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Abstract

Some bipartite Hamilton decomposable graphs that are regular of
degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line
graphs. One consequence is that every bipartite Hamilton decompos-
able graph G with connectivity κ(G) = 2 has a Hamilton decomposable
line graph L(G).
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1. Introduction

The line graph, denoted by L(G), of a graph G having vertex set V (G) and
edge set E(G) is the graph with vertex set E(G), where two vertices of L(G)
are adjacent in L(G) if and only if the corresponding edges in G are incident
with a common vertex in G.

A Hamilton decomposition of a δ-regular graph G consists of a set of
Hamilton cycles (plus a 1-factor if δ is odd) of G such that these cycles (and
the 1-factor when δ is odd) partition the edges of G. If G has a Hamilton
decomposition, it is said to be Hamilton decomposable.

Investigating Hamilton decompositions of line graphs has been largely
motivated by the following conjecture of Bermond [1]:

Conjecture 1. If G is Hamilton decomposable, then L(G) is Hamilton de-
composable.
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Bermond’s conjecture has been shown to hold when G is a Hamilton decom-
posable graph satisfying any of the following criteria [3, 4, 5, 6, 7, 8, 9, 10, 11]:

1. δ ≤ 5,

2. δ ≡ 0 (mod 4),

3. δ is odd and G is bipartite,

4. δ is even and G has a perfect 1-factorisation,

5. G = Kn, or

6. G = Kn,n.

In the case where G is a Hamilton decomposable graph that is regular of
degree δ ≡ 2 (mod 4), it is known that L(G) can be decomposed into
δ − 2 Hamilton cycles plus a 2-factor [7, 12]. However, aside from when G
is either complete or else has a perfect 1-factorisation, it is not generally
known whether L(G) is Hamilton decomposable.

As our main result, we show that L(G) is Hamilton decomposable for
every bipartite graph G with δ ≡ 2 (mod 4) that has a Hamilton decompo-
sition H such that κ(G − H1) = 2 for some Hamilton cycle H1 of H. An
immediate consequence of this result is that every bipartite Hamilton decom-
posable graph G with connectivity κ(G) = 2 has a Hamilton decomposable
line graph.

2. Preliminary Results

Let H1 denote the Hamilton cycle (1, 3, 5, . . . , 4k+1, 2, 4k+2, 4k, . . . , 6, 4, 1)
of K4k+2, where V (K4k+2) = {1, 2, . . . , 4k+2}, and let F denote the 1-factor
of K4k+2 having the edges {2i−1, 2i} for i = 1, . . . , 2k +1. H1 is illustrated
in Figure 1. A double-centred Walecki construction described by Zhan [12]
produces the following Hamilton decomposition of K4k+2:

Lemma 1. K4k+2 has a Hamilton decomposition in which H1 is one of the
Hamilton cycles and F is the 1-factor.

Proof. For each i = 2, 3, . . . , 2k, let Hi = σi−1(H1) where σ is the permuta-
tion (1)(2)(3, 5, 9, . . . , 4k+1, 4k, . . . , 12, 8, 4, 6, 10, . . . , 4k+2, 4k−1, . . . , 11, 7).
Then the Hamilton cycles H1, H2, . . . ,H2k and the 1-factor F form a Hamil-
ton decomposition of K4k+2.
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Figure 1. The Hamilton cycle H1.

In [9] a stroll was defined as an alternating sequence of vertices and edges,
v0e0v1e1 · · · vn−1en−1vn, such that vi and vi+1 (which are not necessarily
distinct) are each end-vertices of the edge ei, for 0 ≤ i ≤ n − 1. For closed
strolls (in which v0 = vn), it suffices to state only the sequence of edges. An
Euler stroll is any closed stroll in a graph G that uses each edge of G exactly
once. Two Euler strolls are said to be compatible if no pair of adjacent edges
(i.e., no 2-path) is contained in both.

Note that an Euler stroll in a graph G naturally corresponds to a Hamil-
ton cycle in L(G), and that any set of pairwise compatible Euler strolls in
G corresponds to a set of edge-disjoint Hamilton cycles in L(G).

3. Main Results

Theorem 1. Let G be a bipartite graph that is regular of degree δ = 4k+2. If
there exists a Hamilton decomposition H of G such that, for some Hamilton
cycle H1 of H, κ(G−H1) = 2, then L(G) is Hamilton decomposable.

Proof. Let H be a Hamilton decomposition of G, consisting of the Hamil-
ton cycles H1, . . . , H2k+1, such that ((G−H1)− {u, v}) is disconnected for
some pair of vertices u and v. Fix a bipartite colouring of the vertices of G
using the colours red and blue, such that vertex u is coloured red.
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Alternately colour the edges of H1 with the colours 1 and 2. Since {u, v} is
a vertex cut in (G −H1), then there are two components, say C and C′, in
((G−H1)− {u, v}).

For each i = 2, . . . , 2k + 1, alternately colour the edges of Hi with the
colours (2i − 1) and 2i so that the edge from vertex u into C has colour
(2i− 1). Let Pi be the sequence of edges along the cycle Hi of G, beginning
with the edge from u to C, ending with the edge from v to C′, and including
all edges coloured either (2i− 1) or 2i that are contained in C. Similarly, let
P ′

i be the sequence of edges along the cycle Hi, beginning with the edge from
C to u, ending with the edge from C′ to v, and including all edges coloured
either (2i − 1) or 2i that are contained in C′. Together, Pi and P ′

i contain
all of the edges of Hi (with 2 edges of Hi being contained in Pi ∩ P ′

i ).
Let H1, . . . , H2k be the Hamilton cycles of the Hamilton decomposition

of K4k+2 described in Lemma 1. These cycles will be used to generate 4k
mutually compatible Euler strolls in G, and hence 4k edge-disjoint Hamilton
cycles in L(G).

For each i = 1, . . . , 2k, we wish to use H1 and Hi to generate 2 strolls in
G. This can be done by noting that Hi can be broken into two equal-length
paths, each going from vertex 1 to vertex 2 of K4k+2. For H1, let P1 (resp.
P′1) denote the path with internal vertices having odd (resp. even) labels, so
that P1 = (1, 3, 5, 7, 9, 11, . . . , 4k+1, 2) and P′1 = (1, 4, 6, 8, 10, . . . , 4k+2, 2).
For i = 2, 3, . . . , 2k, let Pi = σi−1(P1) and P′i = σi−1(P′1), where σ is the
permutation presented in Lemma 1.

For the first stroll generated by Hi, where i ∈ {1, 2, . . . , 2k}, we use path
Pi (resp. P′i) at each vertex of H1 that is coloured red (resp. blue) and for
the second stroll we use path Pi (resp. P′i) at each vertex that is coloured
blue (resp. red). We use the paths Pi and P′i to describe how to replace
each edge sequence (e, e′) of H1 with an edge sequence (e, e1, e2, . . . , e2k, e

′)
where each of the edges e1, . . . , e2k is incident with the vertex of G that is
common to e and e′. Specifically, we wish the edge colours of the edges
in the sequence (e, e1, e2, . . . , e2k, e

′) to be the same as the vertex labels
along the path Pi or P′i as appropriate. So, for example, for the first stroll
generated by H1, we would replace each 2-path in H1 from an edge of colour
2 to an edge of colour 1 and having a blue internal vertex with a stroll
consisting of edges incident with this blue vertex and having edge colours
(2, 4k + 2, . . . , 10, 8, 6, 4, 1), whereas for the second stroll generated by H1

each such 2-path of H1 would be replaced by a stroll whose edges are coloured
(2, 4k + 1, . . . , 11, 9, 7, 5, 3, 1).
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The 4k Euler strolls which are generated in this manner will be mutually
compatible, and hence correspond to 4k edge-disjoint Hamilton cycles in
L(G). Let B2i−1 and B2i denote the two Hamilton cycles in L(G) that are
generated from Hi, for each i = 1, . . . , 2k.

If we were to remove the Hamilton cycles B1, . . . , B4k from L(G) we
would then have a 2-factor consisting of (2k + 1) disjoint cycles of length
|V (G)|. Let A1, . . . , A2k+1 denote these (2k + 1) cycles in L(G). Note that
for each i = 1, . . . , 2k+1, there exists a natural correspondence between the
cycle Ai in L(G) and the Hamilton cycle Hi of G. With the vertices of L(G)
inheriting colours from the edges of G, it follows that the vertices of Ai are
alternately coloured with the colours (2i− 1) and 2i.

To achieve a Hamilton decomposition of L(G) we now show that the
subgraph of L(G) that is formed from the union of B1 and A1, . . . , A2k+1 is
itself Hamilton decomposable. The structure formed by B1 ∪A1 is particu-
larly important at this point, and is illustrated in Figure 2, where the outer
cycle is B1 and the inner cycle is A1.
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Figure 2. B1 ∪A1

Note that between each consecutive pair of vertices having colours 1 and 2
is a sequence of vertices whose colours match the labels of the vertices of
either P1 or P′1. Also, each segment of B1 ∪ A1 (i.e., each set of vertices
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that is between a consecutive pair of vertices having colours 1 and 2) is a
subgraph of a clique of L(G) that was generated by the δ edges incident
with a common vertex, say x, of G. We will call this segment (resp. clique)
the x segment (resp. x clique) of B1 ∪A1 (resp. L(G)).

Observe now that the edge sequences P2, . . . , P2k+1 in G correspond to
a set of 2k paths in L(G), say L(P2), . . . , L(P2k+1). Moreover, since each
sequence Pi in G begins at an edge incident with u and ends at an edge
incident with v, the corresponding path L(Pi) in L(G) will begin in the u
segment and finish in the v segment. The internal edges of the sequence Pi

pass through the component C of ((G−H1)−{u, v}), and so it follows that
the set of segments of B1 ∪ A1 through which the path L(P2) travels is the
same set of segments as for each of the paths L(P3), . . . , L(P2k+1).

Similarly, the paths L(P ′
2), . . . , L(P ′

2k+1) in L(G) start and end in the u
and v segments, and go through a common set of segments of B1∪A1 that is
the complement of those used by the internal vertices of L(P2), . . . , L(P2k+1).

We now construct a Hamilton cycle C1 in L(G), using only edges of
B1 ∪A1 ∪ · · · ∪A2k. Include in C1 the (k + 1) edges that form a maximum
matching in the B1 portion of the u segment of B1 ∪ A1. Also include in
C1 the maximum matching in the v segment of B1 ∪ A1 that contains the
edge from A1. Add to C1 all of the edges in each of L(P2), . . . , L(P2k+1).
Figure 3 now illustrates the portion of C1 that we have so far constructed.
(Note that there are two cases, depending on whether u and v are in the
same part of the bipartition of G.)
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Figure 3. Some of the edges of the Hamilton cycle C1 in L(G).
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Now, in each segment of B1∪A1 that is used by an internal vertex of L(P2),
include in C1 the edge from A1. In each segment of B1∪A1 not used by any
vertices of L(P2), include in C1 all (2k +1) edges from B1. At this point we
find that C1 is a Hamilton cycle of L(G).

The edges which remain when C1 is removed from the union of B1

and A1, . . . , A2k+1 form a second Hamilton cycle, C2. C1 and C2, together
with B2, . . . , B4k, constitute the (4k + 1) Hamilton cycles of a Hamilton
decomposition of L(G).

It follows from Theorem 1 that if G is a bipartite Hamilton decomposable
graph with δ ≡ 2 (mod 4) and connectivity κ(G) = 2, then L(G) is Hamilton
decomposable. Combined with known results [7, 9], we conclude that every
bipartite Hamilton decomposable graph G with κ(G) = 2 has a Hamilton
decomposable line graph.
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