EXACT DOUBLE DOMINATION IN GRAPHS

Mustapha Chellali
Department of Mathematics, University of Blida
B.P. 270, Blida, Algeria
e-mail: mchellali@hotmail.com
Abdelkader Khelladi
Department of Operations Research
Faculty of Mathematics
University of Sciences and Technology Houari Boumediene
B.P. 32, El Alia, Bab Ezzouar, Algiers, Algeria
e-mail: kader_khelladi@yahoo.fr

AND
Frédéric Maffray
C.N.R.S., Laboratoire Leibniz-IMAG

46 Avenue Félix Viallet
38031 Grenoble Cedex, France
e-mail: frederic.maffray@imag.fr

Abstract

In a graph a vertex is said to dominate itself and all its neighbours. A doubly dominating set of a graph G is a subset of vertices that dominates every vertex of G at least twice. A doubly dominating set is exact if every vertex of G is dominated exactly twice. We prove that the existence of an exact doubly dominating set is an NP-complete problem. We show that if an exact double dominating set exists then all such sets have the same size, and we establish bounds on this size. We give a constructive characterization of those trees that admit a doubly dominating set, and we establish a necessary and sufficient condition for the existence of an exact doubly dominating set in a connected cubic graph.

Keywords: double domination, exact double domination.
2000 Mathematics Subject Classification: 05C69.

1. Introduction

In a graph $G=(V, E)$, a subset $S \subseteq V$ is a dominating set of G if every vertex v of $V-S$ has a neighbour in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. For a comprehensive treatment of domination in graphs and its variations, see $[8,9]$.

Harary and Haynes [7] defined and studied the concept of double domination, which generalizes domination in graphs. In a graph $G=(V, E)$, a subset S of V is a doubly dominating set of G if, for every vertex $v \in V$, either v is in S and has at least one neighbour in S or v is in $V-S$ and has at least two neighbours in S. The double domination number $\gamma_{\times 2}(G)$ is the minimum cardinality of a doubly dominating set of G. Double domination was also studied in $[2,3,4]$. Analogously to exact (or perfect) domination introduced by Bange, Barkauskas and Slater [1], Harary and Haynes [7] defined an efficient doubly dominating set as a subset S of V such that each vertex of V is dominated by exactly two vertices of S. We will prefer here to use the phrase exact doubly dominating set.

Every graph $G=(V, E)$ with no isolated vertex has a doubly dominating set; for example V is such a set. In contrast, not all graphs with no isolated vertex admit an exact doubly dominating set; for example, the star $K_{1, p}$ ($p \geq 2$) does not. In Section 2 we prove that the existence of an exact doubly dominating set is an NP-complete problem. We then show in Section 3 that if a graph G admits an exact doubly dominating set then all such sets have the same size, and we give some bounds on this number. Finally, we give in Section 4 a constructive characterization of those trees that admit an exact doubly dominating set, and we establish a necessary and sufficient condition for the existence of an exact doubly dominating set in a connected cubic graph.

Let us give some definitions and notation. In a graph $G=(V, E)$, the open neighbourhood of a vertex $v \in V$ is the set $N(v)=\{u \in V \mid u v \in E\}$, the closed neighbourhood is the set $N[v]=N(v) \cup\{v\}$, and the degree of v is the size of its open neighbourhood, denoted by $\operatorname{deg}_{G}(v)$. We denote respectively by n, δ and Δ the order (number of vertices), minimum degree and maximum degree of a graph G.

2. NP-Completeness

In this section we consider the complexity of the problem of deciding whether
a graph admits an exact doubly dominating set.
EXACT DOUBLY DOMINATING SET (X2D)
Instance: A graph G;
Question: Does G admit an exact doubly dominating set?
We show that this problem is NP-complete by reducing the following EXACT 3-COVER (X3C) problem to our problem.

EXACT 3-COVER (X3C)
Instance: A finite set X with $|X|=3 q$ and a collection C of 3 -element subsets of X;

Question: Is there a subcollection C^{\prime} of C such that every element of X appears in exactly one element of C^{\prime} ?

EXACT 3-COVER is a well-known NP-complete problem [6].
Theorem 1. EXACT DOUBLY DOMINATING SET is NP-complete.
Proof. Clearly, X2D is in NP. Let us now show how to transform any instance X, C of X3C into an instance G of X2D so that one of them has a solution if and only if the other has a solution.

For each $x_{i} \in X$, we build a "gadget" graph with vertices a_{i}, b_{i}, c_{i} and $d_{i}^{1}, \ldots, d_{i}^{k_{i}}$, where k_{i} is the number of elements of C that contain x_{i}, and with edges $a_{i} b_{i}, b_{i} c_{i}$ and $c_{i} d_{i}^{j}\left(j=1, \ldots, k_{i}\right)$. We view the d_{i}^{j},s as points of this gadget, each of them being associated with an element of C that contains x_{i}. See Figure 1.

For each $C_{t} \in C$, we build a gadget graph with 15 vertices $y_{t}^{0}, \ldots, y_{t}^{8}$, $z_{t}, r_{t}, s_{t}, u_{t}, v_{t}, w_{t}$ and edges $y_{t}^{j} y_{t}^{j+1}(j=0, \ldots, 8 \bmod 9)$ (so that the y_{t}^{j},s induce a C_{9}) and $z_{t} y_{t}^{0}, z_{t} y_{t}^{3}, z_{t} y_{t}^{6}, z_{t} r_{t}, z_{t} s_{t}, r_{t} s_{t}$ (so z_{t}, r_{t}, s_{t} induce a triangle), and $u_{t} y_{t}^{1}, u_{t} y_{t}^{2}, v_{t} y_{t}^{4}, v_{t} y_{t}^{5}, w_{t} y_{t}^{7}, w_{t} y_{t}^{8}$. We view u_{t}, v_{t}, w_{t} as the three points of this gadget, each of them being associated with an element of C_{t}. See Figure 1.

Now, for each C_{t}, if $C_{t}=\left\{x_{i}, x_{j}, x_{k}\right\}$ say, we identify the first, second and third point of the gadget of C_{t} with the corresponding point in the gadget of x_{i}, x_{j}, x_{k} respectively. We call G the resulting graph. Clearly the size of G is polynomial in the size of X and C.

Figure 1: Gadgets for an element x_{i} and a triple C_{t}.

1. Suppose that the instance X, C of X 3 C has a solution C^{\prime}. We build a set S of vertices of G as follows: for each $C_{t} \in C^{\prime}$, we put in S the vertices $u_{t}, y_{t}^{1}, v_{t}, y_{t}^{4}, w_{t}, y_{t}^{7}, z_{t}, r_{t}$; for each $C_{t} \in C-C^{\prime}$, we put in S the vertices $y_{t}^{1}, y_{t}^{2}, y_{t}^{4}, y_{t}^{5}, y_{t}^{7}, y_{t}^{8}, r_{t}, s_{t}$; for each $x_{i} \in X$, we put in S the vertices a_{i}, b_{i} (note that exactly one of the d_{i}^{j} 's has been put in S). It is a routine matter to check that S is an exact doubly dominating set in G.
2. Conversely, suppose that G has an exact doubly dominating set S. Note the gadget of a given C_{t} is in exactly one of the following two possible states:
(a) $z_{t} \in S$, and so exactly one of r_{t}, s_{t} is in S, none of $y_{t}^{0}, y_{t}^{3}, y_{t}^{6}$ is in S, the other six y_{t}^{j},s sare in S, and none of u_{t}, v_{t}, w_{t} is in S; or
(b) $z_{t} \notin S$, both r_{t}, s_{t} are in S, none of $y_{t}^{0}, y_{t}^{3}, y_{t}^{6}$ is in S, exactly one of $\left\{y_{t}^{1}, y_{t}^{4}, y_{t}^{7}\right\},\left\{y_{t}^{2}, y_{t}^{5}, y_{t}^{8}\right\}$ is in S and the other is in $V-S$, and each of u_{t}, v_{t}, w_{t} is in S.

Clearly, for each $x_{i} \in X$, we have $a_{i}, b_{i} \in S$ (else a_{i} would not be doubly dominated), then $c_{i} \notin S$ (else b_{i} would be dominated three times), and it follows that exactly one of the d_{i}^{j} 's is in S. For each $i=1, \ldots, 3 q$, let $t(i)$ be the integer such that this special d_{i}^{j} is equal to one point of $C_{t(i)} \in C$, and let us say that $C_{t(i)}$ is selected by x_{i}. Thus the gadget of $C_{t(i)}$ is in state (b), which means that $C_{t(i)}$ is selected by each of its 3 elements. Therefore, the collection C^{\prime} of all selected elements of C (i.e., those whose three points are in S) is an exact 3 -cover.

3. Exact Doubly Dominating Sets

We begin by the following observation which is a straightforward property
of exact doubly dominating sets in graphs. A matching in a graph G is a set of pairwise non-incident edges of E.

Observation 2. The vertex set of every exact doubly dominating set induces a matching.

Next, we show that all exact doubly dominating sets (if any) have the same size.

Proposition 3. If G has an exact doubly dominating set then all such sets have the same size.

Proof. Let D_{1}, D_{2} be two exact doubly dominating sets of G. Let us write $I=D_{1} \cap D_{2}$, and let X_{0} and X_{1} be the subsets of $D_{1}-I$ such that every vertex of X_{0} has zero neighbours in I and every vertex of X_{1} has one neighbour in I. Clearly $D_{1}-I=X_{0} \cup X_{1}$. We define similarly subsets Y_{0} and Y_{1} of $D_{2}-I$. We claim that $\left|X_{1}\right|=\left|Y_{1}\right|$. Indeed, let x be any vertex of X_{1}, adjacent to a vertex $z \in I$. Since D_{2} is an exact doubly dominating set, z has a unique neighbour y in D_{2}. We have $y \in D_{2}-I$, for otherwise z has two neighbours x, y in D_{2}, a contradiction. Thus $y \in Y_{1}$. The symmetric argument holds for every vertex of Y_{1}, and so $\left|X_{1}\right|=\left|Y_{1}\right|$. Since D_{2} is an exact doubly dominating set, every vertex of X_{1} has exactly one neighbour in $Y_{0} \cup Y_{1}$ and every vertex of X_{0} has exactly two neighbours in $Y_{0} \cup Y_{1}$. The same holds about the vertices of Y_{1} and Y_{0}. This implies $\left|X_{0}\right|=\left|Y_{0}\right|$, and thus $\left|D_{1}\right|=\left|D_{2}\right|$.
The next result relates the size of an exact doubly dominating set with the order and minimum degree δ of a graph G.

Proposition 4. If S is an exact doubly dominating set of a graph G, then $|S| \leq 2 n /(\delta+1)$.

Proof. Let S be an exact doubly dominating set of a graph G and let t denote the number of edges joining the vertices of S to the vertices of $V-S$. Then $t=2|V-S|$ since S is an exact doubly dominating set. By Observation 2, S induces a matching of G, and so every vertex v of S has exactly $\operatorname{deg}_{G}(v)-1$ neighbours in $V-S$. Thus $t=\sum_{v \in S}\left(\operatorname{deg}_{G}(v)-1\right)$. So $|S|(\delta-1) \leq t=2|V-S|$. Hence $|S| \leq 2 n /(\delta+1)$.
In [7], Harary and Haynes gave a lower bound for the doubly domination number:

Theorem 5 ([7]). If G has no isolated vertices, then $\gamma_{\times 2}(G) \geq 2 n /(\Delta+1)$.
From Proposition 4 and Theorem 5, we have:
Corollary 6. If S is an exact doubly dominating set of a regular graph G, then $|S|=2 n /(\Delta+1)$.

Next, we establish a bound on the double domination number based on the neighbourhood packing number for any graph with no isolated vertices. Recall that a set $R \subseteq V(G)$ is a neighbourhood packing set of G if $N[x] \cap N[y]=\emptyset$ holds for any two distinct vertices $x, y \in R$. The neighbourhood packing number $\rho(G)$ is the maximum cardinality of a neighbourhood packing in G. It is easy to see (see [8]) that every graph G satisfies $\rho(G) \leq \gamma(G)$.

Theorem 7. If G is a graph without isolated vertices, then $\gamma_{\times 2}(G) \geq 2 \rho(G)$.
Proof. Let R be a maximum neighbourhood packing set of G. Then for every $v \in R$, every doubly dominating set of G contains at least 2 vertices of $N[v]$ to doubly dominate v. Since $N[v] \cap N[u]=\emptyset$ holds for each pair of vertices v, u of R, we have $\gamma_{\times 2}(G) \geq 2|S|$.

Corollary 8. If S is an exact doubly dominating set of G, then $|S| \geq 2 \rho(G)$.
Farber [5] proved that the domination number and neighbourhood packing number are equal for any strongly chordal graph. Thus we have the following corollary to Theorem 7 which extends the result of Blidia et al. [3] for trees.

Corollary 9. If G is a strongly chordal graph without isolated vertices, then $\gamma_{\times 2}(G) \geq 2 \gamma(G)$.

4. Graphs with Exact Doubly Dominating Sets

We first consider paths and cycles. The double domination number for cycles C_{n} and nontrivial paths P_{n} were given in [7] and [3] respectively:
[7] $\gamma_{\times 2}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$.
[3] $\gamma_{\times 2}\left(P_{n}\right)=2\left\lceil\frac{n}{3}\right\rceil+1$ if $n \equiv 0(\bmod 3)$ and $\gamma_{\times 2}\left(P_{n}\right)=2\left\lceil\frac{n}{3}\right\rceil$ otherwise.
Now we establish similar results for the exact doubly dominating sets in cycles and paths.

Proposition 10. A cycle C_{n} has an exact doubly dominating set if and only if $n \equiv 0(\bmod 3)$. If this holds the size of any such set is $2 n / 3$.

Proof. Let S be an exact doubly dominating set of a cycle C_{n}. By Corollary 6, we have $|S|=2 n / 3$ and so $n \equiv 0(\bmod 3)$. Conversely, assume the vertices of C_{n} are labelled $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. If $n \equiv 0(\bmod 3)$, then it is easy to check that the set $\left\{v_{i}, v_{i+1} \mid i \equiv 1(\bmod 3), 1 \leq i \leq n-1\right\}$ is an exact doubly dominating set of C_{n}.

Proposition 11. A path P_{n} has an exact doubly dominating set if and only if $n \equiv 2(\bmod 3)$. If this holds the size of any such set is $2(n+1) / 3$.

Proof. If $n=2$ the fact is obvious, so let us assume $n \geq 3$. Let S be an exact doubly dominating set of a path P_{n}. Note that for every vertex v of degree 2 , either v or its two neighbours are in S. So $V-S$ is an independent set, and $N(v) \cap N(w)=\emptyset$ for any two $v, w \in V-S$. By Observation 2 , every vertex of S has exactly one neighbour in $V-S$. Thus $|S|-2=2|V-S|$ and so $n=|S|+|V-S|=3|V-S|+2$.

Conversely, assume that the vertices of P_{n} are labelled $v_{1}, v_{2}, \ldots, v_{n}$. If $n \equiv 2(\bmod 3)$ then it is easy to check that the set $\left\{v_{i}, v_{i+1} \mid i \equiv 1(\bmod \right.$ $3), 1 \leq i \leq n-1\}$ is an exact doubly dominating set of P_{n}.
Chellali and Haynes [4] established the following upper bound for the double domination number:

Theorem 12 ([4]). Every graph G without isolated vertices satisfies

$$
\gamma_{\times 2}(G) \leq n-\delta+1
$$

Theorem 13. Let G be a graph that admits an exact doubly dominating set S. Then $|S|=n-\delta+1$ if and only if either $G=t K_{2}$ with $t \geq 1$, if $\delta=1$, or $G=K_{n}$ with $n \geq 3$ otherwise.

Proof. Let S be an exact doubly dominating set of G such that $|S|=$ $n-\delta+1$. If $\delta=1$, then $|S|=n$. Since S induces a 1-regular subgraph, G itself is 1 -regular, i.e., $G=t K_{2}$ with $t \geq 1$. Now assume that $\delta \geq 2$. Let v be a vertex of S. Then $V-S$ contains all the neighbours of v except one, and so $\operatorname{deg}_{G}(v)-1 \leq|V-S|=n-(n-\delta+1)=\delta-1$. Thus all the vertices of S have the same degree δ, and $|V-S|=\delta-1$. Let u be a vertex of $N(v) \cap S$. Then u is adjacent to all the vertices of $V-S$ and
hence at this point every vertex of $V-S$ is doubly dominated by u and v. Thus $S=\{u, v\}$ and all the vertices of $V-S$ are mutually adjacent. So G is a complete graph.
Next, we consider nontrivial trees. A vertex of degree 1 is called a leaf, and a support vertex is any vertex adjacent to a leaf. It is easy to see that a star with at least three vertices is an example of a tree that does not admit an exact doubly dominating set. The following observation generalizes this remark.

Observation 14.

- If a graph G has a leaf, then any doubly dominating set of G contains this leaf and its neighbour.
- If a graph G has an exact doubly dominating set, then every support vertex is adjacent to exactly one leaf, and no two support vertices are adjacent.

We now define recursively a collection \mathcal{T} of trees, where each tree $T \in \mathcal{T}$ has two distinguished subsets $A(T), B(T)$ of vertices. First, \mathcal{T} contains any tree T_{1} with two vertices x, y, and for such a tree we set $A\left(T_{1}\right)=\{x, y\}$ and $B\left(T_{1}\right)=\{y\}$. Next, if T^{\prime} is any tree in \mathcal{T}, then we put in \mathcal{T} any tree T that can be obtained from T^{\prime} by any of the following two operations:

Type-1 operation: Attach a path $P_{3}=u v w$, with $u, v, w \notin V\left(T^{\prime}\right)$, by adding an edge from w to one vertex of $A\left(T^{\prime}\right)$. Set $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$ and $B(T)=B\left(T^{\prime}\right) \cup\{u\}$.

Type-2 operation: Attach a path $P_{5}=a_{1} a_{2} a_{3} a_{4} a_{5}$, with $a_{1}, a_{2}, a_{3}, a_{4}$, $a_{5} \notin V\left(T^{\prime}\right)$, by adding an edge from a_{3} to one vertex of $V\left(T^{\prime}\right)-A\left(T^{\prime}\right)$. Set $A(T)=A\left(T^{\prime}\right) \cup\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$ and $B(T)=B\left(T^{\prime}\right) \cup\left\{a_{1}, a_{5}\right\}$.

Lemma 15. If $T \in \mathcal{T}$, then:
(a) $A(T)$ is the unique exact doubly dominating set of T.
(b) $B(T)$ is a neighbourhood packing set of T.
(c) $|A(T)|=2 \gamma(T)$.

Proof. Consider any $T \in \mathcal{T}$. So T can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ of trees of \mathcal{T}, where T_{1} is the tree with two vertices, $T=T_{k}$, and, if $1 \leq i \leq k-1$, the tree T_{i+1} is obtained from T_{i} by one of the two operations. We prove (a) by induction on k. If $k=1$, then $A(T)$ is
obviously the unique exact doubly dominating set of T. Assume now that $k \geq 2$ holds for T and that the result holds for all trees in \mathcal{T} that can be constructed by a sequence of length at most $k-1$. Let $T^{\prime}=T_{k-1}$. We distinguish between two cases.

Case 1. T is obtained from T^{\prime} by using the Type-1 operation. Note that $A(T)$ is an exact doubly dominating set of T since, by the induction hypothesis, $A\left(T^{\prime}\right)$ is an exact doubly dominating set of T^{\prime} and u, v and the neighbour of w in T^{\prime} are in $A(T)$. Now let S be any exact doubly dominating set of T. By Observation 14, we have $\{u, v\} \subset S$, and consequently $w \notin S$ (for otherwise v would be dominated three times by S). If x is any vertex in $V\left(T^{\prime}\right)$, then x is not dominated by any of u, v, so $S-\{u, v\}$ is an exact doubly dominating set of T^{\prime}. By the inductive hypothesis $A\left(T^{\prime}\right)$ is the unique such set, so $S-\{u, v\}=A\left(T^{\prime}\right)$, and so $S=A(T)$, which shows the unicity anounced in (a).

Case 2. T is obtained from T^{\prime} by using the Type-2 operation. Note that $A(T)$ is an exact doubly dominating set of T since, by the induction hypothesis, $A\left(T^{\prime}\right)$ is an exact doubly dominating set of T^{\prime} and the neighbour of a_{3} in T^{\prime} is not in $A\left(T^{\prime}\right)$ while $a_{1}, a_{2}, a_{4}, a_{5}$ are in $A(T)$. Now let S be any exact doubly dominating set of T. By Observation 14, we have $\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\} \subseteq S$, and consequently $a_{3} \notin S$. If x is any vertex in $V\left(T^{\prime}\right)$, then x is not dominated by any of $a_{1}, a_{2}, a_{4}, a_{5}$, so $S-\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$ is an exact doubly dominating set of T^{\prime}. By the inductive hypothesis we have $S-\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}=A\left(T^{\prime}\right)$, and so $S=A(T)$. So (a) is proved.

It is a routine matter to check item (b). Note that the tree T_{1} with two vertices has $\left|A\left(T_{1}\right)\right|=2$ and $\left|B\left(T_{1}\right)\right|=1$; moreover, each operation adds twice as many vertices to $A(T)$ as to $B(T)$, so $|A(T)|=2|B(T)|$ holds for every tree $T \in \mathcal{T}$. It follows from this and from (a) and (b) that $\gamma_{\times 2}(T) \leq$ $|A(T)|=2|B(T)| \leq 2 \gamma(T)$, and we have equality throughout by Corollary 9 . This proves part (c) and concludes the proof of the lemma.
We now are ready to give a constructive characterization of trees with an exact doubly dominating sets.

Theorem 16. Let T be a tree. Then T has an exact doubly dominating set if and only if $T \in \mathcal{T}$.

Proof. First suppose that $T \in \mathcal{T}$. Then Lemma 15 implies that T has an exact doubly dominating set. Conversely, assume that T is a tree that has
an exact doubly dominating set S, and let n be the order of T. Clearly, $n \geq 2$. If $n=2$, then T is in \mathcal{T}. Observation 14 implies that $n \in\{3,4\}$ is impossible and that $n=5$ implies that T is a path on 5 vertices, which is in \mathcal{T} since it can be obtained from T_{1} by the Type- 1 operation.

Now assume that $n \geq 6$ and that every tree T^{\prime} of order n^{\prime} with $2 \leq n^{\prime}<$ n such that T^{\prime} has an exact doubly dominating set is in \mathcal{T}. Root T at a vertex r. Let u be a leaf at maximum distance from r, let v be the parent of u in the rooted tree, and let w be the parent of v. By Observation 14, u is the unique child of $v,\{u, v\} \subseteq S, w \notin S$, and w is neither a support vertex nor a leaf. This implies that every child of w is a support vertex. Furthermore w has at most two children, for otherwise w would be dominated at least 3 times by S, a contradiction. So $w \neq r$. Let z be the parent of w in the rooted tree.

Suppose that w has exactly one child in the rooted tree. Let $T^{\prime}=$ $T-\{u, v, w\}$. Since $\{u, v\} \subseteq S$ and $w \notin S$, we have $z \in S$ so that w is dominated twice by S. Moreover, $S-\{u, v\}$ is an exact doubly dominating set of T^{\prime}. By the inductive hypothesis, we have $T^{\prime} \in \mathcal{T}$ and, by Lemma 15, $S-\{u, v\}=A\left(T^{\prime}\right)$ is the unique exact doubly dominating set of T^{\prime}. Thus T can be obtained from T^{\prime} by using Type-1 operation (with the path uvw and since $\left.z \in A\left(T^{\prime}\right)\right)$, so $T \in \mathcal{T}$.

Now suppose that w has exactly two children v, v^{\prime} in the rooted tree. Let T_{w} be the subtree of T induced by w and its descendants, rooted at w. By Observation 14, each child of w has exactly one child, and we call u^{\prime} the child of v^{\prime}, so T_{w} is a path on five vertices $u v w v^{\prime} u^{\prime}$ with central vertex w. Moreover, by Observation 14, we have $\left\{u, v, u^{\prime}, v^{\prime}\right\} \subseteq S, w \notin S$, and $z \notin S$ since w is dominated twice in S by v, v^{\prime}. Thus z is doubly dominated by $S \cap V\left(T^{\prime}\right)$ and consequently $S \cap V\left(T^{\prime}\right)$ is an exact doubly dominating set of T^{\prime}. By the inductive hypothesis, we have $T^{\prime} \in \mathcal{T}$ and, by Lemma 15 , $S \cap V\left(T^{\prime}\right)=A\left(T^{\prime}\right)$ is the unique exact doubly dominating set of T^{\prime}. Thus T can be obtained from T^{\prime} by using Type-2 operation (with the path $u v w v^{\prime} u^{\prime}$ and since $z \notin A\left(T^{\prime}\right)$), so $T \in \mathcal{T}$. This completes the proof of the theorem.

The proof of the theorem suggests a polynomial-time algorithm which, given a tree T with n vertices, decides whether T is in \mathcal{T} and, if it is, returns the set $A(T)$. Here is an outline of the algorithm. If T is a path on 2 or 5 vertices, answer $T \in \mathcal{T}$, return the obvious set $A(T)$, and stop. Else, if either $n \leq 5$ or T is a star, answer $T \notin \mathcal{T}$ and stop. Now suppose $n \geq 6$. Pick a vertex r, root the tree T at r, and pick a vertex u at maximum distance from r. Let v be the parent of u in the rooted tree and w be the
parent of v. If either v has at least two children, or w has at least three children, or w has exactly two children and its second child has either zero or at least two children, then return the answer $T \notin \mathcal{T}$ and stop. Else, let z be the parent of w. If w has exactly one child, call the algorithm recursively on the tree $T^{\prime}=T-\{u, v, w\}$; if the answer to the recursive call is $T^{\prime} \in \mathcal{T}$ and $z \in A\left(T^{\prime}\right)$, then answer $T \in \mathcal{T}$, return $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$, and stop, else answer $T \notin \mathcal{T}$ and stop. If w has exactly two children v, v^{\prime}, call the algorithm recursively on the tree $T^{\prime}=T-\left\{u, v, w, v^{\prime}, u^{\prime}\right\}$ (where u^{\prime} is the child of v^{\prime}); if the answer to the recursive call is $T^{\prime} \in \mathcal{T}$ and $z \notin A\left(T^{\prime}\right)$, then answer $T \in \mathcal{T}$, return $A(T)=A\left(T^{\prime}\right) \cup\left\{u, v, u^{\prime}, v^{\prime}\right\}$ and stop, else answer $T \notin \mathcal{T}$ and stop.

Next, we give a necessary and sufficient condition for the existence of an exact doubly dominating set in a connected cubic graph. Recall that a matching in a graph $G=(V, E)$ is perfect if its size is $|V| / 2$. With any perfect matching $M=\left\{e_{1}, e_{2}, \ldots, e_{n / 2}\right\}$ of a graph G we associate a simple graph denoted by $G_{M}=\left(V_{M}, E_{M}\right)$ where each edge $e_{i} \in M$ is represented by a vertex in V_{M} and two vertices of V_{M} are adjacent if the corresponding edges in M are joined by an edge in G. A graph is an equitable bipartite graph if its vertex set can be partitioned into two independent sets S_{1} and S_{2} such that $\left|S_{1}\right|=\left|S_{2}\right|$, and in this case $\left(S_{1}, S_{2}\right)$ is called an equitable bipartition of G.

Theorem 17. Let G be a connected cubic graph. Then G has an exact doubly dominating set if and only if G has a perfect matching M such that the associated graph G_{M} is an equitable bipartite graph.

Proof. Let G be a connected cubic graph with an exact doubly dominating set S. So S induces a 1-regular graph, whose edges form a matching M_{1}, and every vertex of S has two neighbours in $V-S$. Since every vertex of $V-S$ has exactly two neighbours in S, the subgraph induced by $V-S$ is 1 -regular, and its edges form a matching M_{2}. Thus G admits a perfect matching $M=M_{1} \cup M_{2}$. Each edge of $E-M$ joins a vertex of S with a vertex of $V-S$, and the bipartite subgraph $(S, V-S ; E-M)$ is 2-regular, so $|S|=|V-S|$, and so $\left|M_{1}\right|=\left|M_{2}\right|$. It follows that the graph G_{M} associated with M is an equitable bipartite graph with equitable bipartition $\left(M_{1}, M_{2}\right)$.

Conversely, let M be a perfect matching of a connected cubic graph G such that the associated graph G_{M} is equitable bipartite, with equitable bipartition (A, B). Let A_{M} (resp. $\left.B_{M}\right)$ be the vertices of G that are contained in the edges corresponding to the vertices of A (resp. B). Since A (resp. B)
is independent in G_{M}, the subgraph of G induced by A_{M} (resp. by B_{M}) is 1-regular. This also implies that every vertex of A_{M} (resp. of B_{M}) has two neighbours in B_{M} (resp. in A_{M}) since G is a cubic graph. Consequently, A_{M} and B_{M} are two disjoint exact doubly dominating sets of G. This completes the proof.

References

[1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: Applications of Discrete Mathematics, R.D. Ringeisen and F.S. Roberts, eds (SIAM, Philadelphia, 1988) 189-199.
[2] M. Blidia, M. Chellali and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, submitted for publication.
[3] M. Blidia, M. Chellali, T.W. Haynes and M. Henning, Independent and double domination in trees, to appear in Utilitas Mathematica.
[4] M. Chellali and T.W. Haynes, On paired and double domination in graphs, to appear in Utilitas Mathematica.
[5] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115-130.
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (W.H. Freeman, San Francisco, 1979).
[7] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

Received 15 January 2004
Revised 8 November 2004

