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Abstract

Let Fn be a given set of unlabeled simple graphs of order n. A
maximal common subgraph of the graphs of the set Fn is a common
subgraph F of order n of each member of Fn, that is not properly
contained in any larger common subgraph of each member of Fn. By
well-known Dirac’s Theorem, the Dirac’s family DFn of the graphs of
order n and minimum degree δ ≥ n

2 has a maximal common subgraph
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containing Cn. In this note we study the problem of determining all
maximal common subgraphs of the Dirac’s family DF2n for n ≥ 2.
Keywords: maximal common subgraph, Dirac’s family, Hamiltonian
cycle.
2000 Mathematics Subject Classification: 05C75, 05C45.

We follow the definitions and terminology of [1]. Let Fn be a given set of
unlabeled simple graphs of order n. A maximal common subgraph of the
graphs of the set Fn is a common subgraph F of order n of each member
of Fn, that is not properly contained in any larger common subgraph of
each member of Fn. By well-known Dirac’s Theorem, the Dirac’s family
DFn of the graphs of order n and minimum degree δ ≥ n

2 has a maximal
common subgraph containing Cn (see [2, 3, 4]). The cycles C4 and C6 are
maximal common subgraphs of DF4 and DF6, respectively. While C4 is
the unique maximal common subgraph of DF4, for DF6 it is easy to check
that there are exactly two maximal common subgraphs: C6 and the graph
F6 (see Figure 1).

Figure 1. Maximal common subgraphs of DF6.

In this note we study the problem of determining maximal common sub-
graphs of the Dirac’s family DF2n for n ≥ 2. It is easy to see that to
determine all maximal common subgraphs of the Dirac’s family DFn, it is
enough to consider the maximal common subgraphs of the family of the
minimal elements of the set DFn partially ordered by the relation ⊆ - to
be a subgraph. The minimal Dirac’s graphs of order 8 are presented in
Figure 2.

Because the complete bipartite graph K4,4 is a member of the set of
minimal elements of DF8, each maximal common subgraph of the set DF8

must be a bipartite graph with a balanced regular two-colouring (i.e., four
vertices in each colour class). Using this fact we determined all maximal
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common subgraphs of the set DF8. They are presented in the Figure 3.
Since they could also be found by a computer search, we omit a detailed
proof here.

G4 G5 G6

G1 G2 G3

G7 G8 G9

G10 G11 G12

Figure 2. Minimal Dirac’s graphs of order 8.
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H1 H2 H3

Figure 3. The maximal common subgraphs of DF8.

The problem of determining the maximal common subgraphs for the Dirac’s
family DFn is much more complicated for odd n and we can mention only
that the wheel W5 = K1 + C4 is the unique maximal common subgraph
of DF5, however for DF7 there are at least 5 different maximal common
subgraphs.

As the main result of this note we will show that the Hamiltonian cycle
Cn is not a maximal common subgraph of the Dirac’s family DFn for n ≥ 7.
The proof is based on the following lemma.

Lemma 1. Let G be a graph of order n ≥ 7 satisfying Dirac’s condition
δ(G) ≥ n/2. Let H = abcd be a 4-cycle in G having a tail T = [x0 · · ·xk] of
maximum length k. Then k = n− 4.

Proof. Without loss of generality, we may assume that xk = a. Assume,
to the contrary, that V \ (H ∪ T ) is nonempty and let y be a vertex in this
set. We will produce a contradiction by finding in G a 4-cycle with a longer
tail.

Denote by xi1 = x1, . . . , xip the neighbours of x0 belonging to T .

Case 1. If there is an i ∈ {1, · · · , p} such that yxi−1 ∈ E, then
[yxi−1 · · ·x0xi · · ·xk] is a tail of length k + 1 for H. Assume henceforth the
contrary. Let now q be the number of neighbours of x0 in the set {b, c, d}.
We have by hypothesis p + q ≥ n/2. Let q1 be the number of neighbours of
y in the set {a, b, c, d}. Note that y has at most k − p neighbours in the set
T \ {a} and at most n− k − 5 neighbours outside the set H ∪ T .

Case 2. If b and d are both neighbours of y, then [x0 · · ·xkb] is a tail
of length k + 1 for the C4 ybcd of G. So we may assume that we have
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q1 ≤ 3. Now we obtain by hypothesis for the number of neighbours of y :
n/2 ≤ deg(y) ≤ (k− p) + q1 + n− k− 5 = n + q1− 5− p ≤ n/2 + q + q1− 5,
so q + q1 ≥ 5 implying q ≥ 2. So x0 must have a neighbour in the set {b, d}.
By symmetry, we may suppose bx0 ∈ E.

Case 3. If a and c are both neighbours of y, then [xk−1 · · ·x0ba] is a tail
of length k+1 for the C4 yadc of G. This being not the case, we have q1 ≤ 2
therefore q = 3 and q1 = 2. Now the three vertices b, c, d are neighbours
of x0, and by symmetry we may suppose yb ∈ E. There remains only two
cases, according to whether a or c is the other neighbour of y in H.

Case 4. If a is neighbour of y, then [x1 · · ·xkyb] is a tail of length k + 1
for the cycle x0bcd.

Case 5. If c is neighbour of y, then [da · · ·x0] is a tail of length k + 1
for the cycle ybx0c.

a = xk

b

c

d

x0

y

xi xi−1 x1

Figure 4. Case 1 in the proof of Lemma 1.

Theorem 2. Let G = (V,E) be a graph of order |V | = n, with n ≥ 7. If G
satisfies the Dirac’s condition δ(G) ≥ n/2, then G contains as a subgraph,
a Hamiltonian cycle with a chord that skips two vertices on this cycle.

Proof. It is straightforward that G contains a cycle C4 as a subgraph. For
a subgraph H of G, a tail of H is any path [x0 · · ·xk] in G sharing with H
only the vertex xk. We now complete the proof of the theorem, by examining
a 4-cycle H = abcd with a tail T of length k = n − 4 ≥ 3. Such a cycle
exists by the previous lemma. We assume, as before, that xk = a and keep
the same notations as in the proof of the lemma. In the same way, we study
and eliminate all possible cases.
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Case 1. If b or d, say b by symmetry, is neighbour of xi−1, with i ∈
{i1, . . . , ip} then the Hamiltonian cycle adcbxi−1 · · ·x0xi · · ·xk has the chord
ab.

If this is not the case, then q ≤ 1 and we must have for the neighbours
of b (or d) : n/2 ≤ deg(b) ≤ n− 1− p ≤ n/2 + q − 1, so q = 1 and we have
cx0 ∈ E, p = n/2 − 1 (hence n is even and n ≥ 8 in this case). Moreover,
xi, 1 ≤ i ≤ k − 1 is neighbour of b if and only if it is also neighbour of d
and i + 1 is not in the set {i2, · · · , ip}. Finally, we must have, for the above
inequalities being equalities, bd ∈ E.

Case 2. If bxk−1 ∈ E, then the Hamiltonian cycle cdabxk−1 · · ·x0c has
the chord cb. Assuming the contrary we must have ax0 ∈ E, otherwise
bxk−1 /∈ E and we must have ax0 ∈ E.

Case 3. If bxk−2 ∈ E, it is a chord of the Hamiltonian cycle cdba · · ·x0c.
At last, we may assume x0xk−1 ∈ E, otherwise bxk−2 /∈ E. Since n ≥ 8,
b (as well as d) must have a neighbour xi with 1 ≤ i ≤ k − 3, forming a
4-cycle bxidc with the tail [xi+1 · · · ax0 · · ·xi] or the tail [xi−1 · · ·x0a · · ·xi].
In these configurations, xi+1 or xi−1 play the role of x0, and c keeps its own
one. Therefore, after eliminating the first case, we obtain that both xi−1c
and xi+1c are in E. Now the cycle bcda has the tail xk−1 · · ·x0c, in which
vertices a and c exchange their places. Therefore, it remains to consider only
the case when both axi+1 and axi−1 are in E. In this case the Hamiltonian
cycle xi+1 · · ·xk−1x0 · · ·xibadcxi+1 has the chord axi+1.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan,
London; Elsevier, New York, 1976).

[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3)
2 (1952) 69–81.
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