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Abstract

Let p be a positive integer and G = (V, E) a graph. A subset S
of V is a p-dominating set if every vertex of V − S is dominated at
least p times. The minimum cardinality of a p-dominating set a of G
is the p-domination number γp(G). It is proved for a cactus graph G
that γp(G) 6 (|V |+ |Lp(G)|+c(G))/2, for every positive integer p > 2,
where Lp(G) is the set of vertices of G of degree at most p − 1 and
c(G) is the number of odd cycles in G.
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1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G).
The order of G is n(G) = |V (G)| and the degree of a vertex v, denoted by
degG(v), is the number of vertices adjacent to v. A vertex of degree one is
called a leaf and its neighbor is called a support vertex. A vertex of V is
called a cut vertex if removing it from G increases the number of components
of G. A graph G is called a cactus graph if each edge of G is contained in
at most one cycle. A unicycle graph is a graph with exactly one cycle. A
tree T is a double star if it contains exactly two vertices that are not leaves.
A double star with, respectively p and q leaves attached at each support
vertex, is denoted by Sp,q.

For a positive integer p, a subset S of V (G) is a p-dominating set if
every vertex not in S is adjacent to at least p vertices of S. The p-domination
number γp(G) is the minimum cardinality of a p-dominating set of G. Note
that every graph G has a p-dominating set, since V (G) is such a set. Also
the 1-domination number γ1(G) is the usual domination number γ(G). The
concept of p-domination was introduced by Fink and Jacobson [2, 3]. For
more details on domination and its variations see the books of Haynes,
Hedetniemi, and Slater [4, 5].

We make a straightforward observation.

Observation 1. Every p-dominating set of a graph G contains any vertex
of degree at most p− 1.

In this paper we present an upper bound for the p-domination number for
cactus graphs in terms of the order, the number of odd cycles and the number
of vertices of degrees at most p− 1.

The following result due to Blidia et al. [1] will be useful for the next.
Let Lp(G) denote the set {x ∈ V (G) : degG(x) 6 p− 1}.

Theorem 2 (Blidia, Chellali and Volkmann [1]). Let p be a positive integer.
If G is a bipartite graph then

γp(G) 6 (n + |Lp(G)|)/2 .
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2. Main Results

We begin by giving an upper bound for the p-domination number for con-
nected unicycle graphs.
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Theorem 3. Let p > 2 be a positive integer. If G is a connected unicycle
graph then

γp(G) 6 (n + |Lp(G)|+ 1)/2

and this bound is sharp.

Proof. Let G be a connected unicycle graph. If G is bipartite then the
result is valid by Theorem 2. So assume that G contains an odd cycle
denoted by C. If G = C, then γp(G) = n if p > 3 and γp(G) = (n + 1)/2 if
p = 2, in both cases the result holds. Thus we assume that G 6= C, that is
G contains at least one leaf.

Suppose that the result does not hold and let G be the smallest con-
nected unicycle graph such that γp(G) > (n+ |Lp(G)|+1)/2. We claim that
every vertex on C has degree exactly p. Suppose to the contrary that there
is a vertex x ∈ C such that degG(x) 6= p and let y be one of its two neighbors
on C. Let G′ be the spanning graph of G obtained by removing the edge xy.
Then G′ is tree and so a bipartite graph. We also have |Lp(G′)| 6 |Lp(G)|+1
and n(G) = n(G′). According to Theorem 2, we deduce that

γp(G) 6 γp(G′) 6 (n(G′) +
∣∣Lp(G′)

∣∣)/2 6 (n(G) + |Lp(G)|+ 1)/2,

a contradiction with our assumption.
Similarly, we will show that every vertex not on C and different to a

leaf has degree at least p. Assume to the contrary that there is a vertex
x ∈ V (G) − C different to a leaf with degG(x) 6 p − 1 and let z be its
neighbor in the unique path from x to C. Let G1 be the connected unicycle
subgraph of G containing x and obtained by removing all the edges incident
to x excepted the edge xz, and let G2 be the component containing x by
removing the edge xz. Let D1 and D2 denote a γp(G1)-set and a γp(G2)-
set, respectively. Clearly G1 contains C and G2 is a tree, x ∈ D1 ∩ D2,
x ∈ Lp(G1)∩Lp(G2), |Lp(G1)|+|Lp(G2)| = |Lp(G)|+1 and n(G1)+n(G2) =
n(G) + 1. Furthermore, D1 ∪D2 is a p-dominating set of G. In addition, G1

and G2 have order less than G and so satisfy the theorem, implying that

γp(G) 6 |D1 ∪D2| = γp(G1) + γp(G2)− 1

6 (n(G1) + |Lp(G1)|+ 1)/2 + (n(G2) + |Lp(G2)|)/2− 1

6 (n + |Lp(G)|+ 1)/2,

contradicting the assumption.
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Suppose now that V (G)−C contains a support vertex. Let a be a support
vertex of G of maximum distance from C. As seen above, a has degree at
least p. Let G′ = G − (La ∪ {a}). Then γp(G′) + |La| = γp(G), n(G′) =
n(G)− |La| − 1 and Lp(G) > Lp(G′) + |La| − 1. It follows that

γp(G′) + |La| = γp(G) > (n(G) + |Lp(G)|+ 1)/2

implying that

γp(G′) > (n(G) + |Lp(G)|+ 1− 2 |La|)/2

and so
γp(G′) > (n(G′) +

∣∣Lp(G′)
∣∣ + 1)/2

contradicting our assumption that G is the smallest graph that does not
satisfy the theorem.

Consequently, every vertex of V (G) − C must be a leaf and so every
vertex on C is adjacent to exactly p− 2 leaves, which implies that

γp(G) = n− (|V (C)| − 1)/2 = (n(G) + |Lp(G)|+ 1)/2

a contradiction.
To see that this bound is sharp, consider the graph G formed by an odd

cycle C where each vertex on C is adjacent to exactly p− 2 vertices. Then
γp(G) = n− (|V (C)| − 1)/2 = (n(G) + |Lp(G)|+ 1)/2.

Theorem 4. Let p > 2 be a positive integer. If G is a connected cactus
graph with c(G) odd cycles then,

γp(G) 6 (n + |Lp(G)|+ c(G))/2,

and this bound is sharp.

Proof. If G is a bipartite graph, then by Theorem 2 the result holds. If G
is a unicycle graph then by Theorem 3 the result is also valid. So consider
a cactus graph G containing at least two cycles with one of odd length.
Assume that the result does not hold and let G be the smallest cactus graph
such that γp(G) > (n(G) + |Lp(G)|+ c(G))/2. We also assume that among
all such graphs, G is the one having the fewest edges.

First, let u be a vertex on an odd cycle C of G and assume that
degG(u) 6= p. Let G′ be the spanning graph of G obtained by removing an
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edge of C incident with u. Then |Lp(G′)| 6 |Lp(G)|+1 and c(G′) = c(G)−1.
Also G′ satisfies the result and so

γp(G) 6 γp(G′) 6 (n(G′) +
∣∣Lp(G′)

∣∣ + c(G′))/2

6 (n(G) + |Lp(G)|+ 1 + c(G)− 1)/2 = (n + |Lp(G)|+ c(G))/2 ,

a contradiction. Thus every vertex in an odd cycle has degree exactly p.
Now consider a vertex v different from a leaf and contained in no odd

cycle. Then, either v is a cut vertex or v is on an even cycle and degG(v) = 2.
Suppose first that v is a cut vertex with degG(v) < p. Let G1 and G2 be
two connected cactus subgraphs of G with V (G) = V (G1)∪V (G2) having v
as a unique common vertex. Then, c(G) = c(G1) + c(G2), n(G) = n(G1) +
n(G2)− 1, |Lp(G)| = |Lp(G1)|+ |Lp(G2)| − 1. Now let D1 and D2 denote a
γp(G1)-set and a γp(G2)-set, respectively. Then v ∈ D1 ∪D2 and D1 ∪D2

is a p-dominating set of G. Since G1 and G2 satisfy the result,

γp(G) 6 |D1 ∪D2| = |D1|+ |D2| − 1

6 (n(G1) + |Lp(G1)|+ c(G1))/2 + (n(G2) + |Lp(G2)|+ c(G2))/2− 1

6 (n(G) + |Lp(G)|+ c(G))/2 ,

a contradiction. Consequently, every cut vertex contained in no odd cycle
has degree at least p.

Now let v be a vertex on an even cycle with degG(v) = 2. Since we have
assumed in the beginning of the proof that G has at least two cycles, we have
p > 3. We claim that each neighbor of v has degree exactly p. Indeed, let
u be a neighbor of v and assume that degG(u) 6= p. Then every γp(G′)-set
S is a p-dominating set of G where G′ is obtained from G by removing the
edge vu. So

γp(G) 6 |S| 6 (n(G′) +
∣∣Lp(G′)

∣∣ + c(G′))/2 = (n(G) + |Lp(G)|+ c(G))/2 ,

a contradiction. Thus degG(u) = p.

Now let C denote an odd cycle of length at least 5 and let w be a vertex
on C, a and b its neighbors on C. Delete the edges wa, wb. The remaining
graph has two components for otherwise wa or wb would be contained in two
cycles. Let G1 be the component containing w and G2 the other component
where a new edge is added joining a and b. Then both G1 and G2 verify the
theorem. Also degG2

(a) = degG2
(b) = p, |Lp(G1)|+ |Lp(G2)| 6 |Lp(G)|+ 1
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and c(G1)+ c(G2) = c(G)−1. Let D1 and D2 be a γp(G1)-set and a γp(G2)-
set, respectively. Then D1 contains w since degG1

(w) = p − 2. It can be
checked that D1 ∪D2 is a p-dominating set of G. It follows that

γp(G) 6 |D1 ∪D2|
6 (n(G1) + |Lp(G1)|+ c(G1))/2 + (n(G2) + |Lp(G2)|+ c(G2))/2

6 (n(G) + |Lp(G)|+ 1 + c(G)− 1)/2 = (n(G) + |Lp(G)|+ c(G))/2

contradicting our assumption. Thus it remains to investigate the case that
each odd cycle is a triangle.

Let C = uvw be a triangle of G. If p = 2 then as claimed before G = C3

and the theorem is valid. So assume that p > 3. Let Gu, Gv and Gw be
the three components of G containing u, v, w, respectively, by removing the
edges uv, uw and vw. Suppose that each component contains at most one
vertex of degree at least p and let j the number of vertices of degree at least
p in the three components. Then j 6 3 and |Lp(G)| = n − 3 − j. In this
case, Gu is either a star of center vertex u with p− 2 leaves, or star of order
at least 4 where u is a leaf if p = 3, or a double star Sp−3,p−1 with u as a
support vertex if p > 4, or a graph formed by a cycle C4 where u ∈ V (C4)
and is adjacent to p − 4 leaves (if p > 4), its neighbors on the cycle have
degree 2 and the remaining vertex of the cycle is adjacent to p − 2 leaves.
Likewise Gv and Gw. If each component is a tree then G is a unicycle and
the result follows by Theorem 3. So we assume that Gu is a component
containing the cycle C4. Now it is a routine matter to check that

γp(G) = n− (j + 1) 6 (n(G) + |Lp(G)|+ c(G))/2 = n− 1− j/2 ,

a contradiction.
Thus we may assume, without loss of generality, that Gu contains at

least two vertices of degree at least p. Let G′ be the component containing
v, w by removing the edges uv, uw. Let G0 be the graph constructed from
G′ by attaching v and w to the support vertices say a, b of a double star
Sp−2,p−2 (so v, w, a, b induce a cycle C4) and let Du and D0 a γp(Gu)-set
and a γp(G0)-set, respectively. Then, without loss of generality, D0 contains
v, w, a all the leaves adjacent to a and b. Also Du contains u since it has
degree at most p−2. Obviously Du∪(D0−({a}∪La∪Lb)) is a p-dominating
set of G. It is easy to check that Gu contains at least 2p− 1 vertices. Thus
G0 has order less than G since we have added 2p − 2 vertices and so both



362 M. Blidia, M. Chellali and L. Volkmann

Gu, G0 verify the result. On the other hand, n(G) = n(Gu)+n(G0)−2p+2,
Lp(G) = Lp(Gu)−1+Lp(G0)−2p+4, c(G) = c(Gu)+c(G0)+1. Consequently

γp(G) 6 |Du ∪ (D0 − ({a} ∪ La ∪ Lb))| = γp(Gu) + γp(G0)− 2p + 3

6 (n(Gu) + |Lp(Gu)|+ c(Gu))/2

+ (n(G0) + |Lp(G0)|+ c(G0))/2− 2p + 3

6 (n(G) + |Lp(G)|+ c(G))/2 ,

a contradiction with our assumption.
That this bound is sharp may be seen by considering the graph Gk

formed by k > 1 triangles where each vertex of the triangle is attached to
p − 2 leaves, and identifying a vertex of every triangle with a vertex of a
path Pk. Then n(Gk) = (3p − 3)k, |Lp(Gk)| = 3(p − 2)k, c(Gk) = k and
γp(G) = (n(Gk) + |Lp(Gk)|+ c(Gk))/2 = (3p− 4)k.
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