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Abstract

The Directed Path Partition Conjecture is the following: If D is
a digraph that contains no path with more than A\ vertices then, for
every pair (a,b) of positive integers with A = a + b, there exists a
vertex partition (A4, B) of D such that no path in D(A) has more
than a vertices and no path in D(B) has more than b vertices.We
develop methods for finding the desired partitions for various classes
of digraphs.
Keywords: longest path, Path Partition Conjecture, vertex partition,
digraph, prismatic colouring.
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1. Introduction

The vertex set and the arc set of a digraph D are denoted by V(D) and E(D)
respectively, and the number of vertices is denoted by n(D). For undefined
concepts we refer the reader to [2].

A directed cycle (path, walk) in a digraph will simply be called a cycle
(path, walk).

A digraph is called traceable if it contains a path that visits every vertex,
and walkable if it contains a walk that visits every vertex.

A digraph D is called strong (or strongly connected) if every vertex of
D is reachable from every other vertex. Thus a digraph D of order bigger
than one is strong if and only if it contains a closed walk that visits every
vertex.

A longest path in a digraph D is called a detour of D. The order of a
detour of D is called the detour order of D and is denoted by A(D).

If (a,b) is a pair of positive integers, a partition (A, B) of the vertex set
of a digraph D is called an (a, b)-partition if \(D(A)) < a and A\(D(B)) < b.

If a digraph D has an (a, b)-partition for every pair of positive integers
(a,b) such that a+b = A(D), then D is called A-partitionable. The Directed
Path Partition Conjecture (DPPC) is the following:

DPPC: Every digraph is A-partitionable.

The analogous conjecture for undirected graphs, known as the Path Partition
Conjecture (PPC), was first stated in 1981 and is still an open problem.
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(Cf. [4-10, 13, 14] for results supporting the PPC.) A digraph D is called
symmetric if for every xy € E(D) the arc yz is also in E(D). The PPC
is, obviously, equivalent to the conjecture that every symmetric digraph is
A-partitionable.

An oriented graph is a digraph with no cycle of length 2. We can
therefore obtain an oriented graph D from a graph G by assigning a direction
to each edge of G. We call such a digraph D an orientation of G. We
shall also consider the following conjecture, referred to as the Oriented Path
Partition Conjecture (OPPC):

OPPC: Every oriented graph is A-partitionable.

The DPPC implies both the PPC and the OPPC. We do not know the
relationship between the OPPC and the PPC.
A directed version of the PPC that is perhaps stronger than the DPPC

was stated by Bondy [1]. (His conjecture requires A\(D(A)) = a and
A(D(B)) = b while the DPPC only requires A(D(A)) < a and A(D(B)) < b.)

The DPPC is one of those conjectures that is easy to state but seems very
difficult to settle. In this paper we present some techniques for finding
(a, b)-partitions in certain classes of digraphs. We begin by considering the
case a = 1.

2. The Case a =1

Whereas the PPC has been proved for a < 7 (cf. [6] and [14]), the DPPC
has not yet been proved for the case a = 1. In 1983 Laborde, Payan and
Xuong formulated this case as a conjecture [13]. We shall call it the Case 1
Conjecture (C1). It can be stated as follows:

C1: If D is a digraph with detour order A\, then D has a (1, A — 1)-
partition.

The detour source, S(D), of a digraph D is the set consisting of all initial
vertices of detours of D. The following conjecture, which we shall call the
Strong Case 1 Conjecture (SC1) is also stated in [13].

SC1: If D is a digraph with detour order A, then D has a (1,\ — 1)-
partition (A, B) with A C S(D).
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Let N~ (z) and N*(z) denote the in-neighbourhood and out-neighbourhood
of a vertex z respectively. Then N(z) = N~ (x) U NT(z) is the neighbour-
hood of . Let D be a digraph with detour source S. If z,y € S and
y € N*(z), i.e. y is an out-neighbour of x, then, obviously, = lies on every
y-detour. (A y-detour is a detour of D with initial vertex y.) If the same
is true for all the in-neighbours of z, then removal of x from D destroys
all detours that originated in the neighbourhood of x. This leads to the
following definition: A vertex x € S is a local detour-destroyer if, for every
y € N~ (x), every y-detour contains z.

A class P of digraphs is called an induced hereditary property if it is
closed under isomorphism and every induced subdigraph of every digraph
in P is also in P.

Proposition 2.1. Suppose P is an induced hereditary property of digraphs
such that every digraph in P contains a local detour-destroyer v € S(D).
Then SC1 holds for the class P.

Proof. We prove the result by induction on the order of the digraph. Let
D be a digraph in P with detour order A and detour source S. Let x € S(D)
be a local detour-destroyer of D. We consider two cases:

Case 1. \(D — x) < A(D): Then, clearly, ({z},V — {z}) isa (1,A —1)-
partition of V(D).

Case 2. \(D — ) = A(D): Since P is induced hereditary, D — z € P,
so, by the induction hypothesis, D —x has a (1, A\ — 1)-partition (A, B) with
A" C S(D—=z). But, since x is a local detour-destroyer, N(z)NS(D—x) = ()
and hence A" U {x} is an independent set. Put A = A" U {x}. Then (A, B)
is a (1, A\ — 1)-partition of D, with A C S(D). |

The above result is used in [13] to show that SC1 holds for the class of
digraphs with maximum degree at most 3. We shall prove that SC1 also
holds for the class consisting of all digraphs with the property that no two
cycles share an arc.

Corollary 2.2. Let D be a digraph with the property that no two cycles
share an arc. Then D has a (1, \—1)-partition, (A, B) such that A C S(D).

Proof. Let S be the detour source of D and suppose D has detour or-
der A. Since the property of having no two cycles sharing an arc is induced
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hereditary, it suffices to prove that D has a local detour-destroyer z € S.
Suppose no vertex in S is a local detour-destroyer and let 21 be a vertex in
S. Then there is a vertex o € SN N~ (z1) and an xe-detour that does not
contain x1. Again, there is a vertex z3 € SN N~ (x2) and an z3-detour that
does not contain xo. Continuing this procedure we construct a sequence
x1,x2,... of elements of S such that x;112; € F(D). Since S is finite there
is some ¢ < j such that x; = x;. Hence the subsequence z;z;_1...7; is a
closed walk and thus contains a cycle C. For a vertex v on C let v+ and v™
be its out- and in-neighbour on C. Thus, for every vertex v on C, there is a
v-detour not containing its successor v on the cycle. Since v~ is contained
in every v-detour, it follows that there exists a v — v~ -path P such that
vt ¢ V(P). But then the arc v~ v is shared by the cycle C' and the cycle
v vPvT. [
An independent set of vertices K in a digraph D is a kernel of D if, for
every vertex y in D — K there is a vertex x € K such xy € E(D). It is
shown in [13] that, if a digraph D with detour order A has a kernel, then D
has a (1, A — 1) partition.

Not every digraph has a kernel, e.g. an odd cycle does not have a kernel.
In some cases the subdigraph of D induced by its detour source might have
a kernel, even if D itself does not have a kernel, in which case the following
result is useful.

Theorem 2.3. Let D be a digraph with detour order A and detour source S.
If the digraph D(S) has a kernel, then D has a (1, X — 1)-partition.

Proof. Let A be a kernel of D(S) and put B = V(D) — A. Suppose there is
a path P of order A in D(B). If y is the initial vertex of P, theny € S — A
and hence there is a vertex x in A such that zy is an arc in D. But then xP
is a path of order A + 1 in D. This contradiction shows that A(B) < A — 1,
and hence (4, B) is a (1, A — 1)-partition of D. |
The following result is due to Richardson [15]. Shorter proofs of this result
can be found in [3] and [1].

Theorem 2.4 (Richardson). Every digraph without odd cycles has a kernel.
Thus we have the following result:

Corollary 2.5. Let D be a digraph with detour order A\ and detour source S.
If the digraph D(S) does not contain an odd cycle, then D has a (1,A —1)-
partition.
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3. Partitions of Digraphs Without Odd Cycles

We have seen that a digraph D without odd cycles has a (1, \(D) — 1)-
partition. The following result, due to Harary, Norman and Cartwright
[12], shows that strong digraphs without odd cycles are, in fact, (1,1)-
partitionable (and hence A-partitionable).

Theorem 3.1 (Harary, Norman and Cartwright). A strong digraph is bi-
partite if and only if it has no odd cycle.

A strong component of a digraph D is a maximal induced subdigraph of D
which is strong. In order to extend this result to digraphs with more than
one strong component, we need some definitions.

First we define the function p by choosing, for each v € V (D), the value
p(v) as the maximum order of a path in D that ends at v.

The strong component digraph, SC(D), of D is the digraph whose ver-
tices v1,..., v correspond to the strong components Dy,..., Dy of D and
whose arc set is given by E(SC(D)) = {v;v; : there is a vertex in D; that is
adjacent to a vertex in Dj}.

Let S be a strong component of D and let s be the vertex in SC(D)
corresponding to S. Note that since s € V(SC(D)), p(s) is now the max-
imum order of a path in SC(D) that ends at s. We say that the strong
component S lies on level p(s) of D. We also say that every vertex of S lies
on level p(s) of D. The number of levels of a digraph D is called its height
h and is therefore given by h(D) = A(SC(D)).

Theorem 3.2. If D is a digraph of height h without odd cycles, then D has
an (h, h)-partition.

Proof. By Theorem 3.1, each strong component S of D has a (1,1)-
partition (Ag, Bg). Let

A=|JAsand B=|Bs,

where the unions are taken over all strong components S of D. Since there
are no arcs from a strong component on level j to a strong component on
level ¢ if ¢ < j, it follows that every path in A contains at most one vertex
from each level. Hence A\(D(A)) < h. Similarly, A(D(B)) < h and hence
(A, B) is an (h, h)-partition of D. |
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Corollary 3.3. Let D be a digraph with no odd cycles. If D has height
h <2, then D s A-partitionable.

Proof. By Theorem 2.4 D has a kernel. Thus by Corollary 2.5 D is
(1, A\ — 1)-partitionable and the result therefore follows immediately from
Theorem 3.2. [

4. Gallai-Roy-Vitaver Partitions

The following result which was proved independently by Gallai [11], Roy
[16] and Vitaver [17] relates the chromatic number x(G) of a graph G to the
detour orders of its orientations.

Theorem 4.1 (Gallai-Roy-Vitaver). If D is any orientation of a graph G,
then

x(G) < A(D)

and equality holds for some orientation of G.

The proof, as presented in [18], relies on a vertex partition of a maximal
acyclic spanning subdigraph M of D, which we shall call the Gallai-Roy-
Vitaver (GRV) partition of M.

In general, if D is any acyclic digraph with detour order A, we use the
function p defined in the previous section to define the GRV partition of D
as the partition (V1,...,Vy) of V(D), where

Vi={veV(D):pv)=i},i=1,...,\.

Lemma 4.2. Let D be an acyclic digraph with detour order A and GRV
partition (V1,...,Vy). Then the following hold:

1. If viv; € E(D), with v; € V; and v; € Vj, then i < j.
2. If P is a path in D, then

V(P)NV;| <1, fori=1,...,\
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Proof. 1. Since v; € V;, there is a path P of order ¢ ending at v;. Since
viv; € E(D), we cannot have v; € V(P), otherwise D would have a cycle.
Hence Puvj is a path of order i + 1 ending at vj;, so p(vj) > i + 1. Since
p(v;) = j, it follows that i < j.

2. This follows immediately from (1). |

Remark 4.3. Note that Lemma 4.2 implies that the function p strictly
increases along each path in an acyclic digraph.

Theorem 4.4. If D is an acyclic digraph, then D is A-partitionable.

Proof. Suppose A(D) = a+b; 1 < a < b. Form the GRV partition,
VI, ceey V)\(D) of D. Let

a A(D)
A=|JViand B= | ] Wi
i=1 i=a+1

By Lemma 4.2, every path in D has at most one vertex in each V;; hence
A(D(A)) < a and A(D(B)) <b. |

Given any digraph D we can consider a maximal acyclic spanning subdi-
graph M of D and then form the GRV partition of M. If we let A be the
union of any a of the sets of the partition and put B = V(D) — A, then
(A, B) will be an (a, A\(M) — a)-partition of M. In some cases this will yield
a suitable partition for D. The next two results, one for digraphs and the
other for oriented graphs, illustrate this technique.

Theorem 4.5. If D is unicyclic, then D is A-partitionable.

Proof. Suppose \(D) = a+b, where 1 < a < b. Let M be a maximal acyclic
spanning subdigraph of D, i.e., M = D —wuw, where uv is an arc on the cycle
in D. Form the GRV partition Vi,..., Vi) of M, where A(M) < A(D).
Let A be the union of any a of these sets, including the one containing u
but excluding the one containing v, and put B = V(D) — A. Then, as in the
proof of Theorem 4.4, A(M(A)) < a and A\(M(B)) < b. Since the removed
arc uv goes from a vertex in A to a vertex in B, we have M (A) = D(A) and
M(B) = D(B); hence (A, B) is an (a, b)-partition of D. |

Theorem 4.6. Suppose an oriented graph D contains a mazximal acyclic
spanning subdigraph M with detour order at most 3. Then D is A-parti-
tionable.
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Proof. If A\(M) < 2 then D is acyclic (since D contains no 2-cycles) and
then the result follows from Theorem 4.4. Now assume A(M) = 3 and let
V1, Va, V3 be the GRV partition of M. Suppose uv € E(D) — E(M). By the
maximality of M, the arc uv must lie on a cycle in M + uv and hence there
is a vu-path P in M. Since D contains no 2-cycles, P must have at least
three vertices. Therefore, from Lemma 4.2, v € V; and u € V5. Now put
A=V and B = Vo, UV5. Then (A, B) is a (1,2)-partition of M and, since
every arc in D that is not an arc in M goes from B to A, it follows that
(A, B) is also a (1,2)-partition of D. This serves as an (a, b)-partition of D
for every pair of positive integers (a,b) such that A(D) = a + b. |

In the next section we generalize the idea of a GRV partition for digraphs
that are not necessarily acyclic. This will allow us to construct (a,b)-
partitions for various digraphs.

5. Prismatic Colourings

The proof of Theorem 4.4 relies on the fact that we obtained a partition of
V(D) into A\(D) sets, such that no path in D contains more than one vertex
from the same set. This leads to the following definition:

A prismatic colouring of a digraph D is a vertex colouring of D such
that no two vertices lying on the same path in D have the same colour.
Thus a prismatic k-colouring of D corresponds to a partition of V(D) into
k subsets Vi,...,V; such that, for every path P in D,

[V(P)NV;| <1, fori=1,... k.

The prismatic number, (D) of D is the minimum k& such that D has a
prismatic k-colouring.

Proposition 5.1. If D is a digraph such that (D) = A(D), then D is
A-partitionable.

Proof. Suppose \(D) = a + b. Consider a prismatic colouring of D with
colour classes V1,...,V,p). Let A be the union of any a of these colour
classes and let B be the union of the remaining b colour classes. Since every
path in D has at most one vertex in each colour class, (A4, B) is clearly an

(a, b)-partition of D. |
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The chromatic number x(D) of a digraph D is defined to be the chromatic
number of the underlying graph of D.

Proposition 5.2. For any digraph D we have
X(D) < A(D) < ¢(D).

Proof. The first inequality is given by Theorem 4.1 and the second follows
from the fact that in any prismatic colouring of D a detour requires \(D)
different colours. ]

An example of a digraph D with x(D) = 3, A(D) =5 and ¢(D) = 1.

If D is an acyclic digraph, then the GRV partition is a prismatic colouring
in A(D) colours, so ¢(D) = A(D).

We call a digraph D detour-perfect if x(D') = A(D') for every induced
subdigraph D’ of D. We shall show that for a detour-perfect graph all three
the parameters of Proposition 5.2 are equal. First we present a characteri-
zation of detour-perfect digraphs.

Proposition 5.3. A digraph D is detour-perfect if and only if for every
path P in D the subdigraph induced by V (P) is semicomplete (i.e., there is
at least one arc between every pair of vertices in P).

Proof. Suppose D is detour-perfect and P is a path of order n in D. Then
X((P)) = n, so the underlying graph (V(P)) is isomorphic to K.
Conversely, suppose every path in D induces a semicomplete digraph.
Consider a subdigraph D’ of D. Let P be a path of order A(D') in D'.
Then the underlying graph induced by V(P) is isomorphic to Kypsy and
hence x(D') > A(D’). Thus, by Theorem 4.1, x(D’) = A(D') and hence D
is detour-perfect. [
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Corollary 5.4. If D is detour-perfect, then x(D) = A(D) = ¢(D).

Proof. Consider any colouring ¢ of D in x(D) colours. Let P be any path
in D. Then it follows from Proposition 5.3 that no two vertices of P lie in
the same colour class, and hence c is a prismatic colouring. This proves that
©(D) < x(D) and hence, by Proposition 5.2, x(D) = A(D) = ¢(D). |

By Corollary 5.4 and Proposition 5.3 every detour-perfect digraph is A-
partitionable and every transitive digraph is detour-perfect. Thus we have

Corollary 5.5. Every transitive digraph is \-partitionable.

As a matter of interest, we note that neither an odd cycle of order at least 5
nor its complement has a detour-perfect orientation. By the Perfect Graph
Theorem, recently proved by Chudnovsky, Robertson, Seymour and Thomas
(see [5]), only a perfect graph can have a detour-perfect orientation. How-
ever, not every perfect graph has a detour-perfect orientation, e.g. the net
(a K3 with exactly one pendant vertex attached to each of its three vertices)
has no detour-perfect orientation.

The converse of Corollary 5.4 is not true. For example, let D be
the digraph with vertices {a,b,c,d,e} and arcs {ab,cb,dc,de,ae}. Then
X(D) = X(D) = ¢(D) = 3, but D is not detour-perfect, because dcb is an
induced path.

A walkable component W of a digraph is a maximal induced subdigraph
which is walkable. Clearly, if D is a walkable digraph, then ¢(D) = n(D)
where n(D) is the order of D. In general we have

Theorem 5.6. If D is a digraph, then
o(D) = max{n(W) : W is a walkable component of D}.

Proof. First we define D; to be the subdigraph of D induced by all the
vertices on the first ¢ levels of D. Note that if D has h levels then D), = D.
Let w(D;) = max{n(W) : W is a walkable component of D;}. The inequal-
ity p(D) > w(D) is obvious. To prove the reverse inequality we construct
a level by level prismatic colouring c of the vertices of a digraph D which
uses exactly w(D) colours.

Let S be any strong component of D; and colour its vertices with colours
1,...,n(S). Do so with all the strong components of D;. The number of
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colours used to colour the vertices of D is therefore given by max{n(S): S
is a strong component of Dy} = w(Dy).

Apply the next iterative steps for each level of the digraph D consecutively:
Suppose D;_1 has already been coloured. Let S be any strong component
on level i. First consider all the walkable components in D; | that have
a neighbour in S. Let r be the largest number used in colouring these
components. Colour the vertices of S with colours r + 1,...,7 4+ n(S).
Do the same for all strong components on level ¢ of D. Thus if D; has a
vertex coloured k, then that vertex lies in a walkable component of D; of
order at least k. Hence D; is coloured with w(D;) colours. This holds for
i=1,...,hso D is coloured with w(D) colours. Since no colour is repeated
in any walkable component and since two vertices can only lie on the same
path if they are on the same walkable component of D, the colouring c is
clearly a prismatic colouring of the vertices of D. [ ]

Corollary 5.7. If D is a digraph such that at least one of its walkable
components of largest order is traceable, then D is A-partitionable.
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