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04510, México, D.F. MÉXICO
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Abstract

We call the digraph D an m-coloured digraph if its arcs are coloured
with m colours. A directed path (or a directed cycle) is called monochro-
matic if all of its arcs are coloured alike.

Let D be an m-coloured digraph. A set N ⊆ V (D) is said to
be a kernel by monochromatic paths if it satisfies the following two
conditions:

(i) for every pair of different vertices u, v ∈ N there is no monochro-
matic directed path between them and

(ii) for each vertex x ∈ (V (D)−N) there is a vertex y ∈ N such that
there is an xy-monochromatic directed path.

In this paper is defined the monochromatic path digraph of D, MP (D),
and the inner m-colouration of MP (D). Also it is proved that if D is
an m-coloured digraph without monochromatic directed cycles, then
the number of kernels by monochromatic paths in D is equal to the
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number of kernels by monochromatic paths in the inner m-colouration
of MP (D). A previous result is generalized.
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1. Introduction

For general concepts we refer the reader to [1]. Let D = (V (D), A(D)) be
a digraph, a set K ⊆ V (D) is said to be a kernel if it is both independent
(a vertex in K has no successor in K) and absorbing (a vertex not in K
has a successor in K). This concept was introduced by Von Neumann [13]
and it has found many applications (see for example [1, 2]). Several authors
have been investigating sufficient conditions for the existence of kernels in
digraphs, namely, Von Neumann and Morgenstern [13], Duchet [3], Duchet
and Meyniel [4] and Galeana-Sánchez and Neumann-Lara [5].

In [12] M. Harminc considered the existence of kernels in the line digraph
of a given digraph D, and he proved the following Theorem 1.1.

Theorem 1.1 [12]. The number of kernels of a digraph D is equal to the

number of kernels in its line digraph.

An extension of Theorem 1.1 for semikernels, quasikernels and Grundy func-
tions (concepts closely related to those of kernel) was considered in [6], where
it was proved that: If D is a digraph such that δ−D(x) ≥ 1 for each x ∈ V (D),
then the number of semikernels (quasikernels) of a digraph D is less than or
equal to the number of semikernels (quasikernels) of its line digraph; and the
number of Grundy functions of D is equal to the number of Grundy func-
tions of its line digraph. Another extension of Theorem 1.1 for (k, ℓ)-kernels
(a concept which generalizes that of kernel) was proved in [8].

In [10] edge-coloured digraphs were considered and the following result
similar to Theorem 1.1 was proved:

Let D be an m-coloured digraph without monochromatic directed cycles.
The number of kernels by monochromatic paths of D is equal to the number
of kernels by monochromatic paths in the inner m-colouration of its line
digraph L(D).

The main result of this paper (announced in the abstract) generalizes
Theorem 1.1.



Kernels in Monochromatic Path Digraphs 409

Definition 1.1 [9]. Let D be an m-coloured digraph. A set N ⊆ V (D) is
independent by monochromatic paths if for every pair of different vertices
u, v ∈ N there is no monochromatic directed path between them. The
set N ⊆ V (D) is absorbant by monochromatic paths if for every vertex
x ∈ (V (D) − N), there is a vertex y ∈ N such that there exists an xy-
monochromatic directed path. And N ⊆ V (D) is a kernel by monochromatic
paths if N is both independent and absorbant by monochromatic paths.

This concept was introduced in [9]. The existence of kernels by monochro-
matic paths in edge-coloured digraphs was studied primarily by Sauer, Sands
and Woodrow in [14], where they proved that any 2-coloured digraph has
a kernel by monochromatic paths. Sufficient conditions for the existence of
kernels by monochromatic paths in m-coloured digraphs have been studied
in [7, 9, 11, 15].

The monochromatic path digraph of D, is the digraph MP (D) =
(V (MP (D)), A(MP (D))), whose vertex set is the set of monochromatic
directed paths of D of length at least one; and for h, k ∈ V (MP (D)),
(h, k) ∈ A(MP (D)) if and only if the terminal endpoint of h is the initial
endpoint of k. The inner m-colouration of MP (D) is the edge-colouration
of MP (D) defined as follows: If h is a monochromatic directed path of D
coloured c, then any arc of the form (x, h) in MP (D) is also coloured c.

Throughout this paper we write mdp insted of monochromatic directed
path of length at least one, and kmp instead of kernel by monochromatic
paths. In what follows we denote the mdp h = (x0, x1, . . . , xn), and the
vertex h ∈ V (MP (D)) by the same symbol. If H is a subset of Π = {P |P
is a mdp in D} it is also a set of vertices of MP (D); when we want to
emphasize our interest in H ⊆ Π as a set of vertices of MP (D), we use the
symbol HMP instead of H.

As usual we denote by V (D) (resp. A(D)) the set of vertices (resp.
arcs) of D; a sequence (x0, x1, . . . , xn) such that (xi, xi+1) ∈ A(D) for each
0 ≤ i ≤ n − 1 will be called a directed walk; when xi 6= xj for i 6= j,
{i, j} ⊆ {0, 1, . . . , n}, it is a directed path; and a directed cycle is a directed
walk (x0, x1, . . . , xn, x0) such that xi 6= xj for i 6= j, {i, j} ⊆ {0, 1, . . . , n}.

2. Kernels by Monochromatic Paths

Lemma 2.1. Let D be an m-coloured digraph without monochromatic di-

rected cycles, and let h, k ∈ V (MP (D)), h 6= k. Suppose there exists an
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hk-mdp in the inner m-colouration of MP (D). Then there exists a mdp in

D from the terminal endpoint of h to the initial endpoint of k whose colour

is equal to those of k, and the terminal endpoint of h is different from the

terminal endpoint of k.

P roof. Let (h = t0, t1, . . . , tn = k) be an hk-mdp coloured (say) c in the
inner m-colouration of MP (D). It follows from the definition of MP (D)
that k is coloured c in D, and the terminal endpoint of ti is the initial
endpoint of ti+1 for each i, 0 ≤ i ≤ n − 1. Hence t1 ∪ t2 ∪ · · · ∪ tn−1 is a
monochromatic directed walk coloured c from the terminal endpoint of h to
the initial endpoint of k, moreover t1 ∪ t2 ∪ · · · ∪ tn−1 is a mdp (as D has
no monochromatic directed cycles). Now t1 ∪ t2 ∪ · · · ∪ tn is a mdp in D
coloured c (as D has no monochromatic directed cycles) from the terminal
endpoint of h to the terminal endpoint of k, thus the terminal endpoint of
h is different from the terminal endpoint of k.

Definition 2.1. Let D = (V (D), A(D)) be a digraph. We denote by P(X)
the set of all the subsets of the set X; f :P(V (D)) → P(V (MP (D)))
will denote the function defined as follows: for each Z ⊆ V (D), f(Z) =
{t = (x1, . . . , xn) ∈ V (MP (D))|xn ∈ Z} (the set of monochromatic di-
rected paths of D whose terminal endpoint are in Z). Also we denote
by g:P(V (MP (D))) → P(V (D)) the function defined as follows: for each
H ⊆ V (MP (D)), g(H) = C(H) ∪ D(H) where C(H) = {xm ∈ V (D)|∃ t =
(x0, . . . , xm) ∈ H} (the set of the terminal endpoints of the monochromatic
directed paths which are in H), and D(H) = {x ∈ V (D)|δ−D(x) = 0 and
there is no mdp from x to C(H)}.

Lemma 2.2. Let D be an m-coloured digraph without monochromatic di-

rected cycles. If Z ⊆ V (D) is independent by monochromatic paths in

D, then f(Z)MP is independent by monochromatic paths in the inner m-

colouration of MP (D).

P roof. We proceed by contradiction. Let D and Z ⊆ V (D) be as in the
hypothesis and assume (by contradiction) that f(Z)MP is not independent
by monochromatic paths in the inner m-colouration of MP (D). Thus there
exist h, k ∈ f(Z)MP , h 6= k and an hk-mdp in the inner m-colouration
of MP (D). It follows from Lemma 2.1 that the terminal endpoint of h is
different from the terminal endpoint of k, and there exists a mdp say t from
the terminal endpoint of h to the initial endpoint of k, whose colour is equal
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to those of k; since D has no monochromatic directed cycles it follows that
t ∪ k is a mdp from the terminal endpoint of h to the terminal endpoint of
k, so we have a mdp between two vertices of Z (as {h, k} ⊆ f(Z)TM), a
contradiction.

Theorem 2.1. Let D = (V (D), A(D)) be an m-coloured digraph without

monochromatic directed cycles. The number of kernels by monochromatic

paths of D is equal to the number of kernels by monochromatic paths in the

inner m-colouration of MP (D).

P roof. Denote by K the set of all the kernels by monochromatic paths of
D and by K∗ the set of all the kernels by monochromatic paths of the inner
m-colouration of MP (D).

(1) If Z ∈ K, then f(Z)MP ∈ K∗.

Since Z ∈ K, we have that Z is independent by monochromatic paths and
Lemma 2.2 implies f(Z)MP is independent by monochromatic paths. Now
we will prove that f(Z)MP is absorbant by monochromatic paths. Let k =
(k0, k1, . . . , km) ∈ (V (MP (D)) − f(Z)MP ); it follows from Definition 2.1
that km ∈ (V (D) − Z). Since Z is a kmp of D it follows that there exists
z ∈ Z and a kmz-mdp say h in D. Thus (k, h) is a mdp in the inner m-
colouration of MP (D) with h ∈ f(Z)MP (as z is the terminal endpoint of
h and z ∈ Z).

(2) The function f ′:K → K∗, where f ′ is the restriction of f to K is an
injective function.

Let Z1, Z2 ∈ K, Z1 6= Z2. Let us suppose w.l.o.g. that Z1 − Z2 6= ∅,
and take v ∈ (Z1 − Z2). Since Z2 is a kernel by monochromatic paths
of D, it follows that there exists u ∈ Z2 and a vu-mdp say h, and from
Definition 2.1 we have that h ∈ f(Z2)MP . Since v ∈ Z1, Z1 is independent
by monochromatic paths and h is a vu-mdp, it follows u /∈ Z1 and then
h /∈ f(Z1)MP . We conclude h ∈ (f(Z2)MP −f(Z1)MP ) and thus f(Z1)MP 6=
f(Z2)MP .

(3) If HMP ∈ K∗ then g(HMP ) ∈ K.

(3.1) If HMP ∈ K∗ then g(HMP ) is independent by monochromatic
paths. Suppose HMP ∈ K∗, and let u, v ∈ g(HMP ), u 6= v; we will prove
that there is no uv-mdp in D. We will analyze several cases:

Case 3.1.a. u, v ∈ C(HMP ).
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In this case we proceed by contradiction. Suppose (by contradiction) that
there exists an uv-mdp say ℓ in D. Since u, v ∈ C(HMP ), u (resp. v) is
the terminal endpoint of a mdp h (resp. k) with h, k ∈ HMP ; ℓ /∈ HMP ,
otherwise we get a contradiction as (h, ℓ) ∈ A(MP (D)), h ∈ HMP and
HMP is independent by monochromatic paths. Since HMP is absorbant by
monochromatic paths and ℓ /∈ HMP it follows that there exist p ∈ HMP and
a ℓp-mdp in the inner colouration of MP (D). It follows from Lemma 2.1
that there exists a mdp say s from v (the terminal endpoint of ℓ) to the initial
endpoint of p whose colour is equal to that of p, and the terminal endpoint
of ℓ is different from the terminal endpoint of p; now k 6= p (notice that v is
the terminal endpoint of ℓ and also of k; so k and p have different terminal
endpoints). We conclude that (k, s, p) is a mdp in the inner colouration
of MP (D), with k, p ∈ HMP , a contradiction (as HMP is independent by
monochromatic paths).

Case 3.1.b. u ∈ C(HMP ), v ∈ D(HMP ).

In this case there is no uv-mdp in D, as δ−D(v) = 0.

Case 3.1.c. u ∈ D(HMP ), v ∈ C(HMP ).

Now, there is no uv-mdp in D, as there is no mdp in D from u to C(H).

Case 3.1.d. u, v ∈ D(HMP ).

There is no uv-mdp in D because δ−D(v) = 0 (as v ∈ D(HMP )).

(3.2) If HMP ∈ K∗, then g(HMP ) is absorbant by monochromatic paths.

Let u ∈ (V (D) − g(HMP )). Since u /∈ (C(H)MP ∪ D(HMP )), we have that
there is no mdp in H whose terminal endpoint is u, and at least one of the
two following conditions holds: δ−D(u) > 0 or there exists a mdp from u to
C(HMP ). We will analyze the two possible cases:

Case 1. There is no mdp in H whose terminal endpoint is u and
δ−D(u) > 0.

The hypothesis in this case implies that there exists a mdp say k such
that u is the terminal endpoint of k and k /∈ HMP . Since HMP ∈ K∗, we
have that HMP is absorbant by monochromatic paths, hence there exists
h ∈ HMP and a mdp from k to h in the inner m-colouration of MP (D). It
follows from Lemma 2.1 that there exists a mdp say ℓ in D from the terminal
endpoint of k to the initial endpoint of h whose colour is equal to that of h,
and the terminal endpoint of k is different from the terminal endpoint of h.
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Now ℓ∪h is a mdp of D (as D has no monochromatic directed cycles) from
u to the terminal endpoint of h (say) v, and it follows from Definition 2.1
that v ∈ g(HMP ). So there exists an ug(HMP )-mdp in D.

Case 2. There is no mdp in H whose terminal endpoint is u, and there
exists a mdp from u to C(HMP ).

Clearly in this case we have a mdp from u to g(HMP ) = C(HMP )∪D(HMP ).

(4) The function g′:K∗ → K, where g′ is the restriction of g to K∗, is
an injective function.

Let NMP , QMP ∈ K∗ such that NMP 6= QMP . Let us suppose that
NMP − QMP 6= ∅ (the case QMP − NMP 6= ∅ is completely analogous). Let
h ∈ (NMP −QMP ), and u the terminal endpoint of h, so clearly u ∈ g(NMP ).
Now we will prove u /∈ g(QMP ). Since QMP is absorbant by monochromatic
paths and h /∈ QMP , we have that there exists k ∈ QMP and a hk-mdp in
the inner m-colouration of MP (D), let v ∈ V (D) the terminal endpoint of
k, it follows from Lemma 2.1 that u 6= v and there exists a mdp say ℓ from
the terminal endpoint of h to the initial endpoint of k whose colour is equal
to that of k. Thus ℓ ∪ k is a mdp (notice that D has no monochromatic
directed cycles). Since g(QMP ) is independent by monochromatic paths
and v ∈ g(QMP ) (recall that k ∈ QMP and v is the terminal endpoint of
k), we conclude that u /∈ g(QMP ), u ∈ (g(NMP )− g(QMP )) and g(NMP ) 6=
g(QMP ). Finally notice that it follows from (2) and (4) that: CardK ≤
CardK∗ ≤ CardK and thus CardK = CardK∗.

Remark 2.1. Theorem 2.1 generalizes Theorem 1.1.

Let D be a digraph, |A(D)| = q; consider the q edge-colouration which
assigns to each arc of D one of q colours with and different arcs having
different colours. Clearly a kmp of D is a kernel of D, MP (D) ∼= L(D) (the
line digraph of D) and a kmp of the inner q-colouration of L(D) is a kernel
of L(D) (as there are no mdp of length greather than 1 in L(D)).

Remark 2.2. Let D be an m-coloured digraph and MP (D) its monochro-
matic path digraph; similarly as in the definition of inner colouration of
MP (D), we may define the outer m-colouration of MP (D) as follows: If
h is a mdp of D coloured c, then any arc of the form (h, x) in MP (D)
also is coloured c. However, Theorem 2.1 does not hold if we replace inner
m-colouration of MP (D) to outer m-colouration of MP (D). In Figure 1
we show a digraph D without monochromatic directed cycles with one kmp
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such that the outer m-colouration of MP (D) (Figure 2) has no kmp. Fig-
ure 3 shows a digraph D without monochromatic directed cycles, with no
kmp such that the outer m-colouration of MP (D) (Figure 4) has a kmp.

Remark 2.3. Theorem 2.1 does not hold if we drop the hypothesis that
D has no monochromatic directed cycles. In Figure 5 we show a digraph
D with monochromatic directed cycles, which has two kmps, and the inner
m-colouration of MP (D) (Figure 6) has no kmp. And in Figure 7 we show a
digraph with monochromatic directed cycles, without a kmp, and the inner
m-colouration of MP (D) has one kmp.
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Figure 1. D without monochromatic directed cycles with one kmp.
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Figure 2. The outer m-colouration of MP (D) has no kmp.
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Figure 3. D without monochromatic directed cycles with no kmp.
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Figure 4. The outer m-colouration of MP (D)
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Figure 5. D with monochromatic directed cycles and with two kmp.
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Figure 6. MP (D) The inner m-colouration of MP (D), without a kmp.
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Figure 7. D with monochromatic directed cycles and without a kmp.
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Figure 8. MP (D) The inner m-colouration of MP (D) has one kmp.
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