∈ E(G)
because otherwise x1x2x5x4x3x1 or x1x2ax5x4x3x1 ∈ C(G), respectively.
Thus, x3x5 ∈ E(G) which yields x1x4, x2x4, x4b /∈ E(G) because otherwise
x1x2x3x5x4x1 or x1x2x4x5x3x1 or x1x2x3x5x4bx1 ∈ C(G), respectively.
That implies x2b, x4a ∈ E(G) which means that {x3, a} or {x3, b} would
be a cutset of G, a contradiction. If x1x3 /∈ E(G) we have x1x4 ∈ E(G)
and x3x5, x3a /∈ E(G) because otherwise x1x2x3x5x4x1 or x1x2x3ax5x4x1 ∈
C(G), respectively. That implies x2x5 ∈ E(G) which means by planarity
that x3b /∈ E(G). Thus, dG(x3) = 2, a contradiction.

Case 2. C2 ∈ C(G).
Clearly, x1x5, x4x5 /∈ E(G). Suppose, first, x1x3 ∈ E(G) then x2x5 /∈
E(G) because otherwise x1x2x5ax4x3x1 ∈ C(G). Thereby, x3x5 ∈ E(G)
which implies that x1x4, x2x4 /∈ E(G) because otherwise x1x2x3x5ax4x1 or
x1x2x4ax5x3x1 ∈ C(G), respectively. Thus, x4b ∈ E(G) which yields by pla-
narity x1a, x2a /∈ E(G), i.e., {x3, b} would be a cutset of G, a contradiction.
Suppose, now, x1x3 /∈ E(G) and x1x4 ∈ E(G). Then x2x5, x3x5 /∈ E(G)
because otherwise x1x4x3x2x5bx1 or x1x2x3x5ax4x1 ∈ C(G), respectively.
That yields dG(x5) = 2, a contradiction. Suppose x1x3, x1x4 /∈ E(G)
then x1a ∈ E(G). If, here, x2x5 ∈ E(G) then x3x5 /∈ E(G) because
otherwise x1x2x5x3x4ax1 ∈ C(G). By planarity, x3b, x4b /∈ E(G) which
means that {x2, a} would be a cutset of G, a contradiction. If x2x5 /∈
E(G) then x3x5 ∈ E(G) and, consequently, x2x4 /∈ E(G) because other-
wise x1x2x4x3x5ax1 ∈ C(G). Planarity implies x4b /∈ E(G) and, hence,
dG(x4) = 2, a contradiction.
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Case 3. C3 ∈ C(G).
Clearly, x1x5, x3x4 /∈ E(G). Suppose, first, x1x3 ∈ E(G) then x2x4, x2x5 /∈
E(G) because otherwise x1x3x2x4x5bx1 or x1x3ax4x5x2x1 ∈ C(G), res-
pectively. That implies x1x4 or x4b ∈ E(G). If x1x4 ∈ E(G) then
x2b /∈ E(G) because otherwise x1x3x2bx5x4x1 ∈ C(G). Thereby, x2a ∈
E(G) which implies x3x5, x3b /∈ E(G) because otherwise x1x2x3x5x4x1 or
x1x2x3bx5x4x1 ∈ C(G), respectively. That gives dG(x3) = 2, a contradic-
tion. If x1x4 /∈ E(G) then x4b ∈ E(G) which yields x3x5 /∈ E(G) because
otherwise x1x2x3x5x4bx1 ∈ C(G). Thus, x5a ∈ E(G) and {a, b} would be a
cutset of G, a contradiction.

Suppose, now, x1x3 /∈ E(G) and x1x4 ∈ E(G). Then x3x5, x3b /∈ E(G)
because otherwise x1x2x3x5x4x1 or x1x2x3bx5x4x1 ∈ C(G), respectively.
That implies dG(x3) = 2, a contradiction.

Suppose, eventually, x1x3, x1x4 /∈ E(G) then x1a ∈ E(G). That implies
x3x5 /∈ E(G) because otherwise x1x2x3x5x4ax1 ∈ C(G). Thereby, x3b ∈
E(G) and by planarity x2x4, x2x5 /∈ E(G) which means that {a, b} would
be a cutset of G, a contradiction, and the proof is complete.
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