ON SHORT CYCLES THROUGH PRESCRIBED VERTICES OF A POLYHEDRAL GRAPH

Erhard Hexel
Department of Mathematics
Technische Universität Ilmenau
Postfach 0565, D-98684 Ilmenau, Germany

Abstract

Guaranteed upper bounds on the length of a shortest cycle through $k \leq 5$ prescribed vertices of a polyhedral graph or plane triangulation are proved.

Keywords: polyhedral graph, triangulation, short cycle, prescribed vertices.
2000 Mathematics Subject Classification: 05C38.

1. Introduction and Results

G.A. Dirac [2] proved that for a given integer $c \geq 2$ any $k(1 \leq k \leq c)$ prescribed vertices of a c-connected graph belong to a common cycle. However, the complete bipartite graph $K_{c, c+1}$ shows that this is not true for $c+1$ prescribed vertices. In [3] we investigated the length of short cycles through k prescribed vertices with $1 \leq k \leq \min \{c, 3\}$ in a c-connected graph G. From A.K. Kelmans and M.V. Lomonosov [6] we know that any five vertices of a polyhedral graph (that is a planar and 3-connected graph) belong to a common cycle which is best possible.

For given integers k, l with $1 \leq k \leq 5,3 \leq l$ and $k \leq l$ let $n_{k}(l)$ denote the minimum number n such that there exists a polyhedral graph G of order n having a subset of k vertices with the property that the length of every cycle containing those k vertices is at least l. In [3] we proved
(i) $n_{1}(l)=3 l-5$ for $l \geq 3$,
(ii) $n_{2}(l)=\left\lfloor\frac{3 l-1}{2}\right\rfloor$ for $l \geq 3$,
(iii) $n_{3}(l)=\left\lfloor\frac{3 l-1}{2}\right\rfloor$ for $l \geq 5$,
and the following results which will be proven here is a continuation of the investigation [3] of short cycles through prescribed vertices for a polyhedral graph.

Theorem 1.

$$
n_{4}(l)=\left\{\begin{array}{cl}
l & \text { if } l \in\{4,8\}, \\
l+1 & \text { if } l \in\{5,6,7,9,10\} \\
l+2 & \text { if } l \in\{11,12\} \\
\left\lceil\frac{4 l-5}{3}\right\rceil & \text { if } l \geq 13
\end{array}\right.
$$

Theorem 2.

$$
n_{5}(l)=\left\{\begin{array}{cl}
l & \text { if } l=5 \text { or } l \geq 8 \\
l+1 & \text { if } l=6
\end{array} \text { or } 7 .\right.
$$

For integers k, l with $2 \leq k \leq 5,3 \leq l$ and $k \leq l$ denote by $t_{k}(l)$ the minimum number n such that there exists a plane triangulation T of order n with certain k vertices such that the length of every cycle containing them is at least l. Then we have $n_{k}(l) \leq t_{k}(l)$ since every plane triangulation is 3 -connected and thus a polyhedral graph. Notice that even $n_{k}(l)=t_{k}(l)$ holds in every considered case. If, namely, G is any one of the here or in [3], respectively, constructed graphs to prove an upper bound for $n_{k}(l)$ with certain k and l, then we were able to construct a plane triangulation T from G by adding edges only such that the length of a shortest cycle containing the prescribed k vertices is at least l.

2. Proofs

For terminology and notation not defined here we refer to [5]. Let G be a graph and $A, B \subseteq V(G)$. A path P of G with one end-vertex in A and B, respectively, and with $|V(P) \cap A|=|V(P) \cap B|=1$ is called an A - B-path. If A or B consists of a single vertex x we write x instead of $\{x\}$. We use $[x, y]$ to denote an x - y-path and, moreover, $[x, y)$ or (x, y) to denote the segments obtained from $[x, y]$ by removing y or both end-vertices, respectively. A path
system is a set of internally disjoint paths. For a path system \mathcal{P} let $[\mathcal{P}]$ and $E V(\mathcal{P})$ denote the union of all paths and the set of all end-vertices of paths of \mathcal{P}, respectively. For some $a \in V(G)$ and $B \subseteq V(G) \backslash\{a\}$ a path system \mathcal{P} of a - B-paths is called an a - B-fan if $P \cap Q=\{a\}$ for different $P, Q \in \mathcal{P}$.

We need the following lemma which is proved in [3] in more general form.

Lemma 1. Let G be a c-connected graph with $a \in V(G), B \subseteq V(G) \backslash\{a\}$ and a path system \mathcal{P} of $c-1$ a-B-paths. Let $B^{\prime}=B \backslash E V(\mathcal{P})$ if this is not empty, and B^{\prime} be an arbitrary nonempty subset of B otherwise. Then there is a vertex $b \in B^{\prime}$ and a path system \mathcal{Q} of c a-B-paths such that $E V(\mathcal{Q})=E V(\mathcal{P}) \cup\{b\}$, all vertices of $B \backslash\{b\}$ are end-vertices of as many paths of \mathcal{P} as of \mathcal{Q}, and \mathcal{Q} has one more path with end-vertex b than does \mathcal{P}.

We define five polyhedral graphs containing the vertices of a prescribed 4element set X as follows. Let F_{1} be the complete graph K_{4} on X. Let F_{2} denote the graph which is obtained from a 4 -cycle C on X by connecting an additional vertex $a \notin X$ with all vertices of C. Let F_{3} denote the graph which results from C and two adjacent vertices $a, b \notin X$ by connecting two adjacent vertices of C with a and the remaining two vertices of C with b. The graph F_{4} is obtained if two non-adjacent vertices $a, b \notin X$ are connected with three vertices of a 4 -path P on X, respectively, such that every vertex of X becomes degree 3 . Eventually, let F_{5} denote the cube graph containing the vertices of X such that no two vertices of X are adjacent.

Lemma 2. Every polyhedral graph G with $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V(G)$ has a subgraph H which is a subdivision of some F_{i} with $1 \leq i \leq 5$.

Proof of Lemma 2. Lemma 1 implies that G has an $x_{1}-x_{2}$-path system $\left\{P_{1}, P_{2}, P_{3}\right\}$ which contains x_{3} by planarity of G, i.e., we may assume that $x_{3} \in V\left(P_{1}\right)$. Moreover, Lemma 1 yields an $x_{3}-V\left(P_{2} \cup P_{3}\right)$-fan $\mathcal{Q}=\left\{\left[x_{1}, x_{3}\right],\left[x_{2}, x_{3}\right],\left[a, x_{3}\right]\right\}$, where we may assume that $a \in V\left(P_{2}\right)$. Thus, G has a path system $\mathcal{P}=\left\{\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{2}, x_{3}\right],\left[a, x_{1}\right],\left[a, x_{2}\right],\left[a, x_{3}\right]\right\}$.

Suppose first, that x_{4} is contained in $[\mathcal{P}]$. Considering symmetries we have to examine three different cases.

Case 1. $x_{4}=a$.
Then $[\mathcal{P}]$ is a subdivision of F_{1}.

Case 2. $x_{4} \in\left(x_{1}, x_{2}\right)$.
By Lemma 1 there is an $x_{4}-V\left([\mathcal{P}] \backslash\left(x_{1}, x_{2}\right)\right)$-fan $\mathcal{Q}=\left\{\left[x_{1}, x_{4}\right],\left[x_{2}, x_{4}\right],\left[b, x_{4}\right]\right\}$ where $b \in V\left([\mathcal{P}] \backslash\left(x_{1}, x_{2}\right)\right)$. Let H denote the subgraph $[\mathcal{P} \cup \mathcal{Q}] \backslash\left(x_{1}, x_{2}\right)$ of G, then by symmetries there are following subcases. If $b=x_{3}$ or $b=a$ then H is a subdivision of F_{1} or F_{2}, respectively. If $b \in\left(x_{1}, x_{3}\right)$ or $b \in\left(a, x_{1}\right)$ then H is a subdivision of F_{4} or F_{3}, respectively.

Case 3. $x_{4} \in\left(a, x_{1}\right)$.
Applying Lemma 1 again there is an $x_{4}-V\left([\mathcal{P}] \backslash\left(a, x_{1}\right)\right)$-fan $\mathcal{Q}=\left\{\left[x_{1}, x_{4}\right],[a\right.$, $\left.\left.x_{4}\right],\left[b, x_{4}\right]\right\}$ where $b \in V\left([\mathcal{P}] \backslash\left(a, x_{1}\right)\right)$. Let H denote the subgraph $[\mathcal{P} \cup \mathcal{Q}] \backslash$ $\left(a, x_{1}\right)$ of G. Considering symmetries we have: If $b \in\left(x_{1}, x_{2}\right)$ or $b \in\left[x_{2}, a\right)$ then H is a subdivision of F_{4} or F_{1}, respectively.
Suppose now, that x_{4} is not contained in $[\mathcal{P}]$ and in any other such path system of G. Applying Lemma 1 we obtain an $x_{4}-V([\mathcal{P}])$-fan $\mathcal{Q}=\left\{\left[b, x_{4}\right]\right.$, $\left.\left[c, x_{4}\right],\left[d, x_{4}\right]\right\}$ such that each path of \mathcal{P} contains at most one vertex of $E V(\mathcal{Q})$ and that at most one path of \mathcal{P} with end vertex a contains a vertex of $E V(\mathcal{Q})$. Thereby and since G is planar we may assume that $b \in\left(x_{1}, x_{2}\right), c \in\left(x_{2}, x_{3}\right)$ and $d \in\left(x_{1}, x_{3}\right)$ which implies that $[\mathcal{P} \cup \mathcal{Q}]$ is a subdivision of F_{5}.
Figure 1 contains further three polyhedral graphs which contain the vertices of $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and which are needed to prove Theorem 1 .

Figure 1
Proof of Theorem 1. For $l=6,7,11$ and $l \geq 13$ connect a vertex a with each vertex of a 4 -cycle $C=x_{1} x_{2} x_{3} x_{4} x_{1}$. Put $\alpha=\left\lfloor\frac{l-5}{3}\right\rfloor$ and suppose $l \equiv r(\bmod 3)$ where $r \in\{0,1,2\}$. Subdivide every edge e of C with respect to r by the number of new vertices given in Table 1. Connect every new vertex with a and denote the so constructed polyhedral graph by G.

Table 1

$r \backslash e$	$x_{1} x_{2}$	$x_{2} x_{3}$	$x_{3} x_{4}$	$x_{4} x_{1}$
0	$\alpha+1$	$\alpha+1$	α	α
1	$\alpha+1$	$\alpha+1$	$\alpha+1$	α
2	α	α	α	α

A simple calculation shows that the length of a shortest cycle in G containing $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is l and that the order of G is $\left\lceil\frac{4 l-5}{3}\right\rceil$, in every case.

For $l=4,5,8,9,10,12$ let G be $F_{1}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}$, respectively, with $X \subseteq V(G)$. In these special cases it is not hard to see that the length of a shortest cycle of G containing X is l. That together with $n_{4}(l) \leq|G|$ completes the proof of the upper bound.

Suppose, now, that G is a polyhedral graph of order n with a 4 -element subset $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ of $V(G)$ such that the length of a shortest cycle containing X is at least l. Because of Lemma 2 it is sufficient to estimate for $i=1, \ldots, 5$ the order of a subgraph H of G which is a subdivision of F_{i} with $X \subseteq V\left(F_{i}\right)$ and to deduce a lower bound for $n_{4}(l)$.
$i=1$: H has three different cycles C_{1}, C_{2}, C_{3} passing each vertex of F_{1}. Every vertex of $V(H) \backslash V\left(F_{1}\right)$ occurs in precisely two of these three cycles. Thus, $2|H|+4 \geq\left|C_{1}\right|+\left|C_{2}\right|+\left|C_{3}\right| \geq 3 l$ and, consequently, $|H| \geq\left\lceil\frac{3 l-4}{2}\right\rceil$.
$i=2$: H has four cycles C_{1}, \ldots, C_{4} containing all vertices of F_{2} and one cycle C_{5} containing X but no other vertex of F_{2}. Every vertex of $V(H) \backslash$ $V\left(F_{2}\right) \backslash V\left(C_{5}\right)$ occurs in precisely two and every vertex of $V\left(C_{5}\right) \backslash V\left(F_{2}\right)$ in precisely three of the cycles C_{1}, \ldots, C_{4}. Thus, $2|H|+\left|C_{5}\right|+4 \cdot 1+2 \geq$ $\left|C_{1}\right|+\ldots+\left|C_{4}\right| \geq 4 l$ and, thereby, $2|H|+\left|C_{5}\right|+6 \geq 4 l$. From $\left|C_{5}\right| \leq|H|-1$ we further obtain $|H| \geq\left\lceil\frac{4 l-5}{3}\right\rceil$.
$i=3,4: H$ has three different cycles C_{1}, C_{2}, C_{3} passing each vertex of F_{i}. Every vertex of $V(H) \backslash V\left(F_{i}\right)$ occurs in precisely two of these three cycles. Thus, $2|H|+6 \geq\left|C_{1}\right|+\left|C_{2}\right|+\left|C_{3}\right| \geq 3 l$ and, consequently, $|H| \geq\left\lceil\frac{3 l-6}{2}\right\rceil$.
$i=5: H$ has six different cycles C_{1}, \ldots, C_{6} passing each vertex of F_{5}. Every vertex of $V(H) \backslash V\left(F_{5}\right)$ occurs in precisely four of these six cycles. Thus, $4|H|+2 \cdot 8 \geq\left|C_{1}\right|+\ldots+\left|C_{6}\right| \geq 6 l$ and, consequently, $|H| \geq\left\lceil\frac{3 l-8}{2}\right\rceil$. Because of $|G| \geq \min \left\{\left|H_{i}\right|: 1 \leq i \leq 5\right\}$ and $|G| \geq l$ we obtain

$$
n_{4}(l) \geq\left\{\begin{array}{cl}
l & \text { if } l \in\{4,5,6,8\} \\
l+1 & \text { if } l \in\{7,9,10\} \\
l+2 & \text { if } l \in\{11,12\} \\
\left\lceil\frac{4 l-5}{3}\right\rceil & \text { if } l \geq 13
\end{array}\right.
$$

In the special cases $l=5,6$ one can observe that since G has a subgraph H which is a subdivision of F_{i} for some $i \in\{1, \ldots, 5\}$ the order of G can not be smaller than 6 or 7 , respectively. That proves the lower bound.

Proof of Theorem 2. For $l=5,6,7,8,9$ let G_{l} be the polyhedral graphs with $X=\left\{x_{1}, \ldots, x_{5}\right\} \subseteq V\left(G_{l}\right)$ given in Figure 2.

Figure 2
For $l>9$ let G_{l} be the polyhedral graph which results from G_{9} by subdividing $x_{1} x_{2}$ by $l-9$ new vertices and connecting each of them with $a \notin X$. Notice that $\left|G_{l}\right|=l$ if $l=5$ or $l \geq 8$ and $\left|G_{l}\right|=l+1$ if $l=6$ or 7 . It is not hard to see that for every $l \geq 5$ the length of any cycle of G_{l} passing all the vertices of X is at least l.

So, it remains to prove $n_{5}(l)>l$ for $l=6,7$. Let $l=6$ and suppose that there exists a polyhedral graph G of order 6 with $V(G)=X \cup\{a\}$ such that every cycle which contains the vertices of X is a hamiltonian one. Let $\mathcal{C}(G)$ denote the set of all cycles of G. Then we may suppose that $x_{1} x_{2} x_{3} x_{4} x_{5} a x_{1} \in \mathcal{C}(G)$. Clearly, $x_{1} x_{5} \notin E(G)$ which implies that $x_{1} x_{3}$
or $x_{1} x_{4} \in E(G)$. If $x_{1} x_{3} \in E(G)$ then $x_{2} x_{5} \notin E(G)$ because otherwise $x_{1} x_{2} x_{5} x_{4} x_{3} x_{1} \in \mathcal{C}(G)$. Thus, $x_{3} x_{5} \in E(G)$ and also $x_{1} x_{4}, x_{2} x_{4} \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} x_{1}$ or $x_{1} x_{2} x_{4} x_{5} x_{3} x_{1} \in \mathcal{C}(G)$, respectively. Thereby, x_{2} and x_{4} are connected with a which yields that $\left\{x_{3}, a\right\}$ is a cutset, a contradiction. So, we have that $x_{1} x_{3} \notin E(G)$ and $x_{1} x_{4} \in E(G)$ which implies that $x_{3} x_{5} \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} x_{1} \in \mathcal{C}(G)$. That implies $x_{2} x_{5} \in E(G)$ and thereby $d_{G}\left(x_{3}\right)=2$, a contradiction.

Now, let $l=7$ and suppose that there exists a polyhedral graph G of order 7 with $V(G)=X \cup\{a, b\}$ such that every cycle which contains the vertices of X is a hamiltonian one. We may assume that $\mathcal{C}(G)$ contains one of the cycles $C_{1}=x_{1} x_{2} x_{3} x_{4} x_{5} a b x_{1}, C_{2}=x_{1} x_{2} x_{3} x_{4} a x_{5} b x_{1}, C_{3}=$ $x_{1} x_{2} x_{3} a x_{4} x_{5} b x_{1}$.

Case 1. $C_{1} \in \mathcal{C}(G)$.
Clearly, $x_{1} x_{5}, x_{1} a, x_{5} b \notin E(G)$. If $x_{1} x_{3} \in E(G)$ then $x_{2} x_{5}, x_{2} a \notin E(G)$ because otherwise $x_{1} x_{2} x_{5} x_{4} x_{3} x_{1}$ or $x_{1} x_{2} a x_{5} x_{4} x_{3} x_{1} \in \mathcal{C}(G)$, respectively. Thus, $x_{3} x_{5} \in E(G)$ which yields $x_{1} x_{4}, x_{2} x_{4}, x_{4} b \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} x_{1}$ or $x_{1} x_{2} x_{4} x_{5} x_{3} x_{1}$ or $x_{1} x_{2} x_{3} x_{5} x_{4} b x_{1} \in \mathcal{C}(G)$, respectively. That implies $x_{2} b, x_{4} a \in E(G)$ which means that $\left\{x_{3}, a\right\}$ or $\left\{x_{3}, b\right\}$ would be a cutset of G, a contradiction. If $x_{1} x_{3} \notin E(G)$ we have $x_{1} x_{4} \in E(G)$ and $x_{3} x_{5}, x_{3} a \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} x_{1}$ or $x_{1} x_{2} x_{3} a x_{5} x_{4} x_{1} \in$ $\mathcal{C}(G)$, respectively. That implies $x_{2} x_{5} \in E(G)$ which means by planarity that $x_{3} b \notin E(G)$. Thus, $d_{G}\left(x_{3}\right)=2$, a contradiction.

Case 2. $C_{2} \in \mathcal{C}(G)$.
Clearly, $x_{1} x_{5}, x_{4} x_{5} \notin E(G)$. Suppose, first, $x_{1} x_{3} \in E(G)$ then $x_{2} x_{5} \notin$ $E(G)$ because otherwise $x_{1} x_{2} x_{5} a x_{4} x_{3} x_{1} \in \mathcal{C}(G)$. Thereby, $x_{3} x_{5} \in E(G)$ which implies that $x_{1} x_{4}, x_{2} x_{4} \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} a x_{4} x_{1}$ or $x_{1} x_{2} x_{4} a x_{5} x_{3} x_{1} \in \mathcal{C}(G)$, respectively. Thus, $x_{4} b \in E(G)$ which yields by planarity $x_{1} a, x_{2} a \notin E(G)$, i.e., $\left\{x_{3}, b\right\}$ would be a cutset of G, a contradiction. Suppose, now, $x_{1} x_{3} \notin E(G)$ and $x_{1} x_{4} \in E(G)$. Then $x_{2} x_{5}, x_{3} x_{5} \notin E(G)$ because otherwise $x_{1} x_{4} x_{3} x_{2} x_{5} b x_{1}$ or $x_{1} x_{2} x_{3} x_{5} a x_{4} x_{1} \in \mathcal{C}(G)$, respectively. That yields $d_{G}\left(x_{5}\right)=2$, a contradiction. Suppose $x_{1} x_{3}, x_{1} x_{4} \notin E(G)$ then $x_{1} a \in E(G)$. If, here, $x_{2} x_{5} \in E(G)$ then $x_{3} x_{5} \notin E(G)$ because otherwise $x_{1} x_{2} x_{5} x_{3} x_{4} a x_{1} \in \mathcal{C}(G)$. By planarity, $x_{3} b, x_{4} b \notin E(G)$ which means that $\left\{x_{2}, a\right\}$ would be a cutset of G, a contradiction. If $x_{2} x_{5} \notin$ $E(G)$ then $x_{3} x_{5} \in E(G)$ and, consequently, $x_{2} x_{4} \notin E(G)$ because otherwise $x_{1} x_{2} x_{4} x_{3} x_{5} a x_{1} \in \mathcal{C}(G)$. Planarity implies $x_{4} b \notin E(G)$ and, hence, $d_{G}\left(x_{4}\right)=2$, a contradiction.

Case 3. $C_{3} \in \mathcal{C}(G)$.
Clearly, $x_{1} x_{5}, x_{3} x_{4} \notin E(G)$. Suppose, first, $x_{1} x_{3} \in E(G)$ then $x_{2} x_{4}, x_{2} x_{5} \notin$ $E(G)$ because otherwise $x_{1} x_{3} x_{2} x_{4} x_{5} b x_{1}$ or $x_{1} x_{3} a x_{4} x_{5} x_{2} x_{1} \in \mathcal{C}(G)$, respectively. That implies $x_{1} x_{4}$ or $x_{4} b \in E(G)$. If $x_{1} x_{4} \in E(G)$ then $x_{2} b \notin E(G)$ because otherwise $x_{1} x_{3} x_{2} b x_{5} x_{4} x_{1} \in \mathcal{C}(G)$. Thereby, $x_{2} a \in$ $E(G)$ which implies $x_{3} x_{5}, x_{3} b \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} x_{1}$ or $x_{1} x_{2} x_{3} b x_{5} x_{4} x_{1} \in \mathcal{C}(G)$, respectively. That gives $d_{G}\left(x_{3}\right)=2$, a contradiction. If $x_{1} x_{4} \notin E(G)$ then $x_{4} b \in E(G)$ which yields $x_{3} x_{5} \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} b x_{1} \in \mathcal{C}(G)$. Thus, $x_{5} a \in E(G)$ and $\{a, b\}$ would be a cutset of G, a contradiction.

Suppose, now, $x_{1} x_{3} \notin E(G)$ and $x_{1} x_{4} \in E(G)$. Then $x_{3} x_{5}, x_{3} b \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} x_{1}$ or $x_{1} x_{2} x_{3} b x_{5} x_{4} x_{1} \in \mathcal{C}(G)$, respectively. That implies $d_{G}\left(x_{3}\right)=2$, a contradiction.

Suppose, eventually, $x_{1} x_{3}, x_{1} x_{4} \notin E(G)$ then $x_{1} a \in E(G)$. That implies $x_{3} x_{5} \notin E(G)$ because otherwise $x_{1} x_{2} x_{3} x_{5} x_{4} a x_{1} \in \mathcal{C}(G)$. Thereby, $x_{3} b \in$ $E(G)$ and by planarity $x_{2} x_{4}, x_{2} x_{5} \notin E(G)$ which means that $\{a, b\}$ would be a cutset of G, a contradiction, and the proof is complete.

References

[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155.
[2] G.A. Dirac, 4-crome Graphen und vollständige 4-Graphen, Math. Nachr. 22 (1960) 51-60.
[3] F. Göring, J. Harant, E. Hexel and Zs. Tuza, On short cycles through prescribed vertices of a graph, Discrete Math. 286 (2004) 67-74.
[4] J. Harant, On paths and cycles through specified vertices, Discrete Math. 286 (2004) 95-98.
[5] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).
[6] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322.
[7] T. Sakai, Long paths and cycles through specified vertices in k-connected graphs, Ars Combin. 58 (2001) 33-65.

