ON THE p-DOMINATION NUMBER OF CACTUS GRAPHS

Mostafa Blidia
Mustapha Chellali
Department of Mathematics, University of Blida
B.P. 270, Blida, Algeria
e-mail: mblidia@hotmail.com
e-mail: mchellali@hotmail.com
AND
Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen
Templergraben 55, D-52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let p be a positive integer and $G=(V, E)$ a graph. A subset S of V is a p-dominating set if every vertex of $V-S$ is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number $\gamma_{p}(G)$. It is proved for a cactus graph G that $\gamma_{p}(G) \leqslant\left(|V|+\left|L_{p}(G)\right|+c(G)\right) / 2$, for every positive integer $p \geqslant 2$, where $L_{p}(G)$ is the set of vertices of G of degree at most $p-1$ and $c(G)$ is the number of odd cycles in G.

Keywords: p-domination number, cactus graphs.
2000 Mathematics Subject Classification: 05C69.

1. Introduction

Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The order of G is $n(G)=|V(G)|$ and the degree of a vertex v, denoted by $\operatorname{deg}_{G}(v)$, is the number of vertices adjacent to v. A vertex of degree one is called a leaf and its neighbor is called a support vertex. A vertex of V is called a cut vertex if removing it from G increases the number of components of G. A graph G is called a cactus graph if each edge of G is contained in at most one cycle. A unicycle graph is a graph with exactly one cycle. A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with, respectively p and q leaves attached at each support vertex, is denoted by $S_{p, q}$.

For a positive integer p, a subset S of $V(G)$ is a p-dominating set if every vertex not in S is adjacent to at least p vertices of S. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality of a p-dominating set of G. Note that every graph G has a p-dominating set, since $V(G)$ is such a set. Also the 1-domination number $\gamma_{1}(G)$ is the usual domination number $\gamma(G)$. The concept of p-domination was introduced by Fink and Jacobson [2, 3]. For more details on domination and its variations see the books of Haynes, Hedetniemi, and Slater [4, 5].

We make a straightforward observation.

Observation 1. Every p-dominating set of a graph G contains any vertex of degree at most $p-1$.

In this paper we present an upper bound for the p-domination number for cactus graphs in terms of the order, the number of odd cycles and the number of vertices of degrees at most $p-1$.

The following result due to Blidia et al. [1] will be useful for the next. Let $L_{p}(G)$ denote the set $\left\{x \in V(G): \operatorname{deg}_{G}(x) \leqslant p-1\right\}$.

Theorem 2 (Blidia, Chellali and Volkmann [1]). Let p be a positive integer. If G is a bipartite graph then

$$
\gamma_{p}(G) \leqslant\left(n+\left|L_{p}(G)\right|\right) / 2
$$

2. Main Results

We begin by giving an upper bound for the p-domination number for connected unicycle graphs.

Theorem 3. Let $p \geqslant 2$ be a positive integer. If G is a connected unicycle graph then

$$
\gamma_{p}(G) \leqslant\left(n+\left|L_{p}(G)\right|+1\right) / 2
$$

and this bound is sharp.
Proof. Let G be a connected unicycle graph. If G is bipartite then the result is valid by Theorem 2. So assume that G contains an odd cycle denoted by C. If $G=C$, then $\gamma_{p}(G)=n$ if $p \geqslant 3$ and $\gamma_{p}(G)=(n+1) / 2$ if $p=2$, in both cases the result holds. Thus we assume that $G \neq C$, that is G contains at least one leaf.

Suppose that the result does not hold and let G be the smallest connected unicycle graph such that $\gamma_{p}(G)>\left(n+\left|L_{p}(G)\right|+1\right) / 2$. We claim that every vertex on C has degree exactly p. Suppose to the contrary that there is a vertex $x \in C$ such that $\operatorname{deg}_{G}(x) \neq p$ and let y be one of its two neighbors on C. Let G^{\prime} be the spanning graph of G obtained by removing the edge $x y$. Then G^{\prime} is tree and so a bipartite graph. We also have $\left|L_{p}\left(G^{\prime}\right)\right| \leqslant\left|L_{p}(G)\right|+1$ and $n(G)=n\left(G^{\prime}\right)$. According to Theorem 2, we deduce that

$$
\gamma_{p}(G) \leqslant \gamma_{p}\left(G^{\prime}\right) \leqslant\left(n\left(G^{\prime}\right)+\left|L_{p}\left(G^{\prime}\right)\right|\right) / 2 \leqslant\left(n(G)+\left|L_{p}(G)\right|+1\right) / 2
$$

a contradiction with our assumption.
Similarly, we will show that every vertex not on C and different to a leaf has degree at least p. Assume to the contrary that there is a vertex $x \in V(G)-C$ different to a leaf with $\operatorname{deg}_{G}(x) \leqslant p-1$ and let z be its neighbor in the unique path from x to C. Let G_{1} be the connected unicycle subgraph of G containing x and obtained by removing all the edges incident to x excepted the edge $x z$, and let G_{2} be the component containing x by removing the edge $x z$. Let D_{1} and D_{2} denote a $\gamma_{p}\left(G_{1}\right)$-set and a $\gamma_{p}\left(G_{2}\right)$ set, respectively. Clearly G_{1} contains C and G_{2} is a tree, $x \in D_{1} \cap D_{2}$, $x \in L_{p}\left(G_{1}\right) \cap L_{p}\left(G_{2}\right),\left|L_{p}\left(G_{1}\right)\right|+\left|L_{p}\left(G_{2}\right)\right|=\left|L_{p}(G)\right|+1$ and $n\left(G_{1}\right)+n\left(G_{2}\right)=$ $n(G)+1$. Furthermore, $D_{1} \cup D_{2}$ is a p-dominating set of G. In addition, G_{1} and G_{2} have order less than G and so satisfy the theorem, implying that

$$
\begin{aligned}
\gamma_{p}(G) & \leqslant\left|D_{1} \cup D_{2}\right|=\gamma_{p}\left(G_{1}\right)+\gamma_{p}\left(G_{2}\right)-1 \\
& \leqslant\left(n\left(G_{1}\right)+\left|L_{p}\left(G_{1}\right)\right|+1\right) / 2+\left(n\left(G_{2}\right)+\left|L_{p}\left(G_{2}\right)\right|\right) / 2-1 \\
& \leqslant\left(n+\left|L_{p}(G)\right|+1\right) / 2
\end{aligned}
$$

contradicting the assumption.

Suppose now that $V(G)-C$ contains a support vertex. Let a be a support vertex of G of maximum distance from C. As seen above, a has degree at least p. Let $G^{\prime}=G-\left(L_{a} \cup\{a\}\right)$. Then $\gamma_{p}\left(G^{\prime}\right)+\left|L_{a}\right|=\gamma_{p}(G), n\left(G^{\prime}\right)=$ $n(G)-\left|L_{a}\right|-1$ and $L_{p}(G) \geqslant L_{p}\left(G^{\prime}\right)+\left|L_{a}\right|-1$. It follows that

$$
\gamma_{p}\left(G^{\prime}\right)+\left|L_{a}\right|=\gamma_{p}(G)>\left(n(G)+\left|L_{p}(G)\right|+1\right) / 2
$$

implying that

$$
\gamma_{p}\left(G^{\prime}\right)>\left(n(G)+\left|L_{p}(G)\right|+1-2\left|L_{a}\right|\right) / 2
$$

and so

$$
\gamma_{p}\left(G^{\prime}\right)>\left(n\left(G^{\prime}\right)+\left|L_{p}\left(G^{\prime}\right)\right|+1\right) / 2
$$

contradicting our assumption that G is the smallest graph that does not satisfy the theorem.

Consequently, every vertex of $V(G)-C$ must be a leaf and so every vertex on C is adjacent to exactly $p-2$ leaves, which implies that

$$
\gamma_{p}(G)=n-(|V(C)|-1) / 2=\left(n(G)+\left|L_{p}(G)\right|+1\right) / 2
$$

a contradiction.
To see that this bound is sharp, consider the graph G formed by an odd cycle C where each vertex on C is adjacent to exactly $p-2$ vertices. Then $\gamma_{p}(G)=n-(|V(C)|-1) / 2=\left(n(G)+\left|L_{p}(G)\right|+1\right) / 2$.

Theorem 4. Let $p \geqslant 2$ be a positive integer. If G is a connected cactus graph with $c(G)$ odd cycles then,

$$
\gamma_{p}(G) \leqslant\left(n+\left|L_{p}(G)\right|+c(G)\right) / 2,
$$

and this bound is sharp.
Proof. If G is a bipartite graph, then by Theorem 2 the result holds. If G is a unicycle graph then by Theorem 3 the result is also valid. So consider a cactus graph G containing at least two cycles with one of odd length. Assume that the result does not hold and let G be the smallest cactus graph such that $\gamma_{p}(G)>\left(n(G)+\left|L_{p}(G)\right|+c(G)\right) / 2$. We also assume that among all such graphs, G is the one having the fewest edges.

First, let u be a vertex on an odd cycle C of G and assume that $\operatorname{deg}_{G}(u) \neq p$. Let G^{\prime} be the spanning graph of G obtained by removing an
edge of C incident with u. Then $\left|L_{p}\left(G^{\prime}\right)\right| \leqslant\left|L_{p}(G)\right|+1$ and $c\left(G^{\prime}\right)=c(G)-1$. Also G^{\prime} satisfies the result and so

$$
\begin{aligned}
\gamma_{p}(G) & \leqslant \gamma_{p}\left(G^{\prime}\right) \leqslant\left(n\left(G^{\prime}\right)+\left|L_{p}\left(G^{\prime}\right)\right|+c\left(G^{\prime}\right)\right) / 2 \\
& \leqslant\left(n(G)+\left|L_{p}(G)\right|+1+c(G)-1\right) / 2=\left(n+\left|L_{p}(G)\right|+c(G)\right) / 2
\end{aligned}
$$

a contradiction. Thus every vertex in an odd cycle has degree exactly p.
Now consider a vertex v different from a leaf and contained in no odd cycle. Then, either v is a cut vertex or v is on an even cycle and $\operatorname{deg}_{G}(v)=2$. Suppose first that v is a cut vertex with $\operatorname{deg}_{G}(v)<p$. Let G_{1} and G_{2} be two connected cactus subgraphs of G with $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ having v as a unique common vertex. Then, $c(G)=c\left(G_{1}\right)+c\left(G_{2}\right), n(G)=n\left(G_{1}\right)+$ $n\left(G_{2}\right)-1,\left|L_{p}(G)\right|=\left|L_{p}\left(G_{1}\right)\right|+\left|L_{p}\left(G_{2}\right)\right|-1$. Now let D_{1} and D_{2} denote a $\gamma_{p}\left(G_{1}\right)$-set and a $\gamma_{p}\left(G_{2}\right)$-set, respectively. Then $v \in D_{1} \cup D_{2}$ and $D_{1} \cup D_{2}$ is a p-dominating set of G. Since G_{1} and G_{2} satisfy the result,

$$
\begin{aligned}
\gamma_{p}(G) & \leqslant\left|D_{1} \cup D_{2}\right|=\left|D_{1}\right|+\left|D_{2}\right|-1 \\
& \leqslant\left(n\left(G_{1}\right)+\left|L_{p}\left(G_{1}\right)\right|+c\left(G_{1}\right)\right) / 2+\left(n\left(G_{2}\right)+\left|L_{p}\left(G_{2}\right)\right|+c\left(G_{2}\right)\right) / 2-1 \\
& \leqslant\left(n(G)+\left|L_{p}(G)\right|+c(G)\right) / 2
\end{aligned}
$$

a contradiction. Consequently, every cut vertex contained in no odd cycle has degree at least p.

Now let v be a vertex on an even cycle with $\operatorname{deg}_{G}(v)=2$. Since we have assumed in the beginning of the proof that G has at least two cycles, we have $p \geqslant 3$. We claim that each neighbor of v has degree exactly p. Indeed, let u be a neighbor of v and assume that $\operatorname{deg}_{G}(u) \neq p$. Then every $\gamma_{p}\left(G^{\prime}\right)$-set S is a p-dominating set of G where G^{\prime} is obtained from G by removing the edge $v u$. So

$$
\gamma_{p}(G) \leqslant|S| \leqslant\left(n\left(G^{\prime}\right)+\left|L_{p}\left(G^{\prime}\right)\right|+c\left(G^{\prime}\right)\right) / 2=\left(n(G)+\left|L_{p}(G)\right|+c(G)\right) / 2
$$

a contradiction. Thus $\operatorname{deg}_{G}(u)=p$.
Now let C denote an odd cycle of length at least 5 and let w be a vertex on C, a and b its neighbors on C. Delete the edges $w a, w b$. The remaining graph has two components for otherwise $w a$ or $w b$ would be contained in two cycles. Let G_{1} be the component containing w and G_{2} the other component where a new edge is added joining a and b. Then both G_{1} and G_{2} verify the theorem. Also $\operatorname{deg}_{G_{2}}(a)=\operatorname{deg}_{G_{2}}(b)=p,\left|L_{p}\left(G_{1}\right)\right|+\left|L_{p}\left(G_{2}\right)\right| \leqslant\left|L_{p}(G)\right|+1$
and $c\left(G_{1}\right)+c\left(G_{2}\right)=c(G)-1$. Let D_{1} and D_{2} be a $\gamma_{p}\left(G_{1}\right)$-set and a $\gamma_{p}\left(G_{2}\right)$ set, respectively. Then D_{1} contains w since $\operatorname{deg}_{G_{1}}(w)=p-2$. It can be checked that $D_{1} \cup D_{2}$ is a p-dominating set of G. It follows that

$$
\begin{aligned}
\gamma_{p}(G) & \leqslant\left|D_{1} \cup D_{2}\right| \\
& \leqslant\left(n\left(G_{1}\right)+\left|L_{p}\left(G_{1}\right)\right|+c\left(G_{1}\right)\right) / 2+\left(n\left(G_{2}\right)+\left|L_{p}\left(G_{2}\right)\right|+c\left(G_{2}\right)\right) / 2 \\
& \leqslant\left(n(G)+\left|L_{p}(G)\right|+1+c(G)-1\right) / 2=\left(n(G)+\left|L_{p}(G)\right|+c(G)\right) / 2
\end{aligned}
$$

contradicting our assumption. Thus it remains to investigate the case that each odd cycle is a triangle.

Let $C=u v w$ be a triangle of G. If $p=2$ then as claimed before $G=C_{3}$ and the theorem is valid. So assume that $p \geqslant 3$. Let G_{u}, G_{v} and G_{w} be the three components of G containing u, v, w, respectively, by removing the edges $u v, u w$ and $v w$. Suppose that each component contains at most one vertex of degree at least p and let j the number of vertices of degree at least p in the three components. Then $j \leqslant 3$ and $\left|L_{p}(G)\right|=n-3-j$. In this case, G_{u} is either a star of center vertex u with $p-2$ leaves, or star of order at least 4 where u is a leaf if $p=3$, or a double star $S_{p-3, p-1}$ with u as a support vertex if $p \geqslant 4$, or a graph formed by a cycle C_{4} where $u \in V\left(C_{4}\right)$ and is adjacent to $p-4$ leaves (if $p \geqslant 4$), its neighbors on the cycle have degree 2 and the remaining vertex of the cycle is adjacent to $p-2$ leaves. Likewise G_{v} and G_{w}. If each component is a tree then G is a unicycle and the result follows by Theorem 3. So we assume that G_{u} is a component containing the cycle C_{4}. Now it is a routine matter to check that

$$
\gamma_{p}(G)=n-(j+1) \leqslant\left(n(G)+\left|L_{p}(G)\right|+c(G)\right) / 2=n-1-j / 2,
$$

a contradiction.
Thus we may assume, without loss of generality, that G_{u} contains at least two vertices of degree at least p. Let G^{\prime} be the component containing v, w by removing the edges $u v, u w$. Let G_{0} be the graph constructed from G^{\prime} by attaching v and w to the support vertices say a, b of a double star $S_{p-2, p-2}$ (so v, w, a, b induce a cycle C_{4}) and let D_{u} and D_{0} a $\gamma_{p}\left(G_{u}\right)$-set and a $\gamma_{p}\left(G_{0}\right)$-set, respectively. Then, without loss of generality, D_{0} contains v, w, a all the leaves adjacent to a and b. Also D_{u} contains u since it has degree at most $p-2$. Obviously $D_{u} \cup\left(D_{0}-\left(\{a\} \cup L_{a} \cup L_{b}\right)\right)$ is a p-dominating set of G. It is easy to check that G_{u} contains at least $2 p-1$ vertices. Thus G_{0} has order less than G since we have added $2 p-2$ vertices and so both
G_{u}, G_{0} verify the result. On the other hand, $n(G)=n\left(G_{u}\right)+n\left(G_{0}\right)-2 p+2$, $L_{p}(G)=L_{p}\left(G_{u}\right)-1+L_{p}\left(G_{0}\right)-2 p+4, c(G)=c\left(G_{u}\right)+c\left(G_{0}\right)+1$. Consequently

$$
\begin{aligned}
\gamma_{p}(G) \leqslant & \left|D_{u} \cup\left(D_{0}-\left(\{a\} \cup L_{a} \cup L_{b}\right)\right)\right|=\gamma_{p}\left(G_{u}\right)+\gamma_{p}\left(G_{0}\right)-2 p+3 \\
\leqslant & \left(n\left(G_{u}\right)+\left|L_{p}\left(G_{u}\right)\right|+c\left(G_{u}\right)\right) / 2 \\
& +\left(n\left(G_{0}\right)+\left|L_{p}\left(G_{0}\right)\right|+c\left(G_{0}\right)\right) / 2-2 p+3 \\
\leqslant & \left(n(G)+\left|L_{p}(G)\right|+c(G)\right) / 2,
\end{aligned}
$$

a contradiction with our assumption.
That this bound is sharp may be seen by considering the graph G_{k} formed by $k \geqslant 1$ triangles where each vertex of the triangle is attached to $p-2$ leaves, and identifying a vertex of every triangle with a vertex of a path P_{k}. Then $n\left(G_{k}\right)=(3 p-3) k,\left|L_{p}\left(G_{k}\right)\right|=3(p-2) k, c\left(G_{k}\right)=k$ and $\gamma_{p}(G)=\left(n\left(G_{k}\right)+\left|L_{p}\left(G_{k}\right)\right|+c\left(G_{k}\right)\right) / 2=(3 p-4) k$.

References

[1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, submitted for publication.
[2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
[3] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 301-312.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

Received 24 March 2004
Revised 26 August 2004

