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1. Introduction

Let G be a graph with at most n vertices. We say that the complete graph
Kn has a G-decomposition if there are subgraphs G0, G1, G2, . . . , Gs, all
isomorphic to G, such that each edge of Kn belongs to exactly one Gi. Then
we say that G divides Kn, and write G|Kn. If G has exactly n vertices and
none of them are isolated, then G is called a factor and the decomposition
is called G-factorization of Kn. Many factorization methods are based on
graph labelings, where a labeling of G with at most 2n + 1 vertices is an
injection λ : V (G) → S, S ⊆ {0, 1, . . . , 2n} and labels of vertices u, v (denote
λ(u), λ(v)) induce uniquely the label or the length `(e) of the edge e =
uv. Let G have m edges and length of an edge uv ∈ E(G) be `(uv) =
|λ(u)−λ(v)|. If the set of all lengths of the m edges is equal to {1, 2, . . . , m}
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and S ⊆ {0, 1, . . . , m}, then λ is a graceful or β-labeling. A graph with
graceful labeling is called a graceful graph.

If there exists λ0 ∈ {0, 1, ..., n − 1} in a graceful graph G such that for
every edge uv ∈ E(G), λ(u) < λ(v), it holds that λ(u) ≤ λ0 < λ(v), then we
say that G has an α-labeling with the splitting value λ0.

A graceful labeling of a graph G with m edges yields decompositions of
K2m+1 into 2m+1 copies of G (see [5, 6]), whereas an α-labeling of a graph
G with m edges can be used to yield decompositions of K2mk+1 into copies
of G, for all positive integers k.

In this article we will usually identify a vertex v with its label λ(v) and
an edge uv with the pair (λ(u), λ(v)).

2. Definitions and Notations

In this section we introduce notation, definitions, and lemmas which are
important for our further considerations.

Let G be a graph with 2n − 1 edges and at most 2n vertices and λ :
V (G) → {0, 1, 2, . . . , 2n−1} be an injection and length of an edge uv ∈ E(G)
be `(uv) = min{|λ(u)−λ(v)|, 2n−|λ(u)−λ(v)|}. Then λ is called a flexible
q-labeling if

(i) there is exactly one edge of length n,

(ii) for each m, 1 ≤ m ≤ n − 1, there are exactly two edges of length m,
and

(iii) if (r, r +m) with 1 ≤ m ≤ n− 1 is an edge of G, then the other edge of
length m in G is (r + 2s + 1, r + m + 2s + 1) for some s, 0 ≤ s ≤ n− 1,
where the labels are taken modulo 2n.

If (r, r + m) is an edge of length m, then the vertex r is called the origin
and the vertex r + m is called the terminus. We will refer to condition (iii)
as to the origin condition.

Every flexible q-labeling λ in G, for which holds that

(iv) there exists λ0 ∈ {0, 1, ..., 2n− 1} such that λ(u) ≤ λ0 < λ(v) for each
edge uv ∈ E(G) is called an α-like labeling with the splitting value λ0.

The existence of the previous two labelings, namely flexible and α-like in
a tree T , implies the existence of a T -factorization of K2n for n odd (see
[2, 3]). Moreover, the existence of an α-like labeling of a tree T with 2n
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vertices, where n is odd, guarantees a factorization of K2nk into isomorphic
spanning trees with 2nk vertices for every positive odd number k.

Notice that there is only a limited number of classes of trees known to
have an α-like or flexible q-labeling. It does not seem likely that a complete
characterization of such trees would be found easily.

Peter Eldergill proved in [1] that a symmetric tree T allows cyclic T -
factorization of K2n if and only if T has a symmetric ρ-labeling, where a tree
T = T1∪T2+uv is called symmetric if T1, T2 are trees, u ∈ V (T1), v ∈ V (T2),
and there exists isomorphism f : V (T1) → V (T2) such that f(u) = v.

Since we investigate non-cyclic T -factorizations of K2n, where T is a
non-symmetric tree, the basic question of this article is how to construct
new non-symmetric trees with an α-like labeling or a flexible q-labeling from
the trees with an α-labeling. Recall that for example all caterpillars, where
a caterpillar is a tree with the property that removal of its endpoints leaves
a path, allow an α-labeling.

Now we show that some symmetric trees allow α-like labeling.

Lemma 2.1. If T = T1 ∪ T2 + e is a symmetric tree, where T1, T2 have
α-labeling λ, |T1 ∪ T2| ≡ 2 (mod 4) and e = uv, λ(u) = 0 = λ(v), then T
allows an α-like labeling λ′ with the splitting value λ′0 = |Ti|−1 for i = 1, 2.

Proof. Suppose that T1 and T2 have an α-labeling λ with the splitting
value λ0 and (a, b) is an arbitrary edge belonging to T1 or T2, where a, b ∈
{0, 1, . . . , |Ti| − 1}, a ≤ λ0 < b. And let |T1| = |T2| = n = 2t+1. We form in
T1 and T2 a new vertex labeling so that we transform every edge (a, b) ∈ T1

to the edge (x, y), where x = a, y = b + 2t + 1. Every edge (a, b) ∈ T2

we transform to the edge (x + 2t + 1, y + 2t + 1). Thus the corresponding
edges in T1 and T2 are (a, b + 2t + 1) ∈ T1 and (a + 2t + 1, b) ∈ T2. Since
2t+1+b−a > 2t+1, the origin of the edge (a, b+2t+1) is b+2t+1 and its
length is 4t+2− (2t+1+ b−a) = 2t+1− (b−a), where b−a = 1, 2, . . . , 2t.
Since a + 2t + 1 − b = 2t + 1 − (b − a) < 2t + 1, the origin of the edge
(a + 2t + 1, b) is b and its length is 2t + 1− (b− a).

Hence, every pair of corresponding edges in T1 and T2 have the same
length 2t + 1 − (b − a), where b − a = 1, 2, . . . , 2t, and their origins are of
different parity. Further since λ(u) = 0 = λ(v), the edge (λ(u), λ(v)) is
transformed to the edge (0, 2t + 1) of length 2t + 1.

We see that T on 2n vertices contains the edge of length 2t + 1 =
n exactly once, every edge of length `, ` = 1, 2, . . . , 2t = n − 1 exactly
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twice and each pair of edges having the same length has origins of different
parity.

A tree T on 4k vertices is called α-like expandable if it satisfies the conditions
(i), (ii) and (iv) from the definitions of flexible q-labeling and α-like labeling,
and in which both origins of edges having the same length are of the same
parity, one origin less than or equal to λ0 and the other one greater than λ0.
The following lemma shows that every α-like expandable tree is expandable
to a tree with an α-like labeling.

Lemma 2.2. For every α-like expandable tree T on 4k vertices there exists
an α-like tree T ′ on 4k + 2 vertices.

Proof. Let T be an α-like expandable tree on 4k vertices with the splitting
value λ0 and let (r, r + l), (s, s + l), r ≤ λ0, s > λ0, r, s ∈ {0, 1, . . . , 4k − 1}
be the edges having the same length l, l ∈ {1, 2, . . . , 2k − 1}, in T . We
see that the origins of these edges are r, s and from the definition of an
α-like expandable tree we know that they are of the same parity. We form
in T a new vertex labeling λ′ such that λ′(x) = λ(x) + 1 for x ≤ λ0 and
λ′(x) = λ(x) + 2 for x > λ0. Thus every pair of corresponding edges is
transformed to a pair (r + 1, s + l + 2), (s + 2, s + l + 1). Hence, if r and s
were of the same parity then the new origins r + 1 and s + 2 are of different
parity and the length of the corresponding edges is l + 1. Further, the edge
of length 2k is also transformed to an edge with length 2k + 1 in T . We
see that in T the new labeling λ′ has the splitting value λ′0 = λ0 + 1 and
there are missing only two edges of length 1. We construct the tree T ′ so
that we join 0 and λ0 + 2, respectively, by extra edges to 4k + 1 and λ0 + 1,
respectively. We see that both new edges (0, 4k + 1) and (λ0 + 2, λ0 + 1)
have length 1 and 0 ≤ λ0 + 1 < 4k + 1, λ0 + 1 ≤ λ0 + 1 < λ0 + 2. Further
we know that before we exchanged the labels in T the edges of length 1 to
have origins 4k − 1 and λ0 which were of the same parity. Thus λ0 is odd.
Therefore, the new corresponding edges of length 1 have origins of different
parity. Hence, T ′ is an α-like tree on 4k + 2 vertices.

In this section we introduced two labelings whose existence for a tree T2n

guarantees that T2n factorizes K2n for n odd. Further, we have shown that
every α-like expandable tree T with 4k vertices, which has not to factorize
K4k, is easily expandable to a tree T ′ on 4k + 2 vertices that factorizes
K4k+2. Lemma 2.1 will be used in the proof of Theorem 3.3 in the following
section.
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3. rn-Free Almost α-Like Forests

First we introduce the definition of some forests with m components on n
vertices each, in which there are missing just the edges of length rn, because
these forests we can simply extend to the trees with a flexible or an α-like
labeling.

Let F be a forest with m components on n vertices each, where m is
even, that allows a labeling λ : V (F ) → {0, 1, . . . , mn− 1} such that

(i) F contains every edge of length `, where ` ∈ {1, 2, . . . , rn − 1, rn +
1, . . . , mn/2−1} and r ∈ {1, 2, . . . , m/2−1}, exactly twice. The length
`(u, v) of an edge uv ∈ E(F ), λ(u) < λ(v), is defined as `(u, v) =
min{λ(v)− λ(u),mn− (λ(v)− λ(u))},

(ii) F contains the edge of length mn/2 at most once,

(iii) there exists λ0 ∈ {0, 1, . . . , mn − 1} such that for every uv ∈ E(F ),
λ(u) < λ(v), it holds that λ(u) ≤ λ0 < λ(v), and

(iv) the origins of every pair of edges having the same length are either of
the same parity for mn ≡ 0 (mod 4) or of different parity for mn ≡ 2
(mod 4).

Then F is called rn-free almost α-like or we say that F has an rn-free almost
α-like labeling.

In the following example we show a simple construction of a 5r-free
almost α-like forest on 20 vertices.

Example 3.1. Let us have two trees T and T ′, respectively, of order 5
with α-labelings λ and λ′, respectively, with the splitting values λ0 and λ′0,
respectively.

Let V (T ) = {0, 1, 2, 3, 4}, E(T ) = {(0, 4), (0, 3), (0, 2), (2, 1)} and V (T ′)
= {0, 1, 2, 3, 4}, E(T ′) = {(0, 4), (0, 3), (0, 2), (0, 1)}.

We denote by T1, T4 two copies of T and by T2, T3 two copies of T ′.
Now we exchange the labels in T1 and T2 so that E(T1) = {(0, 19), (0, 18),
(0, 17), (17, 1)} and E(T2) = {(2, 16), (2, 15), (2, 14), (2, 13)}. Since T1

∼= T4

and T2
∼= T3 we can form new labels in T3 and T4, respectively, so that

E(T3) = {(i+10, j +10)|(i, j) ∈ T2} and E(T4) = {(i′+10, j′+10)|(i′, j′) ∈
T1}, respectively, where we denote by (i, j) two corresponding edges in T2

and T3, and we denote by (i′, j′) two corresponding edges in T1 and T4.
Thus E(T4) = {(10, 9), (10, 8), (10, 7), (7, 11)} and E(T3) = {(12, 3), (12, 4),
12, 5), (12, 6)}.
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If we determine the length of every edge (r, s) ∈ E(F ), where r < s, as
`(r, s) = min{s− r, 20− (s− r)} then we see that T1, T4 contain the edges of
lengths 1, 2, 3, 4 and T2, T3 the edges of lengths 6, 7, 8, 9. More over for every
(r, s) ∈ E(F ), r < s, it holds that r ≤ 9 < s and the origins of the edges
having the same length are of the same parity. Therefore forest F =

⋃4
k=1 Tk

is 5r-free almost α-like for r = 1.

In Theorem 3.2 we generalize our method from Example 3.1.

Theorem 3.2. Let T1, T2, . . . , T2k be a collection of trees on n vertices each
with α-labelings λ1, λ2, . . . , λ2k and (λ1)0, (λ2)0, . . . , (λ2k)0 be their respective
splitting values. Furthemore let for every i = 1, 2, . . . , k the trees Ti and
T2k−i+1 be mutually isomorphic. Then the forest F = T1 ∪ T2 ∪ . . .∪ T2k on
mn vertices, where m = 2k, allows an rn-free almost α-like labeling with the
splitting value mn/2− 1.

Proof. Suppose that (u, v) ∈ E(Ti) for i = 1, 2, . . . , k and u ≤ (λi)0 < v.
We form in Ti for i = 1, 2, . . . , k a new vertex labeling so that we transform
every edge (u, v) to the edge (x, y) ∈ E(Ti), where x = u+i−1+

∑i−1
j=1 (λj)0

and y = v + (2k − 1)n− (i− 1)(n− 1) +
∑i−1

j=1 (λj)0. Since Ti and T2k−i+1

are isomorphic the edge (u, v) exists also in T2k−i+1 and we transform this
edge to the edge (x+kn, y+kn), where the sums are taken modulo mn. Let
for every edge (a, b) in Ti, a < b, the length `(a, b) be defined as `(a, b) =
min{b− a,mn− (b− a)}. We see that y > x and

(1) y − x = (m− i)n + (v − u).

The expression (1) for i = 1, 2, . . . , k has minimal value for i = k and thus
y−x > kn = mn/2. From above it follows that the length of the edge (x, y)
is mn− (y − x) = mn− (m− i)n− (v − u) = in− (v − u) and the origin of
the edge (x, y) is the vertex with the greater label, namely y. Further, from
above it follows that T1 contains the edges of lengths n− 1, n− 2, . . . , 1, T2

contains the edges of lengths 2n−1, 2n−2, . . . , n+1 and at last Tk contains
the edges of lengths kn − 1, kn − 2, . . . , (k − 1)n + 1. Now we show that
u+k−1+

∑k−1
j=1 (λj)0 ≤ kn−1 and kn−1 < v+(2k−1)n− (k−1)(n−1)+∑k−1

j=1 (λj)0. Since (λj)0 ≤ n− 1 for every j = 1, 2, . . . , k − 1 and u ≤ n− 1
it holds that

(2) u + k − 1 +
k−1∑

j=1

(λj)0 ≤ n− 1 + k − 1 + (k − 1)(n− 1).
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Furthermore,

(3) n− 1 + k − 1 + (k − 1)(n− 1) = (k − 1)n + n− 1 = kn− 1.

Thus from (2) and (3) it follows that

(4) u + k − 1 +
k−1∑

j=1

(λj)0 ≤ kn− 1.

Since v ≥ 0 and (λj)0 ≥ 0 it holds that

(5) v + (2k− 1)n− (k− 1)(n− 1) +
k−1∑

j=1

(λj)0 ≥ (2k− 1)n− (k− 1)(n− 1).

Moreover,

(6) (2k−1)n−(k−1)(n−1) = 2kn−n−kn+n+k−1 = kn+k−1, k > 0,

and from (5) and (6) we get

(7) v + (2k − 1)n− (k − 1)(n− 1) +
k−1∑

j=1

(λj)0 > kn− 1.

Since 0 ≤ x ≤ u+k−1+
∑k−1

j=1 (λj)0 ≤ kn−1 and kn−1 < v +(2k−1)n−
(k − 1)(n− 1) +

∑k−1
j=1 (λj)0 ≤ y ≤ mn− 1 it holds that x ≤ kn− 1 < y.

Let (x′, y′) be an arbitrary edge in T2k−i+1 such that x′ = x + kn and
y′ = y + kn. We say that the edges (x′, y′) ∈ E(T2k−i+1) and (x, y) ∈ Ti are
corresponding. If x ≤ kn−1 then x′ = x+kn > kn−1 and if y > kn−1 then
y′ = y + kn ≤ kn− 1. Therefore the length of the edge (x′, y′) ∈ T2k−i+1 is
x′−y′ = x+kn−(y+kn) = −(y−x) = mn−(y−x) = in−(v−u). Thus the
corresponding edges (x, y) ∈ E(Ti) and (x′, y′) ∈ E(T2k−i+1) have the same
length l, where l ∈ {1, 2, . . . , rn−1, rn+1, . . . , kn−1} for r = 1, 2, . . . , k−1
and the origin of the edge (x, y) is the vertex y and the origin of the edge
(x′, y′) is the vertex y′ = y + kn.

Notice that 2kn = mn ≡ 2 (mod 4) if and only if k and n are odd and
mn ≡ 0 (mod 4) if and only if k or n is even. Hence, if mn ≡ 2 (mod 4)
then the origins y, y′ are of different parity and if mn ≡ 0 (mod 4) then the
origins y, y′ are of the same parity.
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We see that there exists an injection λ : V (F = T1 ∪ T2 ∪ . . . ∪ T2k) →
{0, 1, . . . , 2kn−1} such that the forest F = T1∪T2∪ . . .∪T2k contains every
edge of length l, l ∈ {1, 2, . . . , rn−1, rn+1, . . . , kn−1} for r = 1, 2, . . . , k−1,
exactly twice. Parity of the origins of the corresponding edges with the
same length is different for 2kn ≡ 2 (mod 4) and the same for 2kn ≡ 0
(mod 4). And more over for every edge (a, b) ∈ E(F ), a < b it holds that
a ≤ kn− 1 = mn/2− 1 < b. The forest F is rn-free almost α-like.

In the following theorem we show that an rn-free almost α-like forest F
from the previous theorem is expandable to an rn-free almost α-like forest
F ′ with m + 1 components.

Theorem 3.3. Let F ′ = F ∪T be a forest on (m+1)n vertices, where n ≡ 2
(mod 4), F be the forest from Theorem 3.2, and T be a symmetric tree on
n vertices from Lemma 2.1 with an α-like labeling λ′ and the splitting value
λ′0 = n

2 −1. Then F ′ allows rn-free almost α-like labeling λ with the splitting
value λ0 = (m+1)n

2 − 1.

Proof. We form a vertex labeling of F similar to that in the proof of
Theorem 3.2. Let (u, v), u < v, u, v ∈ {0, 1, . . . , n− 1} be an arbitrary edge
in Ti and in the copy of Ti, namely in T2k−i+1, for i = 1, 2, . . . , k and let
n = 4t+2. Then we construct a vertex labeling in F so that for i = 1, 2, . . . , k
every Ti contains the edges (x, y), where x = u + i − 1 +

∑i−1
j=1 (λj)0 and

y = v + mn− (i− 1)(n− 1) +
∑i−1

j=1 (λj)0. Similarly every T2k−i+1 contains
the edges (x′, y′), where x′ = x + (m + 1)n/2 and y′ = y + (m + 1)n/2.

Hence, y − x = v + mn − (i − 1)(n − 1) +
∑i−1

j=1 (λj)0 − [u + i − 1 +∑i−1
j=1 (λj)0] = (m− i + 1)n + (v− u) ≥ (m− k + 1)n + (v− u) = (k + 1)n +

(v−u) > (2k+1)n/2 = (m+1)n/2 and thus Ti contains the edges of lengths
(m+1)n−(y−x) = (m+1)n−(m−i+1)n−(v−u) = in−(v−u) < (m+1)n/2
with the origin y. Further since x′ − y′ = x − y = −(y − x) < (m + 1)n/2,
the tree T2k−i+1 contains the edges of lengths x′ − y′ = −(y − x) = (m +
1)n− (y−x) = (m+1)n− (m− i+1)n− (v−u) = in− (v−u) < (m+1)n/2
with the origin y′ = y + (2k + 1)(2t + 1). From above it follows that T1, T2k

contain the edges of lengths n−1, n−2, . . . , 1, T2, T2k−1 contain the edges of
lengths 2n− 1, 2n− 2, . . . , n + 1,. . . , Tk−1, Tk+2 contain the edges of lengths
(k−1)n−1, (k−1)n−2, . . . , (k−2)n+1, and Tk, Tk+1 contain the edges of
lengths kn− 1 = mn/2− 1, kn− 2 = mn/2− 2, . . . , (k− 1)n + 1. Moreover,
it holds that x < (m + 1)n/2 − 1 < y, y′ ≤ (m + 1)n/2 − 1 < x′ and the
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origins of the corresponding edges (x, y) and (x′, y′), which have the same
length are of different parity.

Let (a, b), a, b ∈ {0, 1, . . . , n − 1}, a ≤ (λ′)0 < b be an arbitrary edge
in T . We also form in T a new vertex labeling so that we transform every
edge (a, b) to the edge (e, f), where e = a + k +

∑k
j=1 (λj)0, f = b + mn +∑k

j=1 (λj)0 − k(n− 1). The difference

(8)
f − e = b + mn +

∑k
j=1 (λj)0 − k(n− 1)− [a + k +

∑k
j=1 (λj)0]

= mn− k(n− 1)− k + b− a = (m− k)n + b− a = kn + b− a

is less than (2k + 1)n/2 = (2k + 1)(2t + 1) = (m + 1)n/2 for b − a =
1, 2, . . . , n/2− 1, because

(9) kn +
n

2
− 1 = (2k + 1)

n

2
− 1 < (2k + 1)n/2 = (m + 1)n/2,

and greater than (m + 1)n/2 for b − a = n/2 + 1, n/2 + 2, . . . , n − 1, and
equal to (m + 1)n/2 for b− a = n/2.

Hence, T contains for b − a = 1, 2, . . . , n/2 − 1 the edges of lengths
kn+1 = mn/2+1, kn+2 = mn/2+2, . . . , (2k+1)n/2−1 = (m+1)n/2−1,
for b − a = n/2 the edge of length (2k + 1)n/2 = (m + 1)n/2 and for
b − a = n/2 + 1, n/2 + 2, . . . , n − 1 the edges of lengths (2k + 1)n/2 − 1 =
(m + 1)n/2 − 1, (2k + 1)n/2 − 2 = (m + 1)n/2 − 2, . . . ,mn/2 + 1. Then T
contains each edge of length l, l = (m+1)n/2−1, (m+1)n/2−2, . . . , mn/2+1
exactly twice and the edge of length (m + 1)n/2 exactly once. Moreover,
since T contained an α-like labeling with the splitting value n/2 − 1, the
edges in T which have the same length have origins of different parity and
for each edge (e, f) it holds that e ≤ (m + 1)n/2− 1 < f .

From above it follows that the forest F ′ = T ∪F allows a rn-free almost
α-like labeling with the splitting value (m + 1)n/2− 1 for r = 1, 2, . . . , m

2 .

Now we know that a forest F with 2k components on n vertices each, where
the components are pairwise mutually isomorphic, allows an rn-free almost
α-like labeling. Further, we know that if we add to the forest F a new
component T , where T is a symmetric tree on n vertices from Lemma 2.1,
then the forest F ′ = F ∪ T is also rn-free almost α-like. In the following
section we will describe how we can “connect” the components of the forests
F or F ′ to obtain a non-symmetric tree with a flexible q, α-like or α-like
expandable labeling.
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4. Grafting of rn-Free Almost α-Like Forests

Now we want to find a graph G that interconnects particular components
of F or F ′, respectively, in such a way that the resulting tree on mn or
(m+1)n, respectively, vertices is either flexible or α-like or α-like expandable.
Therefore, we will introduce a commutative binary graph operation which
describes the interconnection of components of F or F ′.

Let us have two graphs G and F , respectively, with vertex labelings
λ and λ′, respectively. Furthermore let there exist u1, u2, . . . , uk ∈ V (G),
v1, v2, . . . , vk ∈ V (F ) such that for each i = 1, 2, . . . , k it holds that λ(ui) =
λ′(vi) and for every i 6= j, when i, j ∈ {1, 2, . . . , k}, it holds that ui, uj or
vi, vj are independent. If we construct a graph H from G and F so that we
identify precisely the pairs of vertices ui ∈ V (G), vi ∈ V (F ), then we obtain
graph H which is called the grafting of G to F or the grafting of F to G,
denoted by H = G y F or H = F y G. (Recall that the operation y is
commutative.)

Thus V (G y F ) = V (G)∪V (F ), where V (G)∩V (F ) = {u1 = v1, u2 =
v2, . . . , uk = vk}, and E(G y F ) = E(G) ∪ E(F ), where E(G) ∩ E(F ) = ∅.
Theorem 4.1. For every forest F = T1∪T2∪ . . .∪T2k, k ≥ 5, n > 2, with an
rn-free almost α-like labeling from Theorem 3.2 there exists a graph G such
that the grafting G y F is a non-symmetric flexible q tree on mn vertices,
where mn ≡ 2 (mod 4).

Proof. Since 2kn = mn ≡ 2 (mod 4), the numbers k and n have to be
odd. Let us have a non-symmetric tree T ′ on m = 2k vertices with flexible
q-labeling λ′ : V (T ′) → {0, 1, . . . , 2k − 1 = m − 1}. Thus T ′ contains each
edge of length l, l = 1, 2, . . . , k−1 exactly twice, the edge of length k exactly
once and the origins of each pair of the edges having the same length are of
different parity. We form in T ′ a new vertex labeling so that we multiply all
original labels in T ′ by n. Recall that n is odd. Hence, the set of all lengths
of the edges in T ′ is equal to {n, 2n, . . . , (k− 1)n, kn} and the origins of the
edges having the same length are of different parity again. Then T ′ contains
precisely the edges of the lengths which are missing in F and more over we
know that every vertex rn, r = 1, 2, . . . , 2k − 1 = m − 1 belongs to exactly
one component of F . Thus F y T ′ has a flexible q-labeling.

Notice that in [2, 3, 4, 7] are introduced the infinite classes of the trees
on 4k + 2 vertices that allow a flexible q-labeling (which is equivalent to a
blended ρ-labeling (see [3, 7])) and an α-like labeling for k ≥ 2.
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Theorem 4.2. Let F ′ = T ∪ F , where F = T1 ∪ T2 ∪ . . . ∪ T2k, be an
rn-free almost α-like forest from Theorem 3.3, n > 2, and suppose that for
every Ti, i = 1, 2, . . . , k, it holds that Ti is not isomorphic to a star on n
vertices. Then there exists a graph G such that the grafting F ′ y G is a
non-symmetric flexible q tree for (m + 1)n ≡ 2 (mod 4).

Proof. If (2k + 1)n = (m + 1)n ≡ 2 (mod 4) then n ≡ 2 (mod 4). We
cannot use the method from the previous proof, because after multiplication
of all labels by n, where n is even, the new labels will be all even. Thus G
cannot satisfy the origin condition.

We know that every vertex rn, r = 0, 1, 2, . . . , 2k belongs to exactly
one component of F ′. We denote by Ti0 , Ti1 , . . . , Tik the components of F ′

which contain the vertices 0, n, 2n, . . . , kn and by Tik+1
, Tik+2

, . . . , Ti2k
the

components of F ′ which contain the vertices (k+1)n, (k+2)n, . . . , 2kn. Thus
Ti0 is T1. Let Air and Bir , respectively, be a partition of Tir that contains
the vertices a ≤ mn/2− 1 and b > mn/2− 1, respectively. Since Tir is not
isomorphic to a star K1,n−1, it follows that Air contains at least two vertices.
Hence, T1 contains the vertices 0, 1 and every Til , l = 1, 2, . . . , k contains the
vertex ln− 1 or ln + 1. More over we know that the original edge of length
n−1 in T1 is transformed to the edge ((m+1)n−1, 0) and thus T1 contains
also the vertex (m + 1)n− 1. Now we construct the graph G so that V (G)
contains the vertices 0, 1, (m + 1)n − 1, sn for s = k + 1, k + 2, . . . , 2k and
ln−1 if ln−1 ∈ Til or ln+1 if ln+1 ∈ Til . If ln+1 ∈ Til and ln−1 ∈ Til we
choose exactly one of them. E(G) contains (0, sn) and ((m+1)n−1, ln−1)
if ln − 1 ∈ Til or (1, ln + 1) if ln + 1 ∈ Til . From above it follows that G
contains every edge of length n, 2n, . . . , kn exactly twice and their origins
are of different parity. The method of previous construction of G guarantees
that the grafting G y F ′ is an acyclic connected graph with a flexible q-
labeling, which is not symmetric.

Theorem 4.3. For every F there exists a graph G such that the grafting
G y F is either a non-symmetric α-like tree on mn vertices for mn ≡ 2
(mod 4) or a non-symmetric α-like expandable tree on mn vertices for mn ≡
0 (mod 4), where m = 2k, k ≥ 5.

Proof. Case 1. Let k be odd.

Subcase 1.1. Let n be odd. Thus mn ≡ 2 (mod 4). Let T be an arbitrary
non-symmetric tree on 10 vertices with an α-like labeling and the splitting
value 4.
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For example let V (T ) = {0, 1, 2, . . . , 9} and E(T ) = {(0, 9), (0, 8), (0, 7),
(7, 2), (2, 6), (2, 5), (5, 1), (5, 3), (5, 4)}. We know (see [4]) that for each α-
like tree on 4t + 2 vertices with the splitting value 2t there exists an α-like
tree on 4(t + 1) + 2 vertices with the splitting value 2t + 2. Hence, the tree
T is expandable step by step to an α-like tree T ′ on 2k, k ≥ 5, vertices with
the splitting value k − 1. Let T ′ have the desired α-like labeling with the
splitting value k− 1. Now we form in T ′ a new labeling so that we multiply
all labels by n. Thus T ′ contains the edges of lengths n, 2n, . . . , (k − 1)n
exactly twice and the edge of length kn exactly once, the origins of the
edges having the same length are of different parity, and the splitting value
is n(k − 1) = kn − n = mn/2 − n = (mn/2 − 1) − (n − 1). Hence, T ′ is a
non-symmetric tree such that T ′ y F is a non-symmetric α-like tree on mn
vertices with the splitting value mn/2− 1.

Subcase 1.2. Let n be even. Thus mn ≡ 0 (mod 4). Let T be an arbitrary
non-symmetric tree with an α-labeling on 10 vertices with the splitting value
4 in which after the redefining of a length of an edge (u, v) ∈ E(T ), u ≤ 4 < v
so that `(u, v) = min{v − u, mn − (v − u)}, it holds that one origin of the
pair of the edges having the same length is less than or equal to 4 and
the other one is greater than 4. Recall that the original definition of the
length of an edge uv ∈ E(T ) was `(u, v) = v − u. And such a definition
does not allow us to determine the origin of an edge uv ∈ E(T ). Let T
have V (T ) = {0, 1, . . . , 9} and E(T ) = {(0, 9), (9, 1), (1, 8), (8, 2), (2, 7),
(2, 6), (6, 3), (3, 5), (5, 4)}. Again as in Subcase 1.1 T is expandable to tree
G on 2k, k ≥ 5, vertices with an α labeling and the splitting value k − 1.
If we multiply all labels in G by n then we have in G the vertex labeling
λ : V (G) → {0, n, 2n, . . . , (2k − 1)n} with the splitting value (k − 1)n =
kn − n = mn/2 − 1 − (n − 1) and the set of all lengths of the edges in G
is equal to {n, 2n, . . . , kn = mn/2}. Further we know that the origins of
the edges having the same length in G and F are of the same parity and
one of them is less than or equal to mn/2 − 1 and the other one is greater
than mn/2 − 1. Therefore the grafting G y F is a non-symmetric α-like
expandable tree on mn vertices with the splitting value mn/2− 1.

Case 2. Let k be even.

Subcase 2.1. Let n be odd. Let T be a non-symmetric α-like expand-
able tree on 12 vertices with the splitting value 5. Let T have V (T ) =



Trees with α-Labelings and Decompositions of ... 323

{0, 1, . . . , 11} and E(T ) = {(0, 11), (0, 10), (0, 9), (10, 2), (1, 8), (1, 7), (7, 2),
(2, 6), (6, 3), (6, 4), (6, 5)}.

Recall that the origins of the edges having the same length are of the
same parity in T . Again T is expandable step by step to an α-like expandable
tree G on 2k, k ≥ 6 so that we add 1 to all labels that are less than or equal
to 5 and 3 to the labels that are greater than 5. Further we label four new
vertices by 15,0,7,8 and we join by two extra edges the pair of the vertices
0,15 and the pair of the vertices 7,8. After we join the pair of adjacent
vertices 0,15 by the edge (15, 1) and the pair of adjacent vertices 7,8 by the
edge (7, 6) to the tree T , we see that we obtain an α-like expandable tree on
16 vertices with the splitting value 7. If we continue in this procedure step
by step we receive an infinite class of the desired trees. Again if we multiply
all labels in G by n and construct the grafting G y F then we obtain
a non-symmetric α-like expandable tree on mn vertices with the splitting
value mn/2− 1.

Subcase 2.2. Let n be even. This proof is essentialy similar and therefore
can be omitted.

We define the tree T the same way as in Subcase 1.2, but on 12 vertices.
Notice that tree T in Subcase 1.2 is expandable to tree G such that Gy F
is a non-symmetric α-like expandable tree for k and n even.
Now the proof is complete.

From above it follows that if we take a non-symmetric tree on m vertices,
where m is even, with flexible q, α-like or α-like expandable labeling and
“glue” to every vertex of such tree always one component of the forest F ,
then we receive a tree that either factorizes Kmn if mn ≡ 2 modulo 4, or
is easily expandable to a tree on mn + 2 vertices that factorizes Kmn+2

if mn ≡ 0 modulo 4. Further, we know a method how to “connect” the
components of the forest F ′ to obtain a tree on (m + 1)n vertices that
factorizes K(m+1)n for (m + 1)n ≡ 2 modulo 4.
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