
Discussiones Mathematicae 363
Graph Theory 25 (2005 ) 363–383

ON γ-LABELINGS OF TREES

Gary Chartrand

Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008 USA

David Erwin

School of Mathematical Sciences
University of KwaZulu-Natal
Durban 4041, South Africa

Donald W. VanderJagt

Department of Mathematics
Grand Valley State University

Allendale, MI 49401 USA

and

Ping Zhang

Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008 USA

Abstract

Let G be a graph of order n and size m. A γ-labeling of G is a one-
to-one function f : V (G) → {0, 1, 2, . . . , m} that induces a labeling f ′ :
E(G) → {1, 2, . . . ,m} of the edges of G defined by f ′(e) = |f(u)−f(v)|
for each edge e = uv of G. The value of a γ-labeling f is val(f) =∑

e∈E(G) f ′(e). The maximum value of a γ-labeling of G is defined as

valmax(G) = max{val(f) : f is a γ-labeling of G};
while the minimum value of a γ-labeling of G is

valmin(G) = min{val(f) : f is a γ-labeling of G}.
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The values valmax(Sp,q) and valmin(Sp,q) are determined for double
stars Sp,q. We present characterizations of connected graphs G of order
n for which valmin(G) = n or valmin(G) = n + 1.
Keywords: γ-labeling, value of a γ-labeling.
2000 Mathematics Subject Classification: 05C78, 05C05.

1. Introduction

For a graph G of order n and size m, a γ-labeling of G is a one-to-one
function f : V (G) → {0, 1, 2, . . . ,m} that induces a labeling f ′ : E(G) →
{1, 2, . . . , m} of the edges of G defined by

f ′(e) = |f(u)− f(v)| for each edge e = uv of G.

Therefore, a graph G of order n and size m has a γ-labeling if and only if
m ≥ n − 1. In particular, every connected graph has a γ-labeling. If the
induced edge-labeling f ′ of a γ-labeling f is also one-to-one, then f is a
graceful labeling, one of the most studied of graph labelings. An extensive
survey of graph labelings as well as their applications has been given by
Gallian [2].

Each γ-labeling f of a graph G of order n and size m is assigned a value
denoted by val(f) and defined by

val(f) =
∑

e∈E(G)

f ′(e).

Since f is a one-to-one function from V (G) to {0, 1, 2, . . . ,m}, it follows that
f ′(e) ≥ 1 for each edge e in G and so

val(f) ≥ m.(1)

Figure 1 shows nine γ-labelings f1, f2, . . . , f9 of the path P5 of order 5 (where
the vertex labels are shown above each vertex and the induced edge labels are
shown below each edge). The value of each γ-labeling is shown in Figure 1
as well.

For a graph G of order n and size m, the maximum value of a γ-labeling
of a graph G is defined as

valmax(G) = max{val(f) : f is a γ-labeling of G};
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Figure 1: Some γ-labelings of P5.

while the minimum value of a γ-labeling of G is

valmin(G) = min{val(f) : f is a γ-labeling of G}.

A γ-labeling g of G is a γ-max labeling if

val(g) = valmax(G)

and a γ-labeling h is a γ-min labeling if

val(h) = valmin(G).

Since val(f1) = 4 for the γ-labeling f1 of P5 shown in Figure 1 and the size
of P5 is 4, it follows that f1 is a γ-min labeling of P5. Although less clear,
the γ-labeling f9 shown in Figure 1 is a γ-max labeling. The concepts of a
γ-labeling of a graph and the value of a γ-labeling were introduced in [1].

For a γ-labeling f of a graph G of size m, the complementary labeling
f : V (G) → {0, 1, 2, . . . , m} of f is defined by

f(v) = m− f(v) for v ∈ V (G).

Not only is f a γ-labeling of G as well but val(f) = val(f). This gives us
the following observation that appeared in [1].
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Observation 1.1. Let f be a γ-labeling of a graph G. Then f is a γ-max
labeling (γ-min labeling) of G if and only if f is a γ-max labeling (γ-min
labeling).

A more general vertex labeling of a graph was introduced by Hegde in [3]. A
vertex function f of a graph G is defined from V (G) to the set of nonnegative
integers that induces an edge function f ′ defined by f ′(e) = |f(u) − f(v)|
for each edge e = uv of G. Such a function is called a geodetic function of
G. A one-to-one geodetic function is a geodetic labeling of G if the induced
edge function f ′ is also one-to-one. The following result was established by
Hegde which provides an upper bound for valmax(G) (see [3]).

Theorem (Hegde). For any geodetic γ-labeling f of a graph G of order n,

∑

e∈E(G)

f ′(e) ≤
n−1∑

i=0

(2i− n + 1)f(vi).

The following results were obtained in [1] for the paths Pn and stars K1,n−1

of order n.

Theorem A. For each integer n ≥ 2,

valmin(Pn) = n− 1 and valmax(Pn) =

⌊
n2 − 2

2

⌋
.

Theorem B. Let G be a connected graph of order n and size m. Then

valmin(G) = m if and only if G ∼= Pn.

Theorem C. For each integer n ≥ 3,

valmin(K1,n−1) =

(⌊
n+1

2

⌋

2

)
+

(⌈
n+1

2

⌉

2

)
and valmax(K1,n−1) =

(
n

2

)
.

Theorem D. For each integer n ≥ 3,

valmin(Cn) = 2(n− 1)



On γ-Labelings of Trees 367

and

valmax(Cn) =





n(n + 2)
2

if n is even,

(n− 1)(n + 3)
2

if n is odd.

In this paper, we investigate γ-labelings of trees, beginning with double
stars.

2. γ-Labelings of Double Stars

We now turn to the double star Sp,q containing central vertices u and v
such that deg u = p and deg v = q and determine valmin(Sp,q) and then
valmax(Sp,q).

Proposition 2.1. For integers p, q ≥ 2,

valmin(Sp,q) =
(⌊

p

2

⌋
+ 1

)2

+
(⌊

q

2

⌋
+ 1

)2

−
(

np

⌊
p + 2

2

⌋
+ nq

⌊
q + 2

2

⌋
+ 1

)
,

where

np =

{
1 if p is even,
0 if p is odd

and nq =

{
1 if q is even,
0 if q is odd.

Proof. Let N(u) = {v, u1, u2, . . . , up−1} and N(v) = {u, v1, v2, . . . , vq−1}.
Since the proof is similar whether p and q are odd or even, we provide the
proof in one of these four cases only, namely when p and q are odd. Let
p = 2s + 1 and q = 2t + 1 for positive integers s and t. Define a γ-labeling
f of Sp,q by

f(x) =





s if x = u,
2s + t + 1 if x = v,
i− 1 if x = ui, 1 ≤ i ≤ s,
i if x = ui, s + 1 ≤ i ≤ 2s,
2s + i if x = vi, 1 ≤ i ≤ t,
2s + i + 1 if x = vi, t + 1 ≤ i ≤ 2t.



368 G. Chartrand, D. Erwin, D.W. VanderJagt and P. Zhang

Thus exactly two edges in {uui : 1 ≤ i ≤ 2s} are labeled a for each integer
a with 1 ≤ a ≤ s and exactly two edges in {vvi : 1 ≤ i ≤ 2t} are labeled
b for each integer b with 1 ≤ b ≤ t. Furthermore, the edge uv is labeled
s + t + 1. Therefore,

val(f) = (s + t + 1) + 2(1 + 2 + . . . + s) + 2(1 + 2 + . . . + t)

= (s + t + 1) + 2

(
s + 1

2

)
+ 2

(
t + 1

2

)
= (s + 1)2 + (t + 1)2 − 1.

Therefore,

valmin(Sp,q) ≤ (s + 1)2 + (t + 1)2 − 1.

Next, consider an arbitrary γ-labeling g of Sp,q. We may assume that g(u) <
g(v); otherwise, we could consider the complementary γ-labeling g of g. We
show that

val(g) ≥ (s + 1)2 + (t + 1)2 − 1.

First, we make the following observations:

1. At most two edges in {uui : 1 ≤ i ≤ 2s} can be labeled a for each integer
a with 1 ≤ a ≤ s and this can occur only if the labels in {g(u)± a : 1 ≤
i ≤ s} are available for the vertices ui (1 ≤ a ≤ 2s).

2. At most two edges in {vvi : 1 ≤ i ≤ 2t} can be labeled b for each integer
b with 1 ≤ b ≤ t and this can occur only if the labels in {g(v) ± b : 1 ≤
b ≤ t} are available for the vertices vi (1 ≤ i ≤ 2t).

Therefore,
∑

e∈E(G)−{uv}
g′(e) ≥ 2

(
s + 1

2

)
+ 2

(
t + 1

2

)
.

Thus if g′(uv) = g(v)− g(u) ≥ s + t + 1, then

val(g) ≥ (s + t + 1) + 2

(
s + 1

2

)
+ 2

(
t + 1

2

)
= (s + 1)2 + (t + 1)2 − 1.
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Suppose then that g′(uv) = s+t+1−k for some integer k with 1 ≤ k ≤ s+t.
Then there are s+t−k vertices of Sp,q that are labeled with integers between
g(u) and g(v). Consequently, s + t + k vertices of Sp,q are assigned a label
less than g(u) or greater than g(v), which implies that at least k vertices of
Sp,q are assigned a label less than g(u)− s or greater than g(v)+ t. For each
vertex ui, 1 ≤ i ≤ 2s, assigned a label less than g(u)− s,

2s∑

i=1

g′(uui) must exceed 2

(
s + 1

2

)

by at least 1; while for each vertex vi, 1 ≤ i ≤ 2s, assigned a label greater
than g(v) + t,

2t∑

i=1

g′(vvi) must exceed 2

(
t + 1

2

)

by at least 1. Therefore,

∑

e∈E(G)−{uv}
g′(e) ≥ 2

(
s + 1

2

)
+ 2

(
t + 1

2

)
+ k.

However then,

val(g) = g′(uv) +
∑

e∈E(G)−{uv}
g′(e)

≥ (s + t + 1− k) +

[
2

(
s + 1

2

)
+ 2

(
t + 1

2

)
+ k

]

= (s + 1)2 + (t + 1)2 − 1.

In general, val(g) ≥ (s + 1)2 + (t + 1)2 − 1. Therefore, valmin(Sp,q) =
(s + 1)2 + (t + 1)2 − 1.

Theorem 2.2 For every pair p, q of positive integers,

valmax(Sp,q) =
1
2

[
p2 + q2 + 4pq − 3p− 3q + 2

]
.
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Proof. Let u and v be the central vertices of Sp,q, where deg u = p and
deg v = q, and let f be the γ-labeling of Sp,q in which we assign the label
0 to u, the label p + q − 1 to v, the labels 1, 2, . . . , q − 1 to the end-vertices
adjacent to v, and the labels q, q+1, . . . , p+q−2 to the end-vertices adjacent
to u. The value of f is (p2 + q2 + 4pq − 3p− 3q + 2)/2, which is therefore a
lower bound for valmax(Sp,q).

We now show that valmax(Sp,q) ≤ (p2+q2+4pq−3p−3q+2)/2. First, we
claim that Sp,q has a γ-max labeling for which {f(u), f(v)} = {0, p+ q− 1}.
We verify this claim by induction on p + q. The claim is clearly true for
p + q = 2. Assume that the claim is true for p + q = k − 1, where k ≥ 3.
Let T = Sp,q, where p + q = k. Let f be a γ-max labeling of T . If
{f(u), f(v)} = {0, p + q − 1}, then the claim is true. Suppose that at least
one f(u) and f(v) is neither 0 nor p + q − 1. By Observation1.1, we may
assume that f(w) = p+q−1 and w 6= u, v. The vertex w is therefore an end-
vertex of T . Let x ∈ {u, v} be the vertex of T that is adjacent to w. Then
T ′ = T − w is isomorphic to Sp′,q′ , where p′ + q′ = k − 1. By the inductive
hypothesis, T ′ has a γ-max labeling g for which {g(u), g(v)} = {0, p+q−2}.
By Observation1.1, we may assume that g(x) = 0. Now

val(f) = (p + q − 1− f(x)) +
∑

e∈E(T ′)

f ′(e) ≤ p + q − 1 + valmax(T ′).(2)

We extend g to a γ-labeling h of T by defining h(w) = p + q − 1. Then

val(h) = p + q − 1 + valmax(T ′).(3)

By (2) and (3), val(f) ≤ val(h). Since f is a γ-max labeling of T , so too is
h a γ-max labeling of T . Let y ∈ {u, v} for which h(y) = p + q − 2. Thus y
is not adjacent to w. Next, let φ be the γ-labeling of T defined by

φ(z) =





h(z) if z 6= w, y,
p + q − 1 if z = y,
p + q − 2 if z = w.

Then val(φ) = val(h) if deg y ≤ 2; while val(φ) > val(h) if deg y ≥ 3. Since
val(φ) cannot exceed val(h), it follows that deg y ≤ 2, and φ has the de-
sired property that verifies the claim. By the claim and Observation 1.1,
there is a γ-max labeling f of Sp,q with f(u) = 0 and f(v) = p + q − 1.
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If there is an end-vertex t1 of Sp,q adjacent to v with f(t1) = i > q − 1,
then there is an end-vertex t2 of Sp,q adjacent to u with f(t2) = j, where
1 ≤ j ≤ q− 1. Interchanging the labels of t1 and t2 produces a γ-labeling f1

with val(f1) > val(f), which is impossible. Thus f is the γ-labeling described
in the first paragraph of the proof and val(f) = (p2+q2+4pq−3p−3q+2)/2.

3. Connected Graphs of Order n with Minimum
Value n

We already mentioned (in Theorem B) that a connected graph G of order
n has minimum value n − 1 if and only if G ∼= Pn. We now determine all
those connected graphs G of order n for which valmin(G) = n. It is useful
to present several lemmas first.

Lemma 3.1. If G is a connected graph of size m and G′ is a connected
subgraph of G having size m′, then

valmin(G) ≥ (m−m′) + valmin(G′).

Proof. Suppose that G has order n and G′ has order n′. Let f be a γ-min
labeling of G. Then the restriction h of f to G′ is a one-to-one function.
Suppose that the vertices of G′ are labeled a1, a2, · · · , an′ by h, where 0 ≤
a1 < a2 < · · · < an′ ≤ m. Thus, for 1 ≤ i 6= j ≤ n′, |ai − aj | ≥ |i − j|.
Consider the one-to-one function g : {a1, a2, · · · , an′} → {0, 1, 2, · · · ,m′}
defined by g(ai) = i − 1 for 1 ≤ i ≤ n′. Then φ = g ◦ h : V (G′) →
{0, 1, 2, · · · ,m′} is a γ-labeling of G′. Furthermore,

valmin(G′) ≤ val(φ) ≤
∑

e∈E(G′)

h′(e) =
∑

e∈E(G′)

f ′(e).

Since f ′(e) ≥ 1 for every edge e in G, it follows that

val(f) =
∑

e∈E(G−G′)

f ′(e) +
∑

e∈E(G′)

f ′(e)

≥ (m−m′) + valmin(G′),

as desired.

Lemma 3.1 can be extended to obtain the following result.
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Lemma 3.2. If G is a connected graph of size m containing pairwise edge-
disjoint connected subgraphs G1, G2, · · · , Gk, where Gi has size mi for 1 ≤
i ≤ k, then

valmin(G) ≥
(

m−
k∑

i=1

mi

)
+

k∑

i=1

valmin(Gi).

Lemma 3.3. Let G be a connected graph of order n with maximum degree
∆. Then

valmin(G) ≥
{

(n− 1) + k(k − 1) if ∆ = 2k,
(n− 1) + k2 if ∆ = 2k + 1.

Furthermore, this bound is sharp for stars.

Proof. Let v ∈ V (G) with deg v = ∆ and let f be a γ-min labeling of G.
Note that at most two edges incident with v can be labeled i for each i with
1 ≤ i ≤ b∆/2c. Thus, if ∆ = 2k, then

valmin(G) ≥ (n− 1− 2k) + 2(1 + 2 + · · ·+ k) = (n− 1) + k(k − 1);

while if ∆ = 2k + 1, then

valmin(G) ≥ [(n− 1)− (2k + 1)] + 2(1 + 2 + · · ·+ k) + (k + 1) = (n− 1) + k2.

That this bound is sharp for stars follows from Theorem C.

The proof of the next lemma is straightforward and is therefore omitted.

Lemma 3.4. Let f be a γ-labeling of a connected graph G. If P is a u− v
path in G, then ∑

e∈E(P )

f ′(e) ≥ |f(u)− f(v)|.

Lemma 3.5. For the tree F of Figure 2, valmin(F ) = 8.

Proof. The γ-labeling f of F shown in Figure 2 has value 8 and so
valmin(F ) ≤ 8. On the other hand, let g be γ-min labeling of F and
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Figure 2: A tree F and a γ-labeling of F .

let u, v ∈ V (F ) such that g(u) = 0 and g(v) = 6. Suppose that P is a u− v
path in F . Then

∑

e∈E(P )

f ′(e) ≥ |f(u)− f(v)| = 6

by Lemma 3.4. Since there are at least two edges of F not in P , it follows
that valmin(F ) = val(g) ≥ 8.

A caterpillar is a tree the removal of whose vertices results in a path. We
are now able to characterize all connected graphs of order n ≥ 4 whose
minimum value is n.

Theorem 3.6. Let G be a connected graph of order n ≥ 4. Then valmin(G) =
n if and only if G is a caterpillar, ∆(G) = 3, and G has a unique vertex of
degree 3.

Proof. Let T be the tree obtained from the path v1, v2, · · · , vn−1 by adding
the vertex vn and joining vn to a vertex vk, where 2 ≤ k ≤ n− 2. Thus vk

is the only vertex of degree 3 in T . Define a γ-labeling f of T by

f(vi) =





i− 1 if 1 ≤ i ≤ k,
i if k < i ≤ n− 1,
k if i = n.

Since val(f) = n, it follows that valmin(T ) ≤ n and so valmin(T ) = n by
Theorem B.

For the converse, let G be a connected graph of order n ≥ 4 such that
G is not a caterpillar with ∆(G) = 3 containing a unique vertex of degree 3.
We show that valmin(G) 6= n. This is certainly true if G ∼= Pn or if G is
not a tree by Theorem B. Hence we may assume that G is a tree T with



374 G. Chartrand, D. Erwin, D.W. VanderJagt and P. Zhang

∆(T ) ≥ 3. If ∆(T ) ≥ 4, then valmin(T ) ≥ (n−1)+2 = n+1 by Lemma 3.3.
Thus ∆(T ) = 3. We consider two cases.

Case 1. T contains two vertices u and v with degree 3.
If u and v are adjacent, then T contains the double star S3,3 as a subgraph.
By Theorem 2.2, valmin(S3,3) = 7. Since the order of S3,3 is 6, it then follows
by Lemma 3.1 that valmin(T ) ≥ (n− 6) + 7 = n + 1.

Thus we may assume that u and v are not adjacent. Let N(u) =
{u1, u2, u3} and N(v) = {v1, v2, v3}. Then v /∈ N(u) and u /∈ N(v). For any
γ labeling g of T , g′(e) ≥ 2 for at least one edge e in {uui : 1 ≤ i ≤ 3} and
at least one edge e in {vvi : 1 ≤ i ≤ 3}. Therefore, at least two edges in T
are labeled 2 or more by g and so valmin(T ) ≥ val(g) ≥ n + 1.

Case 2. T has exactly one vertex with degree 3.
Thus T contains the graph F in Lemma 3.5 as a subgraph. Since valmin(F ) =
8 by Lemma 3.5 and the order of F is 7, it then following by Lemma 3.1
that valmin(T ) ≥ (n− 7) + 8 = n + 1.

4. Some Results on the Minimum Value of a Tree
in Terms of Its Order and Other Parameters

In Theorem 3.6, we considered caterpillars T having maximum degree 3 and
a unique vertex of degree 3. We now compute the minimum value of all such
trees that are not necessarily caterpillars.

Theorem 4.1. Let T be a tree of order n ≥ 4 such that ∆(T ) = 3 and T has
a unique vertex v of degree 3. If d is the distance between v and a nearest
end-vertex, then

valmin(T ) = n + d− 1.

Proof. Let x, y, and z be the three end-vertices of T , where d(v, x) =
d, d(v, y) = d′, and d(v, z) = d′′, where d ≤ d′ ≤ d′′. Let P : v =
v0, v1, · · · , vd = x, P ′ : v = u0, u1, · · · , ud′ = y, and P ′′ : v = w0, w1, · · · , wd′′ =
z denote the v − x path, v − y path, and v − z path in T . Let f : V (T ) →
{0, 1, 2, · · · , n − 1} be the γ-labeling of T for which f(wi) = d′′ − i for
0 ≤ i ≤ d′′, f(vi) = d′′ + i for 1 ≤ i ≤ d, and f(ui) = i − d′ + n − 1 for
1 ≤ i ≤ d′. Since val(f) = n + d− 1, it follows that valmin(T ) ≤ n + d− 1.
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It remains therefore to show that valmin(T ) ≥ n + d − 1. Let g : V (T ) →
{0, 1, 2, · · · , n−1} be an arbitrary γ-labeling of T , and suppose that g(v) = i.
Let

S = {u ∈ V (T ) : d(u, v) ≤ d}.

Thus |S| = 3d+1. Let a denote the smallest label assigned by g to a vertex
of S and let b denote the largest such label. We now consider two cases.

Case 1. The vertices in S labeled a and b belong to two of the three
paths P , P ′, and P ′′, say P and P ′, respectively. Then

∑

e∈E(P )

g′(e) ≥ i− a and
∑

e∈E(P ′)

g′(e) ≥ b− i.

Thus
∑

e∈〈S〉
g′(e) ≥ (i− a) + (b− i) + d = b− a + d ≥ 3d + d = 4d.

Since there are (n− 1)− 3d edges of T not belonging to 〈S〉, it follows that
∑

e∈E(T )

g′(e) ≥ 4d + (n− 1− 3d) = n + d− 1.

Case 2. The vertices in S labeled a and b belong to one of the three
paths P , P ′, and P ′′, say P . Then

∑

e∈E(P )

g′(e) ≥ b− a.

Thus ∑

e∈〈S〉
g′(e) ≥ (b− a) + 2d ≥ 3d + 2d = 5d.

Since there are (n− 1)− 3d edges of T not belonging to 〈S〉, it follows that
∑

e∈E(T )

g′(e) ≥ 5d + (n− 1− 3d) = n + 2d− 1.

In general,
∑

e∈E(T ) g′(e) ≥ n + d− 1 and so valmin(T ) ≥ n + d− 1.
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Next, we generalize Theorem 3.6 to caterpillars T with ∆(T ) = 3 having an
arbitrary number of vertices of degree 3.

Theorem 4.2. If T is a caterpillar of order n ≥ 4 such that ∆(T ) = 3 and
T has exactly k vertices of degree 3, then

valmin(T ) = n + k − 1.

Proof. Let T be a caterpillar of order n ≥ 4 with ∆(T ) = 3 such that
T contains k vertices of degree 3. Then diam(T ) = n − k − 1. Let P :
v0, v1, v2, · · · , vn−k−1 be a path of length n − k − 1 in T . Let i1, i2, · · · , ik
be integers such that 1 ≤ i1 < i2 < · · · < ik ≤ n − k − 2 and deg vij = 3
for 1 ≤ j ≤ k. Let uj be the vertex not on P that is adjacent to vij , where
1 ≤ j ≤ k. Furthermore, let f : V (T ) → {0, 1, · · · , n − 1} be the γ-labeling
of T defined by

f(vt) =

{
d(vt, v0) if t ≤ i1,
d(vt, v0) + max{j : ij < t} otherwise

and
f(uj) = 1 + f(vij ).

Since val(f) = n + k − 1, it follows that valmin(T ) ≤ n + k − 1.
Next, we show that valmin(T ) ≥ n + k − 1. Let

f : V (T ) → {0, 1, 2, · · · , n− 1}
be an arbitrary γ-labeling of T and let u, v ∈ V (T ) such that f(u) = 0 and
f(v) = n − 1. Let P be a u − v path in T . The length of P is at most
diam(T ) = n− k − 1. Also, by Lemma 3.3

∑

e∈E(P )

f ′(e) ≥ |f(u)− f(v)| = n− 1.

Since there are at least k edges of T not on P , it follows that

val(f) =
∑

e∈E(T )

f ′(e) ≥ (n− 1) + k,

and so valmin(T ) ≥ n + k − 1.

We now present a lower bound for the minimum value of a tree in terms of
its order, maximum degree, and diameter.
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Theorem 4.3. If T is a tree of order n ≥ 4, maximum degree ∆, and
diameter d, then

valmin(T ) ≥ 8n + ∆2 − 6∆− 4d + δ∆

4
,

where

δ∆ =

{
0 if ∆ is even,
1 if ∆ is odd.

Furthermore, this bound is sharp for paths and stars.

Proof. Let f be a γ-labeling of T and let u, v ∈ V (T ) such that f(u) = 0
and f(v) = n− 1. Let P be a u− v path in T . Let x be a vertex of T with
deg x = ∆. We consider two cases.

Case 1. ∆ = 2k for some integer k ≥ 1. Since (1) at most two edges of
T incident with x can be labeled by i for each i with 1 ≤ i ≤ (k − 1) and
(2) the length of P is at most d, it follows that

val(f) ≥ (n− 1) + 2[1 + 2 + · · ·+ (k − 1)] + [(n− 1− d)− (2k − 2)]

= 2n + k2 − 3k − d = 2n +
∆2

4
− 3∆

2
− d

=
8n + ∆2 − 6∆− 4d

4
.

Case 2. ∆ = 2k + 1 for some integer k ≥ 1. By the same reasoning
used in Case 1,

val(f) ≥ (n− 1) + 2[1 + 2 + · · ·+ (k − 1)] + k + [(n− 1− d)− (2k − 1)]

= 2n− 1 + k2 − 2k − d = 2n +
(∆− 1)2

4
−∆− d

=
8n + ∆2 − 6∆− 4d + 1

4
.

That this bound is sharp for paths and stars follows by Theorems B and C.
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5. Connected Graphs of Order n with Minimum
Value n + 1

In Theorem 3.6, all connected graphs of order n ≥ 4 having minimum value
n are characterized. In particular, if T is a caterpillar of order n ≥ 4 whose
only vertex of degree exceeding 2 has degree 3, then valmin(T ) = n. In
this section, we characterize those connected graphs of order n ≥ 5 having
minimum value n + 1. First, we show that every caterpillar of order n ≥ 5
whose unique vertex of degree exceeding 2 has degree 4 must have minimum
value n + 1.

Lemma 5.1. Let T be a caterpillar of order n ≥ 5. If T has a unique vertex
v with degree greater than 2 and deg v = 4, then

valmin(T ) = n + 1.

Proof. By Lemma 3.3, valmin(T ) ≥ n + 1. It remains to show that
valmin(T ) ≤ n + 1. Suppose that T is obtained from path v1, v2, · · · , vn−2

by adding the vertices vn−1 and vn and joining each of vn−1 and vn to a
vertex vk, where 2 ≤ k ≤ n− 3. Thus vk is the only vertex of degree greater
than 2 in T and deg vk = 4. Define a γ-labeling f of T by

f(vi) =





i− 1 if 1 ≤ i ≤ k − 1,
i if i = k,
i + 1 if k + 1 ≤ i ≤ n− 2,
k − 1 if i = n− 1,
k + 1 if i = n.

Since val(f) = n + 1, it follows that valmin(T ) ≤ n + 1.

For a fixed integer n, let T1 be the set of caterpillars T of order n ≥ 5 such
that T has a unique vertex v with degree greater than 2 and deg v = 4 (as
described in Lemma 5.1), let T2 be the set of trees T of order n such that T
is a caterpillar of order n ≥ 6 with ∆(T ) = 3 and T has exactly two vertices
of degree 3, and let T3 be the set of trees T of order n ≥ 7 such that T has a
unique vertex v of degree greater than 2 and deg v = 3, where the distance
between v and a nearest end-vertex of T is 2. By Lemma 5.1 and Theorems
4.1 and 4.2, we have the following.
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Corollary 5.2. Let T be a tree of order n. If T ∈ T1 ∪ T2 ∪ T3, then
valmin(T ) = n + 1.

Lemma 5.3. Each of the threes F1, F2, and F3 in Figure 3 of order n =
9, 8, 8, respectively, has minimum value n + 2, that is,

valmin(F1) = 11 and valmin(F2) = valmin(F3) = 10.

2

3

8

7

65410

.............................................

............................................

.................................

0
F1 F3

5
2

3

76410
F2

4

3
6

7521
....................................

....................................

.....................................

....................................

.......................................................................................................................................................................................

....................................

....................................

.....................................

............................................................................................................ ............................................................................................................ ....................................

.....................................

....................................

....................................

.............................................................................................................

Figure 3: The graphs F1, F2, and F3.

Proof. For each integer i with 1 ≤ i ≤ 3, a γ-labeling fi of Fi is shown
in Figure 3. Since val(f1) = 11 and val(f2) = val(f3) = 10, it follows that
valmin(F1) ≤ 11, valmin(F2) ≤ 10, and valmin(F3) ≤ 10.

Next, we show that valmin(F1) ≥ 11. Let g be γ-min labeling of F1 and
let u, v ∈ V (F1) such that g(u) = 0 and g(v) = 8. Suppose that P is a u− v
path in F1. Then

∑
e∈E(P ) f ′(e) ≥ 8 by Lemma 3.4. Since there are at least

three edges of F1 not in P , it follows that valmin(F1) = val(g) ≥ 8 + 3 = 11.
A similar argument shows that valmin(F2) ≥ 10, and valmin(F3) ≥ 10.

We now characterize all trees of order n ≥ 5 whose minimum value is n + 1.

Theorem 5.4. Let T be a tree of order n ≥ 5. Then valmin(T ) = n + 1 if
and only if T ∈ T1 ∪ T2 ∪ T3.

Proof. By Corollary 5.2, if T ∈ T1 ∪ T2 ∪ T3, then valmin(T ) = n + 1.
It therefore remains to verify the converse. We begin by establishing the
following three claims.

Claims. Let T be a tree of order n ≥ 7 such that valmin(T ) = n + 1 and
T /∈ T1 ∪ T2 ∪ T3. Then:

(1) 3 ≤ ∆(T ) ≤ 4.
(2) T has at most two vertices of degree greater than 2.
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(3) If v is a vertex of T with deg v ≥ 3, then the distance between v and a
nearest end-vertex in T is at most 2.

Proof of Claims. Since valmin(T ) = n + 1, it follows that T is not a
path by Theorem B and so ∆(T ) ≥ 3. If ∆(T ) ≥ 5, then valmin(T ) ≥
(n − 1) + 22 = n + 3 by Lemma 3.3, a contradiction. Thus 3 ≤ ∆(T ) ≤ 4
and so Claim (1) holds.

Next we verify Claim (2). Suppose that T has k ≥ 3 vertices of degree
greater than 2. Then T contains a caterpillar T ′ of order n′ as a subgraph
with ∆(T ′) = 3 such that T ′ has exactly three vertices of degree 3. By
Theorem 4.2, valmin(T ′) = n′ + 2. It then follows from Lemma 3.1 that

valmin(T ) ≥ [(n− 1)− (n′ − 1)] + valmin(T ′) ≥ (n− n′) + (n′ + 2) = n + 2,

a contradiction. Thus Claim (2) holds.

We now verify Claim (3). Let v be a vertex of T with deg v ≥ 3. If the
distance between v and a nearest end-vertex in T is greater than 2, then T
contains a subtree T ′′ of order n′′ such that (a) ∆(T ′′) = 3 and T ′′ has a
unique vertex v of degree 3 and (b) the distance d between v and a nearest
end-vertex in T ′′ is greater than 2. By Theorem 4.1,

valmin(T ′′) = n′ + d− 1 ≥ n′ + 2.

Again, by Lemma 3.1,

valmin(T ) ≥ [(n− 1)− (n′ − 1)] + valmin(T ′) ≥ (n− n′) + (n′ + 2) = n + 2,

a contradiction. Thus Claim (3) holds. This completes the proof of the
three claims.

We continue with the proof of the theorem. Assume, to the contrary,
that there is a tree T of order n ≥ 7 with valmin(T ) = n + 1 such that
T /∈ T1 ∪ T2 ∪ T3. By Claim (1), 3 ≤ ∆(T ) ≤ 4. We consider two cases,
according to whether ∆(T ) = 3 or ∆(T ) = 4.

Case 1. ∆(T ) = 3. If T is a caterpillar, then T contains exactly two
vertices of degree 3 by Theorem 4.2. However then, T ∈ T2, a contradiction.
Thus T is not a caterpillar. If T has exactly one vertex x of degree 3, then
the distance between x and a nearest end-vertex of T is 2 by Theorem 4.1.
However then, T ∈ T3, again a contradiction. Thus T is not a caterpillar
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and T contains exactly two vertices u and v of degree 3 by Claim (2).
Furthermore, we may assume that the distance d from u to a nearest end-
vertex of T is 2 by Claim (3). We consider three subcases.

Subcase 1.1. d(u, v) ≥ 3. Then T contains two edge-disjoint subgraphs
H1 and H2 such that H1 is isomorphic to the graph F in Lemma 3.5 and H2

is isomorphic to K1,3. Let f be a γ-min labeling of T . Since valmin(H1) = 8
by Lemma 3.5 and valmin(H2) = 4 by Theorem C, it follows by Lemma 3.2
that

valmin(T ) ≥ [(n− 1)− 6− 3] + (8 + 4) = n + 2,

a contradiction.

Subcase 1.2. d(u, v) = 2. Then T contains the graph F1 of Lemma 5.3
as a subgraph. Since the size of F1 is 8 and valmin(F1) = 11 by Lemma 5.3,
it follows from Lemma 3.1 that valmin(T ) ≥ [(n−1)−8]+11 = n+2, which
produces a contradiction.

Subcase 1.3. d(u, v) = 1. Then T contains the graph F2 of Lemma 5.3
as a subgraph. Since the size of F2 is 7 and valmin(F2) = 10 by Lemma 5.3,
it follows from Lemma 3.1 that valmin(T ) ≥ [(n − 1) − 7] + 10 = n + 2, a
contradiction.

Case 2. ∆(T ) = 4. There are two subcases.

Subcase 2.1. T has a unique vertex v of degree exceeding 2. Then deg v =
4. If T is a caterpillar, then T ∈ T1, a contradiction. Thus T is not a
caterpillar. However then, T contains the graph F3 of Lemma 5.3 as a
subgraph. Since the size of F3 is 7 and valmin(F3) = 10 by Lemma 5.3,
it follows from Lemma 3.1 that valmin(T ) ≥ [(n − 1) − 7] + 10 = n + 2, a
contradiction.

Subcase 2.2. T has two vertices u and v of degree exceeding 2. If T is
not a caterpillar, then valmin(T ) ≥ n + 2 by the proofs of Subcases 1.1, 1.2,
and 1.3 in Case 1, which is a contradiction. Thus we may assume that T is
a caterpillar and deg u = 4. There are two subcases.

Subcase 2.2.1. d(u, v) ≥ 2. Then T contains two edge-disjoint subgraphs
isomorphic to K1,4 and K1,3, respectively. Let f be a γ-min labeling of T .
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Since valmin(K1,4) = 6 and valmin(K1,3) = 4 by Theorem C, it follows from
Lemma 3.2 that valmin(T ) ≥ [(n−1)−4−3]+6+4 = n+2, a contradiction.

Subcase 2.2.2. d(u, v) = 1. Then T contains the double star S4,3 as a
subgraph. Since the size of S4,3 is 6 and valmin(S4,3) = 9 by Proposition 2.1,
it follows by Lemma 3.1 that valmin(T ) ≥ [(n − 1) − 6] + 9 = n + 2, a
contradiction.

We next characterize all connected graphs G of order n for which valmin(G) =
n + 1. First, we present two lemmas. Since the proofs are straightforward,
we omit them.

Lemma 5.5. For the graph H of Figure 4, valmin(H) = 9.
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H :

Figure 4: The graph H of Lemma 5.5.

Let F be the set of all graphs of order n ≥ 3 obtained from the path
v1, v2, · · · , vn by joining vi and vi+2 for some i with 1 ≤ i ≤ n− 2.

Lemma 5.6. If F ∈ F , then valmin(F ) = n + 1.

Theorem 5.7. Let G be a connected graph of order n. Then valmin(G) =
n + 1 if and only if G ∈ T1 ∪ T2 ∪ T3 ∪ F .

Proof. We have seen in Theorem 5.4 and Lemma 5.6 that if G ∈ T1∪T2∪
T3∪F , then valmin(G) = n+1. For the converse, let G be a connected graph
for which valmin(G) = n+1 such that G /∈ T1 ∪T2 ∪T3. It then follows from
Theorem 5.4 that G is not a tree. Hence G contains cycles. By Theorem B,
G contains exactly one cycle C and so G has size n. Suppose that C is a
k-cycle, where k ≥ 3. Since valmin(G) = 2k− 2 by Theorem D, it follows by
Lemma 3.1 that

valmin(G) ≥ (n− k) + (2k − 2) = n + k − 2.
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Since valmin(G) = n + 1, the cycle C is a triangle. If G contains the graph
H of Figure 4 as a subgraph, then by Lemmas 5.5 and 3.1,

valmin(G) ≥ (n− 6) + valmin(H) = (n− 6) + 9 = n + 3,

which is impossible. Therefore, at least one vertex of C has degree 2 in G.
Furthermore, G contains no vertex of degree 4 or more; for otherwise, G
contains K1,4 as a subgraph and by Lemma 3.1 and Theorem C,

valmin(G) ≥ (n− 4) + valmin(K1,4) = (n− 4) + 6 = n + 2,

a contradiction. Also, observe that there cannot be a vertex of degree 3 that
does not belong to C; for otherwise, G contains edge-disjoint subgraphs K3

and K1,3 and by Lemma 3.2, Theorems C and D,

valmin(G) ≥ (n− 3− 3) + valmin(K3) + valmin(K1,3)

= (n− 6) + 4 + 4 = n + 2,

which is impossible. This implies that G ∈ F .
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