Discussiones Mathematicae Graph Theory 25 (2005) 385–390

A NOTE ON MAXIMAL COMMON SUBGRAPHS OF THE DIRAC'S FAMILY OF GRAPHS

JOZEF BUCKO*

Peter Mihók*

Technical University of Košice Faculty of Economics Němcovej 32, 040 01 Košice, Slovakia

> e-mail: peter.mihok@tuke.sk e-mail: jozef.bucko@tuke.sk

JEAN-FRANÇOIS SACLÉ

LRI, Bât. 490, Université de Paris-Sud 91405 Orsay, France

e-mail: sacle@lri.fr

AND

MARIUSZ WOŹNIAK

AGH University of Science and Technology Department of Applied Mathematics Al. Mickiewicza 30, 30–059 Kraków, Poland

e-mail: mwozniak@agh.edu.pl

Abstract

Let \mathcal{F}^n be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set \mathcal{F}^n is a common subgraph F of order n of each member of \mathcal{F}^n , that is not properly contained in any larger common subgraph of each member of \mathcal{F}^n . By well-known Dirac's Theorem, the Dirac's family \mathcal{DF}^n of the graphs of order n and minimum degree $\delta \geq \frac{n}{2}$ has a maximal common subgraph

^{*}Research supported by Slovak VEGA Grant 2/4134/24.

containing C_n . In this note we study the problem of determining all maximal common subgraphs of the Dirac's family \mathcal{DF}^{2n} for $n \geq 2$. **Keywords:** maximal common subgraph, Dirac's family, Hamiltonian cycle.

2000 Mathematics Subject Classification: 05C75, 05C45.

We follow the definitions and terminology of [1]. Let \mathcal{F}^n be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set \mathcal{F}^n is a common subgraph F of order n of each member of \mathcal{F}^n , that is not properly contained in any larger common subgraph of each member of \mathcal{F}^n . By well-known Dirac's Theorem, the Dirac's family $\mathcal{D}\mathcal{F}^n$ of the graphs of order n and minimum degree $\delta \geq \frac{n}{2}$ has a maximal common subgraph containing C_n (see [2, 3, 4]). The cycles C_4 and C_6 are maximal common subgraphs of $\mathcal{D}\mathcal{F}^4$ and $\mathcal{D}\mathcal{F}^6$, respectively. While C_4 is the unique maximal common subgraph of $\mathcal{D}\mathcal{F}^4$, for $\mathcal{D}\mathcal{F}^6$ it is easy to check that there are exactly two maximal common subgraphs: C_6 and the graph F_6 (see Figure 1).

Figure 1. Maximal common subgraphs of \mathcal{DF}^6 .

In this note we study the problem of determining maximal common subgraphs of the Dirac's family \mathcal{DF}^{2n} for $n \geq 2$. It is easy to see that to determine all maximal common subgraphs of the Dirac's family \mathcal{DF}^n , it is enough to consider the maximal common subgraphs of the family of the minimal elements of the set \mathcal{DF}^n partially ordered by the relation \subseteq - to be a subgraph. The minimal Dirac's graphs of order 8 are presented in Figure 2.

Because the complete bipartite graph $K_{4,4}$ is a member of the set of minimal elements of \mathcal{DF}^8 , each maximal common subgraph of the set \mathcal{DF}^8 must be a bipartite graph with a balanced regular two-colouring (i.e., four vertices in each colour class). Using this fact we determined all maximal

common subgraphs of the set \mathcal{DF}^8 . They are presented in the Figure 3. Since they could also be found by a computer search, we omit a detailed proof here.

Figure 2. Minimal Dirac's graphs of order 8.

```
H_1 H_2 H_3
```

Figure 3. The maximal common subgraphs of \mathcal{DF}^8 .

The problem of determining the maximal common subgraphs for the Dirac's family \mathcal{DF}^n is much more complicated for odd n and we can mention only that the wheel $W_5 = K_1 + C_4$ is the unique maximal common subgraph of \mathcal{DF}^5 , however for \mathcal{DF}^7 there are at least 5 different maximal common subgraphs.

As the main result of this note we will show that the Hamiltonian cycle C_n is not a maximal common subgraph of the Dirac's family \mathcal{DF}^n for $n \geq 7$. The proof is based on the following lemma.

Lemma 1. Let G be a graph of order $n \ge 7$ satisfying Dirac's condition $\delta(G) \ge n/2$. Let H = abcd be a 4-cycle in G having a tail $T = [x_0 \cdots x_k]$ of maximum length k. Then k = n - 4.

Proof. Without loss of generality, we may assume that $x_k = a$. Assume, to the contrary, that $V \setminus (H \cup T)$ is nonempty and let y be a vertex in this set. We will produce a contradiction by finding in G a 4-cycle with a longer tail.

Denote by $x_{i_1} = x_1, \ldots, x_{i_p}$ the neighbours of x_0 belonging to T.

Case 1. If there is an $i \in \{1, \dots, p\}$ such that $yx_{i-1} \in E$, then $[yx_{i-1} \cdots x_0x_i \cdots x_k]$ is a tail of length k+1 for H. Assume henceforth the contrary. Let now q be the number of neighbours of x_0 in the set $\{b, c, d\}$. We have by hypothesis $p+q \ge n/2$. Let q_1 be the number of neighbours of y in the set $\{a, b, c, d\}$. Note that y has at most k-p neighbours in the set $T \setminus \{a\}$ and at most n-k-5 neighbours outside the set $H \cup T$.

Case 2. If b and d are both neighbours of y, then $[x_0 \cdots x_k b]$ is a tail of length k + 1 for the C_4 ybcd of G. So we may assume that we have

 $q_1 \leq 3$. Now we obtain by hypothesis for the number of neighbours of y: $n/2 \leq deg(y) \leq (k-p) + q_1 + n - k - 5 = n + q_1 - 5 - p \leq n/2 + q + q_1 - 5$, so $q + q_1 \geq 5$ implying $q \geq 2$. So x_0 must have a neighbour in the set $\{b, d\}$. By symmetry, we may suppose $bx_0 \in E$.

Case 3. If a and c are both neighbours of y, then $[x_{k-1} \cdots x_0 ba]$ is a tail of length k+1 for the C_4 yadc of G. This being not the case, we have $q_1 \leq 2$ therefore q = 3 and $q_1 = 2$. Now the three vertices b, c, d are neighbours of x_0 , and by symmetry we may suppose $yb \in E$. There remains only two cases, according to whether a or c is the other neighbour of y in H.

Case 4. If a is neighbour of y, then $[x_1 \cdots x_k yb]$ is a tail of length k+1 for the cycle $x_0 bcd$.

Case 5. If c is neighbour of y, then $[da \cdots x_0]$ is a tail of length k + 1 for the cycle ybx_0c .

Figure 4. Case 1 in the proof of Lemma 1.

Theorem 2. Let G = (V, E) be a graph of order |V| = n, with $n \ge 7$. If G satisfies the Dirac's condition $\delta(G) \ge n/2$, then G contains as a subgraph, a Hamiltonian cycle with a chord that skips two vertices on this cycle.

Proof. It is straightforward that G contains a cycle C_4 as a subgraph. For a subgraph H of G, a tail of H is any path $[x_0 \cdots x_k]$ in G sharing with Honly the vertex x_k . We now complete the proof of the theorem, by examining a 4-cycle H = abcd with a tail T of length $k = n - 4 \ge 3$. Such a cycle exists by the previous lemma. We assume, as before, that $x_k = a$ and keep the same notations as in the proof of the lemma. In the same way, we study and eliminate all possible cases. Case 1. If b or d, say b by symmetry, is neighbour of x_{i-1} , with $i \in \{i_1, \ldots, i_p\}$ then the Hamiltonian cycle $adcbx_{i-1} \cdots x_0 x_i \cdots x_k$ has the chord ab.

If this is not the case, then $q \leq 1$ and we must have for the neighbours of b (or d): $n/2 \leq deg(b) \leq n - 1 - p \leq n/2 + q - 1$, so q = 1 and we have $cx_0 \in E$, p = n/2 - 1 (hence n is even and $n \geq 8$ in this case). Moreover, $x_i, 1 \leq i \leq k - 1$ is neighbour of b if and only if it is also neighbour of dand i + 1 is not in the set $\{i_2, \dots, i_p\}$. Finally, we must have, for the above inequalities being equalities, $bd \in E$.

Case 2. If $bx_{k-1} \in E$, then the Hamiltonian cycle $cdabx_{k-1} \cdots x_0 c$ has the chord cb. Assuming the contrary we must have $ax_0 \in E$, otherwise $bx_{k-1} \notin E$ and we must have $ax_0 \in E$.

Case 3. If $bx_{k-2} \in E$, it is a chord of the Hamiltonian cycle $cdba \cdots x_0c$. At last, we may assume $x_0x_{k-1} \in E$, otherwise $bx_{k-2} \notin E$. Since $n \geq 8$, b (as well as d) must have a neighbour x_i with $1 \leq i \leq k-3$, forming a 4-cycle bx_idc with the tail $[x_{i+1} \cdots ax_0 \cdots x_i]$ or the tail $[x_{i-1} \cdots x_0 a \cdots x_i]$. In these configurations, x_{i+1} or x_{i-1} play the role of x_0 , and c keeps its own one. Therefore, after eliminating the first case, we obtain that both $x_{i-1}c$ and $x_{i+1}c$ are in E. Now the cycle bcda has the tail $x_{k-1} \cdots x_0c$, in which vertices a and c exchange their places. Therefore, it remains to consider only the case when both ax_{i+1} and ax_{i-1} are in E. In this case the Hamiltonian cycle $x_{i+1} \cdots x_{k-1}x_0 \cdots x_i badcx_{i+1}$ has the chord ax_{i+1} .

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London; Elsevier, New York, 1976).
- [2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69–81.
- [3] V. Chvátal, New directions in Hamiltonian graph theory in: New Directions in the Theory of Graphs (Academic Press, New York, 1973) 65–95.
- [4] O. Ore, On a graph theorem by Dirac J. Combin. Theory 2 (1967) 383–392.

Received 22 June 2004 Revised 13 June 2005

390