A NOTE ON MAXIMAL COMMON SUBGRAPHS OF THE DIRAC'S FAMILY OF GRAPHS

Jozef Bucko*
Peter Mihók*
Technical University of Košice
Faculty of Economics
Němcovej 32, 04001 Košice, Slovakia
e-mail: peter.mihok@tuke.sk
e-mail: jozef.bucko@tuke.sk
Jean-François Saclé
LRI, Bât. 490, Université de Paris-Sud
91405 Orsay, France
e-mail: sacle@lri.fr
AND
Mariusz Woźniak
AGH University of Science and Technology
Department of Applied Mathematics
Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: mwozniak@agh.edu.pl

Abstract

Let \mathcal{F}^{n} be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set \mathcal{F}^{n} is a common subgraph F of order n of each member of \mathcal{F}^{n}, that is not properly contained in any larger common subgraph of each member of \mathcal{F}^{n}. By well-known Dirac's Theorem, the Dirac's family $\mathcal{D F}^{n}$ of the graphs of order n and minimum degree $\delta \geq \frac{n}{2}$ has a maximal common subgraph

[^0]containing C_{n}. In this note we study the problem of determining all maximal common subgraphs of the Dirac's family $\mathcal{D} \mathcal{F}^{2 n}$ for $n \geq 2$.
Keywords: maximal common subgraph, Dirac's family, Hamiltonian cycle.
2000 Mathematics Subject Classification: 05C75, 05C45.
We follow the definitions and terminology of [1]. Let \mathcal{F}^{n} be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set \mathcal{F}^{n} is a common subgraph F of order n of each member of \mathcal{F}^{n}, that is not properly contained in any larger common subgraph of each member of \mathcal{F}^{n}. By well-known Dirac's Theorem, the Dirac's family $\mathcal{D} \mathcal{F}^{n}$ of the graphs of order n and minimum degree $\delta \geq \frac{n}{2}$ has a maximal common subgraph containing C_{n} (see $[2,3,4]$). The cycles C_{4} and C_{6} are maximal common subgraphs of $\mathcal{D} \mathcal{F}^{4}$ and $\mathcal{D} \mathcal{F}^{6}$, respectively. While C_{4} is the unique maximal common subgraph of $\mathcal{D} \mathcal{F}^{4}$, for $\mathcal{D} \mathcal{F}^{6}$ it is easy to check that there are exactly two maximal common subgraphs: C_{6} and the graph F_{6} (see Figure 1).

Figure 1. Maximal common subgraphs of $\mathcal{D} \mathcal{F}^{6}$.
In this note we study the problem of determining maximal common subgraphs of the Dirac's family $\mathcal{D} \mathcal{F}^{2 n}$ for $n \geq 2$. It is easy to see that to determine all maximal common subgraphs of the Dirac's family $\mathcal{D} \mathcal{F}^{n}$, it is enough to consider the maximal common subgraphs of the family of the minimal elements of the set $\mathcal{D} \mathcal{F}^{n}$ partially ordered by the relation \subseteq - to be a subgraph. The minimal Dirac's graphs of order 8 are presented in Figure 2.

Because the complete bipartite graph $K_{4,4}$ is a member of the set of minimal elements of $\mathcal{D} \mathcal{F}^{8}$, each maximal common subgraph of the set $\mathcal{D} \mathcal{F}^{8}$ must be a bipartite graph with a balanced regular two-colouring (i.e., four vertices in each colour class). Using this fact we determined all maximal
common subgraphs of the set $\mathcal{D} \mathcal{F}^{8}$. They are presented in the Figure 3. Since they could also be found by a computer search, we omit a detailed proof here.
G_{1}
G_{2}
G_{3}
G_{4}
G_{5}
G_{6}
G_{8}
G_{9}
$G_{10} \quad G_{11} \quad G_{12}$

Figure 2. Minimal Dirac's graphs of order 8.

$$
\begin{array}{ccc}
H_{1} & H_{2} & H_{3}
\end{array}
$$

Figure 3. The maximal common subgraphs of $\mathcal{D} \mathcal{F}^{8}$.
The problem of determining the maximal common subgraphs for the Dirac's family $\mathcal{D F}^{n}$ is much more complicated for odd n and we can mention only that the wheel $W_{5}=K_{1}+C_{4}$ is the unique maximal common subgraph of $\mathcal{D} \mathcal{F}^{5}$, however for $\mathcal{D F}^{7}$ there are at least 5 different maximal common subgraphs.

As the main result of this note we will show that the Hamiltonian cycle C_{n} is not a maximal common subgraph of the Dirac's family $\mathcal{D F}^{n}$ for $n \geq 7$. The proof is based on the following lemma.

Lemma 1. Let G be a graph of order $n \geq 7$ satisfying Dirac's condition $\delta(G) \geq n / 2$. Let $H=$ abcd be a 4 -cycle in G having a tail $T=\left[x_{0} \cdots x_{k}\right]$ of maximum length k. Then $k=n-4$.

Proof. Without loss of generality, we may assume that $x_{k}=a$. Assume, to the contrary, that $V \backslash(H \cup T)$ is nonempty and let y be a vertex in this set. We will produce a contradiction by finding in G a 4 -cycle with a longer tail.

Denote by $x_{i_{1}}=x_{1}, \ldots, x_{i_{p}}$ the neighbours of x_{0} belonging to T.
Case 1. If there is an $i \in\{1, \cdots, p\}$ such that $y x_{i-1} \in E$, then [y $x_{i-1} \cdots x_{0} x_{i} \cdots x_{k}$] is a tail of length $k+1$ for H. Assume henceforth the contrary. Let now q be the number of neighbours of x_{0} in the set $\{b, c, d\}$. We have by hypothesis $p+q \geq n / 2$. Let q_{1} be the number of neighbours of y in the set $\{a, b, c, d\}$. Note that y has at most $k-p$ neighbours in the set $T \backslash\{a\}$ and at most $n-k-5$ neighbours outside the set $H \cup T$.

Case 2. If b and d are both neighbours of y, then $\left[x_{0} \cdots x_{k} b\right]$ is a tail of length $k+1$ for the $C_{4} y b c d$ of G. So we may assume that we have
$q_{1} \leq 3$. Now we obtain by hypothesis for the number of neighbours of y : $n / 2 \leq \operatorname{deg}(y) \leq(k-p)+q_{1}+n-k-5=n+q_{1}-5-p \leq n / 2+q+q_{1}-5$, so $q+q_{1} \geq 5$ implying $q \geq 2$. So x_{0} must have a neighbour in the set $\{b, d\}$. By symmetry, we may suppose $b x_{0} \in E$.

Case 3. If a and c are both neighbours of y, then $\left[x_{k-1} \cdots x_{0} b a\right]$ is a tail of length $k+1$ for the C_{4} yadc of G. This being not the case, we have $q_{1} \leq 2$ therefore $q=3$ and $q_{1}=2$. Now the three vertices b, c, d are neighbours of x_{0}, and by symmetry we may suppose $y b \in E$. There remains only two cases, according to whether a or c is the other neighbour of y in H.

Case 4. If a is neighbour of y, then $\left[x_{1} \cdots x_{k} y b\right]$ is a tail of length $k+1$ for the cycle $x_{0} b c d$.

Case 5. If c is neighbour of y, then $\left[d a \cdots x_{0}\right]$ is a tail of length $k+1$ for the cycle $y b x_{0} c$.
b

$$
y
$$

$$
a=x_{k} \quad x_{i} \quad x_{i-1} \quad x_{1}
$$

d

Figure 4. Case 1 in the proof of Lemma 1.
Theorem 2. Let $G=(V, E)$ be a graph of order $|V|=n$, with $n \geq 7$. If G satisfies the Dirac's condition $\delta(G) \geq n / 2$, then G contains as a subgraph, a Hamiltonian cycle with a chord that skips two vertices on this cycle.

Proof. It is straightforward that G contains a cycle C_{4} as a subgraph. For a subgraph H of G, a tail of H is any path $\left[x_{0} \cdots x_{k}\right]$ in G sharing with H only the vertex x_{k}. We now complete the proof of the theorem, by examining a 4 -cycle $H=a b c d$ with a tail T of length $k=n-4 \geq 3$. Such a cycle exists by the previous lemma. We assume, as before, that $x_{k}=a$ and keep the same notations as in the proof of the lemma. In the same way, we study and eliminate all possible cases.

Case 1. If b or d, say b by symmetry, is neighbour of x_{i-1}, with $i \in$ $\left\{i_{1}, \ldots, i_{p}\right\}$ then the Hamiltonian cycle $a d c b x_{i-1} \cdots x_{0} x_{i} \cdots x_{k}$ has the chord $a b$.

If this is not the case, then $q \leq 1$ and we must have for the neighbours of b (or d) : $n / 2 \leq \operatorname{deg}(b) \leq n-1-p \leq n / 2+q-1$, so $q=1$ and we have $c x_{0} \in E, p=n / 2-1$ (hence n is even and $n \geq 8$ in this case). Moreover, $x_{i}, 1 \leq i \leq k-1$ is neighbour of b if and only if it is also neighbour of d and $i+1$ is not in the set $\left\{i_{2}, \cdots, i_{p}\right\}$. Finally, we must have, for the above inequalities being equalities, $b d \in E$.

Case 2. If $b x_{k-1} \in E$, then the Hamiltonian cycle $c d a b x_{k-1} \cdots x_{0} c$ has the chord $c b$. Assuming the contrary we must have $a x_{0} \in E$, otherwise $b x_{k-1} \notin E$ and we must have $a x_{0} \in E$.

Case 3. If $b x_{k-2} \in E$, it is a chord of the Hamiltonian cycle $c d b a \cdots x_{0} c$. At last, we may assume $x_{0} x_{k-1} \in E$, otherwise $b x_{k-2} \notin E$. Since $n \geq 8$, b (as well as d) must have a neighbour x_{i} with $1 \leq i \leq k-3$, forming a 4 -cycle $b x_{i} d c$ with the tail $\left[x_{i+1} \cdots a x_{0} \cdots x_{i}\right]$ or the tail $\left[x_{i-1} \cdots x_{0} a \cdots x_{i}\right]$. In these configurations, x_{i+1} or x_{i-1} play the role of x_{0}, and c keeps its own one. Therefore, after eliminating the first case, we obtain that both $x_{i-1} c$ and $x_{i+1} c$ are in E. Now the cycle $b c d a$ has the tail $x_{k-1} \cdots x_{0} c$, in which vertices a and c exchange their places. Therefore, it remains to consider only the case when both $a x_{i+1}$ and $a x_{i-1}$ are in E. In this case the Hamiltonian cycle $x_{i+1} \cdots x_{k-1} x_{0} \cdots x_{i} b a d c x_{i+1}$ has the chord $a x_{i+1}$.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London; Elsevier, New York, 1976).
[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69-81.
[3] V. Chvátal, New directions in Hamiltonian graph theory in: New Directions in the Theory of Graphs (Academic Press, New York, 1973) 65-95.
[4] O. Ore, On a graph theorem by Dirac J. Combin. Theory 2 (1967) 383-392.

[^0]: *Research supported by Slovak VEGA Grant 2/4134/24.

