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Abstract

In a graph a vertex is said to dominate itself and all its neighbours.
A doubly dominating set of a graph G is a subset of vertices that
dominates every vertex of G at least twice. A doubly dominating set
is exact if every vertex of G is dominated exactly twice. We prove that
the existence of an exact doubly dominating set is an NP-complete
problem. We show that if an exact double dominating set exists then
all such sets have the same size, and we establish bounds on this size.
We give a constructive characterization of those trees that admit a
doubly dominating set, and we establish a necessary and sufficient
condition for the existence of an exact doubly dominating set in a
connected cubic graph.
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1. Introduction

In a graph G = (V, E), a subset S C V is a dominating set of G if every
vertex v of V' — S has a neighbour in S. The domination number v(G) is
the minimum cardinality of a dominating set of G. For a comprehensive
treatment of domination in graphs and its variations, see [8, 9].

Harary and Haynes [7] defined and studied the concept of double dom-
ination, which generalizes domination in graphs. In a graph G = (V, E), a
subset S of V is a doubly dominating set of G if, for every vertex v € V,
either v is in S and has at least one neighbour in S or v is in V' — .S and has
at least two neighbours in S. The double domination number yx2(G) is the
minimum cardinality of a doubly dominating set of G. Double domination
was also studied in [2, 3, 4]. Analogously to exact (or perfect) domination
introduced by Bange, Barkauskas and Slater [1], Harary and Haynes [7] de-
fined an efficient doubly dominating set as a subset S of V such that each
vertex of V' is dominated by exactly two vertices of S. We will prefer here
to use the phrase exact doubly dominating set.

Every graph G = (V, E) with no isolated vertex has a doubly dominating
set; for example V' is such a set. In contrast, not all graphs with no isolated
vertex admit an exact doubly dominating set; for example, the star K,
(p > 2) does not. In Section 2 we prove that the existence of an exact doubly
dominating set is an NP-complete problem. We then show in Section 3 that
if a graph G admits an exact doubly dominating set then all such sets have
the same size, and we give some bounds on this number. Finally, we give
in Section 4 a constructive characterization of those trees that admit an
exact doubly dominating set, and we establish a necessary and sufficient
condition for the existence of an exact doubly dominating set in a connected
cubic graph.

Let us give some definitions and notation. In a graph G = (V, E), the
open neighbourhood of a vertex v € V is the set N(v) = {u €V | uwv € E},
the closed neighbourhood is the set N[v] = N(v)U{v}, and the degree of v is
the size of its open neighbourhood, denoted by deg.(v). We denote respec-
tively by n, 6 and A the order (number of vertices), minimum degree and
mazimum degree of a graph G.

2. NP-Completeness

In this section we consider the complexity of the problem of deciding whether
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a graph admits an exact doubly dominating set.
EXACT DOUBLY DOMINATING SET (X2D)

Instance: A graph G;

Question: Does G admit an exact doubly dominating set?

We show that this problem is NP-complete by reducing the following EX-
ACT 3-COVER (X3C) problem to our problem.

EXACT 3-COVER (X3C)

Instance: A finite set X with | X| = 3¢ and a collection C' of 3-element
subsets of X;

Question: Is there a subcollection C” of C such that every element of
X appears in exactly one element of C'?

EXACT 3-COVER is a well-known NP-complete problem [6].
Theorem 1. EXACT DOUBLY DOMINATING SET is NP-complete.

Proof. Clearly, X2D is in NP. Let us now show how to transform any
instance X, C of X3C into an instance G of X2D so that one of them has a
solution if and only if the other has a solution.

For each z; € X, we build a “gadget” graph with vertices a;, b;, ¢; and
d}, . ,dfi, where k; is the number of elements of C that contain x;, and
with edges a;b;, b;c; and cidg (j =1,..., k). We view the dg’s as points
of this gadget, each of them being associated with an element of C' that
contains x;. See Figure 1.

For each C; € C, we build a gadget graph with 15 vertices Y, ..., S,
Zts Tty ¢, Ut, Vg, we and edges y{y{“ (j =0,...,8mod9) (so that the y{’s
induce a Cy) and zy?, 2093, 2009, 247, 2¢5¢, 7454 (80 24,74, 8¢ induce a triangle),
and wy, wy?, viyd, vy, weyd, weys. We view uy, v, wy as the three points
of this gadget, each of them being associated with an element of C;. See
Figure 1.

Now, for each Cy, if C; = {z;,z;,z1} say, we identify the first, second
and third point of the gadget of C; with the corresponding point in the
gadget of x;, x;, z), respectively. We call G the resulting graph. Clearly the
size of G is polynomial in the size of X and C.
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Gadget for x; (with k; = 5) Gadget for C;
Figure 1: Gadgets for an element xz; and a triple C;.

1. Suppose that the instance X,C of X3C has a solution C’. We build a
set S of vertices of G as follows: for each C; € C’, we put in S the vertices
ug, Y&, ve, Y, we, yf 5 2,7y for each Cp € C — C') we put in S the vertices
ub, v ud Pyl ys, e, sy for each r; € X, we put in S the vertices a;, b;
(note that exactly one of the d/’s has been put in S). It is a routine matter
to check that S is an exact doubly dominating set in G.

2. Conversely, suppose that G has an exact doubly dominating set .S. Note

the gadget of a given C} is in exactly one of the following two possible states:

(a) z € 5, and so exactly one of ¢, s; is in S, none of vyl 99 is in S, the
other six y/’s are in S, and none of wuy, vg, wy is in S; or

(b) 2z ¢ S, both 74, s; are in S, none of y?, 42,49 is in S, exactly one of
{yt, yt,ul Y, {y?, 72,45} is in S and the other is in V — S, and each of
ug, Vg, Wy 18 in S.

Clearly, for each z; € X, we have a;,b; € S (else a; would not be doubly
dominated), then ¢; ¢ S (else b; would be dominated three times), and it
follows that exactly one of the d!’s is in S. For each i = 1,...,3q, let (i) be
the integer such that this special dg is equal to one point of Cy;) € C, and
let us say that Cy; is selected by z;. Thus the gadget of Cy;) is in state
(b), which means that Cy; is selected by each of its 3 elements. Therefore,
the collection C” of all selected elements of C' (i.e., those whose three points
are in ) is an exact 3-cover. |

3. Exact Doubly Dominating Sets

We begin by the following observation which is a straightforward property
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of exact doubly dominating sets in graphs. A matching in a graph G is a
set of pairwise non-incident edges of F.

Observation 2. The vertex set of every exact doubly dominating set in-
duces a matching.

Next, we show that all exact doubly dominating sets (if any) have the same
size.

Proposition 3. If G has an exact doubly dominating set then all such sets
have the same size.

Proof. Let Dy, Ds be two exact doubly dominating sets of G. Let us
write I = D1 N Dy, and let Xy and X; be the subsets of D; — I such that
every vertex of Xy has zero neighbours in I and every vertex of X; has one
neighbour in I. Clearly D1 — I = XgU X;. We define similarly subsets Yj
and Y7 of Dy — I. We claim that | X;| = |Y1]. Indeed, let = be any vertex of
X1, adjacent to a vertex z € I. Since Dy is an exact doubly dominating set,
z has a unique neighbour y in Ds. We have y € Dy — I, for otherwise z has
two neighbours z,y in Dj, a contradiction. Thus y € Y;. The symmetric
argument holds for every vertex of Yj, and so |X;| = |Y1]. Since Ds is an
exact doubly dominating set, every vertex of X; has exactly one neighbour
in Yp U Y7 and every vertex of Xy has exactly two neighbours in Yy U Y7.
The same holds about the vertices of Y7 and Yj. This implies |Xo| = |Yp],
and thus |D;| = |Da|. |

The next result relates the size of an exact doubly dominating set with the
order and minimum degree ¢ of a graph G.

Proposition 4. If S is an exact doubly dominating set of a graph G, then
|S] <2n/(6+1).

Proof. Let S be an exact doubly dominating set of a graph G and let
t denote the number of edges joining the vertices of S to the vertices of
V — S. Then t = 2|V — S| since S is an exact doubly dominating set. By
Observation 2, S induces a matching of GG, and so every vertex v of S has
exactly degg(v) — 1 neighbours in V' — S. Thus t = )7, cg(degg(v) —1). So
|S[(6 — 1) <t=2|V —S|. Hence |S| <2n/(6+1). |

In [7], Harary and Haynes gave a lower bound for the doubly domination
number:
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Theorem 5 ([7]). If G has no isolated vertices, then yx2(G) > 2n/(A+1).
From Proposition 4 and Theorem 5, we have:

Corollary 6. If S is an exact doubly dominating set of a reqular graph G,
then |S| =2n/(A+1).

Next, we establish a bound on the double domination number based on
the neighbourhood packing number for any graph with no isolated ver-
tices. Recall that a set R C V(G) is a neighbourhood packing set of G
if N[z] N N[y] = 0 holds for any two distinct vertices 2,y € R. The neigh-
bourhood packing number p(G) is the maximum cardinality of a neighbour-
hood packing in G. It is easy to see (see [8]) that every graph G satisfies

p(G) <~(G).
Theorem 7. If G is a graph without isolated vertices, then yx2(G) > 2p(G).

Proof. Let R be a maximum neighbourhood packing set of G. Then for
every v € R, every doubly dominating set of G contains at least 2 vertices
of Nv] to doubly dominate v. Since N[v] N N[u] = () holds for each pair of
vertices v, u of R, we have yx2(G) > 2|S5]. |

Corollary 8. If S is an exact doubly dominating set of G, then |S| > 2p(G).

Farber [5] proved that the domination number and neighbourhood packing
number are equal for any strongly chordal graph. Thus we have the following
corollary to Theorem 7 which extends the result of Blidia et al. [3] for trees.

Corollary 9. If G is a strongly chordal graph without isolated vertices, then
Vx2(G) = 29(G).

4. Graphs with Exact Doubly Dominating Sets

We first consider paths and cycles. The double domination number for cycles
C,, and nontrivial paths P, were given in [7] and [3] respectively:

[7] 7><2(Cn) = [2?”—‘
3] vx2(Pn) =2[5]+1if n =0 (mod 3) and yx2(P,) = 2[ 5] otherwise.

Now we establish similar results for the exact doubly dominating sets in
cycles and paths.
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Proposition 10. A cycle Cy, has an exact doubly dominating set if and only
if n =0 (mod 3). If this holds the size of any such set is 2n/3.

Proof. Let S be an exact doubly dominating set of a cycle C,,. By Corollary

6, we have |S| = 2n/3 and so n = 0 (mod 3). Conversely, assume the
vertices of C,, are labelled vy, vo,...,vy,v1. If n = 0 (mod 3), then it is
easy to check that the set {v;,v;+1 | # = 1(mod 3),1 < i < n — 1} is an
exact doubly dominating set of C,. ]

Proposition 11. A path P, has an exact doubly dominating set if and only
if n =2 (mod 3). If this holds the size of any such set is 2(n+1)/3.

Proof. If n = 2 the fact is obvious, so let us assume n > 3. Let S be an
exact doubly dominating set of a path P,,. Note that for every vertex v of
degree 2, either v or its two neighbours are in S. So V' — S is an independent
set, and N(v) NN (w) = () for any two v,w € V —S. By Observation 2, every
vertex of S has exactly one neighbour in V' — S. Thus |S| — 2 = 2|V — S|
and son = [S|+|V -S| =3V -5|+2.

Conversely, assume that the vertices of P, are labelled vy, vo,...,v,. If
n = 2 (mod 3) then it is easy to check that the set {v;,v;11 | ¢ = 1(mod
3),1 <i<mn-—1}is an exact doubly dominating set of P,. [ |

Chellali and Haynes [4] established the following upper bound for the double
domination number:

Theorem 12 ([4]). Every graph G without isolated vertices satisfies

Theorem 13. Let G be a graph that admits an exact doubly dominating set
S. Then |S| =n — 0+ 1 if and only if either G = tKy witht > 1, if § =1,
or G = K,, with n > 3 otherwise.

Proof. Let S be an exact doubly dominating set of G such that |S| =
n—3d+ 1. If § =1, then |S| = n. Since S induces a l-regular subgraph,
G itself is 1-regular, i.e., G = tKs with ¢ > 1. Now assume that § > 2.
Let v be a vertex of S. Then V' — S contains all the neighbours of v except
one, and so degg(v) =1 < |V -S| =n—(n—-3d+1) =06 —1. Thus all
the vertices of S have the same degree §, and |V — S| = § — 1. Let u be
a vertex of N(v) NS. Then u is adjacent to all the vertices of V' — S and
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hence at this point every vertex of V' — S is doubly dominated by u and v.
Thus S = {u,v} and all the vertices of V' — S are mutually adjacent. So G
is a complete graph. [

Next, we consider nontrivial trees. A vertex of degree 1 is called a leaf, and
a support vertex is any vertex adjacent to a leaf. It is easy to see that a
star with at least three vertices is an example of a tree that does not admit
an exact doubly dominating set. The following observation generalizes this
remark.

Observation 14.
e If a graph G has a leaf, then any doubly dominating set of G contains
this leaf and its neighbour.

e If a graph G has an exact doubly dominating set, then every support
vertex is adjacent to exactly one leaf, and no two support vertices are
adjacent.

We now define recursively a collection 7 of trees, where each tree T' € T
has two distinguished subsets A(T"), B(T') of vertices. First, 7 contains any
tree T7 with two vertices z,y, and for such a tree we set A(T1) = {z,y} and
B(Ty) = {y}. Next, if T' is any tree in 7, then we put in 7 any tree T that
can be obtained from 7" by any of the following two operations:

Type-1 operation: Attach a path P3 = wow, with u,v,w ¢ V(T"), by
adding an edge from w to one vertex of A(T"). Set A(T) = A(T') U {u,v}
and B(T) = B(T") U {u}.

Type-2 operation: Attach a path P; = ajasasaqas, with ay,as,as, aq,
as ¢ V(T"), by adding an edge from a3 to one vertex of V(T") — A(T”). Set
A(T) = A(T’) U {al, as, aq, CL5} and B(T) = B(TI) U {al,a5}.

Lemma 15. If T € T, then:

(a) A(T) is the unique exact doubly dominating set of T
(b) B(T) is a neighbourhood packing set of T'.

() |A(T)] = 29(T).

Proof. Consider any T' € 7. So T can be obtained from a sequence
T1,Ts,..., T (k> 1) of trees of 7, where T3 is the tree with two vertices,
T =Ty, and, if 1 < i < k — 1, the tree T;41 is obtained from T; by one of
the two operations. We prove (a) by induction on k. If k = 1, then A(T) is
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obviously the unique exact doubly dominating set of T'. Assume now that
k > 2 holds for T and that the result holds for all trees in 7 that can be
constructed by a sequence of length at most kK — 1. Let 7" = Tj_;. We
distinguish between two cases.

Case 1. T is obtained from T” by using the Type-1 operation. Note
that A(T) is an exact doubly dominating set of T since, by the induction
hypothesis, A(T") is an exact doubly dominating set of 77 and u, v and the
neighbour of w in 7" are in A(T'). Now let S be any exact doubly dominating
set of T. By Observation 14, we have {u,v} C S, and consequently w ¢ S
(for otherwise v would be dominated three times by S). If x is any vertex
in V(T"), then z is not dominated by any of u,v, so S — {u,v} is an exact
doubly dominating set of T7'. By the inductive hypothesis A(T") is the unique
such set, so S — {u,v} = A(T"), and so S = A(T), which shows the unicity
anounced in (a).

Case 2. T is obtained from T” by using the Type-2 operation. Note
that A(T) is an exact doubly dominating set of 1" since, by the induction
hypothesis, A(T”) is an exact doubly dominating set of 7" and the neighbour
of ag in T' is not in A(T’) while a1,az,a4,a5 are in A(T). Now let S
be any exact doubly dominating set of T. By Observation 14, we have
{a1,as,a4,a5} C S, and consequently az ¢ S. If x is any vertex in V(T"),
then z is not dominated by any of aj,as,a4,as, so S — {a1,a2,a4,a5} is an
exact doubly dominating set of 7’. By the inductive hypothesis we have
S —A{a1,az,a4,a5} = A(T"), and so S = A(T). So (a) is proved.

It is a routine matter to check item (b). Note that the tree 77 with two
vertices has |A(T1)| = 2 and |B(711)| = 1; moreover, each operation adds
twice as many vertices to A(T) as to B(T'), so |A(T)| = 2|B(T")| holds for
every tree T € 7. It follows from this and from (a) and (b) that yx2(T") <
|A(T)| = 2|B(T)| < 2v(T), and we have equality throughout by Corollary 9.
This proves part (c¢) and concludes the proof of the lemma. [

We now are ready to give a constructive characterization of trees with an

exact doubly dominating sets.

Theorem 16. Let T be a tree. Then T has an exact doubly dominating set
if and only if T € T.

Proof. First suppose that T € 7. Then Lemma 15 implies that 7" has an
exact doubly dominating set. Conversely, assume that T is a tree that has
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an exact doubly dominating set S, and let n be the order of T. Clearly,
n > 2. If n =2, then T is in 7. Observation 14 implies that n € {3,4} is
impossible and that n = 5 implies that T is a path on 5 vertices, which is
in 7 since it can be obtained from 77 by the Type-1 operation.

Now assume that n > 6 and that every tree T of order n’ with 2 < n’ <
n such that 77 has an exact doubly dominating set is in 7. Root T at a
vertex r. Let u be a leaf at maximum distance from r, let v be the parent of
u in the rooted tree, and let w be the parent of v. By Observation 14, u is the
unique child of v, {u,v} C S, w ¢ S, and w is neither a support vertex nor
a leaf. This implies that every child of w is a support vertex. Furthermore
w has at most two children, for otherwise w would be dominated at least
3 times by S, a contradiction. So w # r. Let z be the parent of w in the
rooted tree.

Suppose that w has exactly one child in the rooted tree. Let T' =
T — {u,v,w}. Since {u,v} C S and w ¢ S, we have z € S so that w is
dominated twice by S. Moreover, S — {u, v} is an exact doubly dominating
set of T”. By the inductive hypothesis, we have T" € 7 and, by Lemma 15,
S —{u,v} = A(T") is the unique exact doubly dominating set of 7. Thus
T can be obtained from 7" by using Type-1 operation (with the path uvw
and since z € A(T")),so T € T.

Now suppose that w has exactly two children v,v’ in the rooted tree.
Let T, be the subtree of T induced by w and its descendants, rooted at w.
By Observation 14, each child of w has exactly one child, and we call v’ the
child of v/, so Ty, is a path on five vertices uvwv’'v/ with central vertex w.
Moreover, by Observation 14, we have {u,v,u/,v'} C S, w ¢ S, and 2z ¢ S
since w is dominated twice in S by v,v’. Thus z is doubly dominated by
SNV(T") and consequently S NV (T”) is an exact doubly dominating set
of T”. By the inductive hypothesis, we have T € 7 and, by Lemma 15,
SNV (T") = A(T") is the unique exact doubly dominating set of 7". Thus T'
can be obtained from 7" by using Type-2 operation (with the path wvwv'v
and since z ¢ A(T")), so T € 7. This completes the proof of the theorem. m

The proof of the theorem suggests a polynomial-time algorithm which, given
a tree T with n vertices, decides whether T is in 7 and, if it is, returns the
set A(T'). Here is an outline of the algorithm. If 7" is a path on 2 or 5
vertices, answer T € 7, return the obvious set A(T'), and stop. Else, if
either n < 5 or T is a star, answer T' ¢ 7 and stop. Now suppose n > 6.
Pick a vertex r, root the tree 1" at r, and pick a vertex u at maximum
distance from r. Let v be the parent of u in the rooted tree and w be the
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parent of v. If either v has at least two children, or w has at least three
children, or w has exactly two children and its second child has either zero
or at least two children, then return the answer T' ¢ 7 and stop. Else, let z
be the parent of w. If w has exactly one child, call the algorithm recursively
on the tree 7" = T — {u, v, w}; if the answer to the recursive call is 7" € T
and z € A(T"), then answer T' € T, return A(T) = A(T") U{u, v}, and stop,
else answer T' ¢ 7 and stop. If w has exactly two children v,v’, call the
algorithm recursively on the tree 7" = T — {u, v, w,v’,u'} (where v is the
child of v'); if the answer to the recursive call is 77 € 7 and z ¢ A(T"), then
answer T' € T, return A(T) = A(T") U {u,v,v/,v'} and stop, else answer
T ¢ T and stop.

Next, we give a necessary and sufficient condition for the existence of
an exact doubly dominating set in a connected cubic graph. Recall that a
matching in a graph G = (V, E) is perfect if its size is |V|/2. With any
perfect matching M = {ej1,e2,...,e,/2} of a graph G we associate a simple
graph denoted by G = (Va, Epy) where each edge e; € M is represented
by a vertex in Vs and two vertices of V), are adjacent if the corresponding
edges in M are joined by an edge in G. A graph is an equitable bipartite
graph if its vertex set can be partitioned into two independent sets S; and
Sy such that |Si| = [S2|, and in this case (S7,S52) is called an equitable
bipartition of G.

Theorem 17. Let G be a connected cubic graph. Then G has an exact
doubly dominating set if and only if G has a perfect matching M such that
the associated graph Gpr is an equitable bipartite graph.

Proof. Let G be a connected cubic graph with an exact doubly dominating
set S. So S induces a 1-regular graph, whose edges form a matching M,
and every vertex of S has two neighbours in V' — S. Since every vertex of
V — § has exactly two neighbours in S, the subgraph induced by V — S
is 1-regular, and its edges form a matching Ms. Thus G admits a perfect
matching M = M; U M. Each edge of F — M joins a vertex of S with a
vertex of V' — S, and the bipartite subgraph (S, V —S; E— M) is 2-regular, so
|S| = |V — S|, and so |M1| = |Ma|. It follows that the graph G associated
with M is an equitable bipartite graph with equitable bipartition (M7, Ms).

Conversely, let M be a perfect matching of a connected cubic graph G
such that the associated graph Gy is equitable bipartite, with equitable bi-
partition (A, B). Let Aps (resp. Bys) be the vertices of G that are contained
in the edges corresponding to the vertices of A (resp. B). Since A (resp. B)
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is independent in Gy, the subgraph of G induced by Aj; (resp. by Byy) is
1-regular. This also implies that every vertex of Ay (resp. of Bys) has two
neighbours in By (resp. in Ayy) since G is a cubic graph. Consequently, Ay,
and Bj are two disjoint exact doubly dominating sets of G. This completes
the proof. [
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