
Discussiones Mathematicae 291
Graph Theory 25 (2005 ) 291–302

EXACT DOUBLE DOMINATION IN GRAPHS

Mustapha Chellali

Department of Mathematics, University of Blida
B.P. 270, Blida, Algeria

e-mail: mchellali@hotmail.com

Abdelkader Khelladi

Department of Operations Research
Faculty of Mathematics

University of Sciences and Technology Houari Boumediene
B.P. 32, El Alia, Bab Ezzouar, Algiers, Algeria

e-mail: kader khelladi@yahoo.fr

and

Frédéric Maffray

C.N.R.S., Laboratoire Leibniz-IMAG
46 Avenue Félix Viallet

38031 Grenoble Cedex, France

e-mail: frederic.maffray@imag.fr

Abstract
In a graph a vertex is said to dominate itself and all its neighbours.

A doubly dominating set of a graph G is a subset of vertices that
dominates every vertex of G at least twice. A doubly dominating set
is exact if every vertex of G is dominated exactly twice. We prove that
the existence of an exact doubly dominating set is an NP-complete
problem. We show that if an exact double dominating set exists then
all such sets have the same size, and we establish bounds on this size.
We give a constructive characterization of those trees that admit a
doubly dominating set, and we establish a necessary and sufficient
condition for the existence of an exact doubly dominating set in a
connected cubic graph.
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1. Introduction

In a graph G = (V,E), a subset S ⊆ V is a dominating set of G if every
vertex v of V − S has a neighbour in S. The domination number γ(G) is
the minimum cardinality of a dominating set of G. For a comprehensive
treatment of domination in graphs and its variations, see [8, 9].

Harary and Haynes [7] defined and studied the concept of double dom-
ination, which generalizes domination in graphs. In a graph G = (V,E), a
subset S of V is a doubly dominating set of G if, for every vertex v ∈ V ,
either v is in S and has at least one neighbour in S or v is in V −S and has
at least two neighbours in S. The double domination number γ×2(G) is the
minimum cardinality of a doubly dominating set of G. Double domination
was also studied in [2, 3, 4]. Analogously to exact (or perfect) domination
introduced by Bange, Barkauskas and Slater [1], Harary and Haynes [7] de-
fined an efficient doubly dominating set as a subset S of V such that each
vertex of V is dominated by exactly two vertices of S. We will prefer here
to use the phrase exact doubly dominating set.

Every graph G = (V, E) with no isolated vertex has a doubly dominating
set; for example V is such a set. In contrast, not all graphs with no isolated
vertex admit an exact doubly dominating set; for example, the star K1,p

(p ≥ 2) does not. In Section 2 we prove that the existence of an exact doubly
dominating set is an NP-complete problem. We then show in Section 3 that
if a graph G admits an exact doubly dominating set then all such sets have
the same size, and we give some bounds on this number. Finally, we give
in Section 4 a constructive characterization of those trees that admit an
exact doubly dominating set, and we establish a necessary and sufficient
condition for the existence of an exact doubly dominating set in a connected
cubic graph.

Let us give some definitions and notation. In a graph G = (V,E), the
open neighbourhood of a vertex v ∈ V is the set N(v) = {u ∈ V | uv ∈ E},
the closed neighbourhood is the set N [v] = N(v)∪{v}, and the degree of v is
the size of its open neighbourhood, denoted by degG(v). We denote respec-
tively by n, δ and ∆ the order (number of vertices), minimum degree and
maximum degree of a graph G.

2. NP-Completeness

In this section we consider the complexity of the problem of deciding whether
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a graph admits an exact doubly dominating set.
EXACT DOUBLY DOMINATING SET (X2D)

Instance: A graph G;

Question: Does G admit an exact doubly dominating set?

We show that this problem is NP-complete by reducing the following EX-
ACT 3-COVER (X3C) problem to our problem.

EXACT 3-COVER (X3C)

Instance: A finite set X with |X| = 3q and a collection C of 3-element
subsets of X;

Question: Is there a subcollection C ′ of C such that every element of
X appears in exactly one element of C ′?

EXACT 3-COVER is a well-known NP-complete problem [6].

Theorem 1. EXACT DOUBLY DOMINATING SET is NP-complete.

Proof. Clearly, X2D is in NP. Let us now show how to transform any
instance X, C of X3C into an instance G of X2D so that one of them has a
solution if and only if the other has a solution.

For each xi ∈ X, we build a “gadget” graph with vertices ai, bi, ci and
d1

i , . . . , d
ki
i , where ki is the number of elements of C that contain xi, and

with edges aibi, bici and cid
j
i (j = 1, . . . , ki). We view the dj

i ’s as points
of this gadget, each of them being associated with an element of C that
contains xi. See Figure 1.

For each Ct ∈ C, we build a gadget graph with 15 vertices y0
t , . . . , y

8
t ,

zt, rt, st, ut, vt, wt and edges yj
t y

j+1
t (j = 0, . . . , 8 mod 9) (so that the yj

t ’s
induce a C9) and zty

0
t , zty

3
t , zty

6
t , ztrt, ztst, rtst (so zt, rt, st induce a triangle),

and uty
1
t , uty

2
t , vty

4
t , vty

5
t , wty

7
t , wty

8
t . We view ut, vt, wt as the three points

of this gadget, each of them being associated with an element of Ct. See
Figure 1.

Now, for each Ct, if Ct = {xi, xj , xk} say, we identify the first, second
and third point of the gadget of Ct with the corresponding point in the
gadget of xi, xj , xk respectively. We call G the resulting graph. Clearly the
size of G is polynomial in the size of X and C.
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Figure 1: Gadgets for an element xi and a triple Ct.

1. Suppose that the instance X,C of X3C has a solution C ′. We build a
set S of vertices of G as follows: for each Ct ∈ C ′, we put in S the vertices
ut, y

1
t , vt, y

4
t , wt, y

7
t , zt, rt; for each Ct ∈ C − C ′, we put in S the vertices

y1
t , y

2
t , y

4
t , y

5
t , y

7
t , y

8
t , rt, st; for each xi ∈ X, we put in S the vertices ai, bi

(note that exactly one of the dj
i ’s has been put in S). It is a routine matter

to check that S is an exact doubly dominating set in G.

2. Conversely, suppose that G has an exact doubly dominating set S. Note
the gadget of a given Ct is in exactly one of the following two possible states:
(a) zt ∈ S, and so exactly one of rt, st is in S, none of y0

t , y
3
t , y

6
t is in S, the

other six yj
t ’s are in S, and none of ut, vt, wt is in S; or

(b) zt /∈ S, both rt, st are in S, none of y0
t , y

3
t , y

6
t is in S, exactly one of

{y1
t , y

4
t , y

7
t }, {y2

t , y
5
t , y

8
t } is in S and the other is in V − S, and each of

ut, vt, wt is in S.

Clearly, for each xi ∈ X, we have ai, bi ∈ S (else ai would not be doubly
dominated), then ci /∈ S (else bi would be dominated three times), and it
follows that exactly one of the dj

i ’s is in S. For each i = 1, . . . , 3q, let t(i) be
the integer such that this special dj

i is equal to one point of Ct(i) ∈ C, and
let us say that Ct(i) is selected by xi. Thus the gadget of Ct(i) is in state
(b), which means that Ct(i) is selected by each of its 3 elements. Therefore,
the collection C ′ of all selected elements of C (i.e., those whose three points
are in S) is an exact 3-cover.

3. Exact Doubly Dominating Sets

We begin by the following observation which is a straightforward property
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of exact doubly dominating sets in graphs. A matching in a graph G is a
set of pairwise non-incident edges of E.

Observation 2. The vertex set of every exact doubly dominating set in-
duces a matching.

Next, we show that all exact doubly dominating sets (if any) have the same
size.

Proposition 3. If G has an exact doubly dominating set then all such sets
have the same size.

Proof. Let D1, D2 be two exact doubly dominating sets of G. Let us
write I = D1 ∩D2, and let X0 and X1 be the subsets of D1 − I such that
every vertex of X0 has zero neighbours in I and every vertex of X1 has one
neighbour in I. Clearly D1 − I = X0 ∪X1. We define similarly subsets Y0

and Y1 of D2 − I. We claim that |X1| = |Y1|. Indeed, let x be any vertex of
X1, adjacent to a vertex z ∈ I. Since D2 is an exact doubly dominating set,
z has a unique neighbour y in D2. We have y ∈ D2 − I, for otherwise z has
two neighbours x, y in D2, a contradiction. Thus y ∈ Y1. The symmetric
argument holds for every vertex of Y1, and so |X1| = |Y1|. Since D2 is an
exact doubly dominating set, every vertex of X1 has exactly one neighbour
in Y0 ∪ Y1 and every vertex of X0 has exactly two neighbours in Y0 ∪ Y1.
The same holds about the vertices of Y1 and Y0. This implies |X0| = |Y0|,
and thus |D1| = |D2|.
The next result relates the size of an exact doubly dominating set with the
order and minimum degree δ of a graph G.

Proposition 4. If S is an exact doubly dominating set of a graph G, then
|S| ≤ 2n/(δ + 1).

Proof. Let S be an exact doubly dominating set of a graph G and let
t denote the number of edges joining the vertices of S to the vertices of
V − S. Then t = 2|V − S| since S is an exact doubly dominating set. By
Observation 2, S induces a matching of G, and so every vertex v of S has
exactly degG(v)− 1 neighbours in V − S. Thus t =

∑
v∈S(degG(v)− 1). So

|S|(δ − 1) ≤ t = 2|V − S|. Hence |S| ≤ 2n/(δ + 1).

In [7], Harary and Haynes gave a lower bound for the doubly domination
number:
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Theorem 5 ([7]). If G has no isolated vertices, then γ×2(G) ≥ 2n/(∆+1).

From Proposition 4 and Theorem 5, we have:

Corollary 6. If S is an exact doubly dominating set of a regular graph G,
then |S| = 2n/(∆ + 1).

Next, we establish a bound on the double domination number based on
the neighbourhood packing number for any graph with no isolated ver-
tices. Recall that a set R ⊆ V (G) is a neighbourhood packing set of G
if N [x] ∩N [y] = ∅ holds for any two distinct vertices x, y ∈ R. The neigh-
bourhood packing number ρ(G) is the maximum cardinality of a neighbour-
hood packing in G. It is easy to see (see [8]) that every graph G satisfies
ρ(G) ≤ γ(G).

Theorem 7. If G is a graph without isolated vertices, then γ×2(G) ≥ 2ρ(G).

Proof. Let R be a maximum neighbourhood packing set of G. Then for
every v ∈ R, every doubly dominating set of G contains at least 2 vertices
of N [v] to doubly dominate v. Since N [v] ∩N [u] = ∅ holds for each pair of
vertices v, u of R, we have γ×2(G) ≥ 2|S|.

Corollary 8. If S is an exact doubly dominating set of G, then |S| ≥ 2ρ(G).

Farber [5] proved that the domination number and neighbourhood packing
number are equal for any strongly chordal graph. Thus we have the following
corollary to Theorem 7 which extends the result of Blidia et al. [3] for trees.

Corollary 9. If G is a strongly chordal graph without isolated vertices, then
γ×2(G) ≥ 2γ(G).

4. Graphs with Exact Doubly Dominating Sets

We first consider paths and cycles. The double domination number for cycles
Cn and nontrivial paths Pn were given in [7] and [3] respectively:

[7] γ×2(Cn) = d2n
3 e.

[3] γ×2(Pn) = 2dn
3 e+ 1 if n ≡ 0 (mod 3) and γ×2(Pn) = 2dn

3 e otherwise.

Now we establish similar results for the exact doubly dominating sets in
cycles and paths.



Exact Double Domination in Graphs 297

Proposition 10. A cycle Cn has an exact doubly dominating set if and only
if n ≡ 0 (mod 3). If this holds the size of any such set is 2n/3.

Proof. Let S be an exact doubly dominating set of a cycle Cn. By Corollary
6, we have |S| = 2n/3 and so n ≡ 0 (mod 3). Conversely, assume the
vertices of Cn are labelled v1, v2, . . . , vn, v1. If n ≡ 0 (mod 3), then it is
easy to check that the set {vi, vi+1 | i ≡ 1(mod 3), 1 ≤ i ≤ n − 1} is an
exact doubly dominating set of Cn.

Proposition 11. A path Pn has an exact doubly dominating set if and only
if n ≡ 2 (mod 3). If this holds the size of any such set is 2(n + 1)/3.

Proof. If n = 2 the fact is obvious, so let us assume n ≥ 3. Let S be an
exact doubly dominating set of a path Pn. Note that for every vertex v of
degree 2, either v or its two neighbours are in S. So V −S is an independent
set, and N(v)∩N(w) = ∅ for any two v, w ∈ V −S. By Observation 2, every
vertex of S has exactly one neighbour in V − S. Thus |S| − 2 = 2|V − S|
and so n = |S|+ |V − S| = 3|V − S|+ 2.

Conversely, assume that the vertices of Pn are labelled v1, v2, . . . , vn. If
n ≡ 2 (mod 3) then it is easy to check that the set {vi, vi+1 | i ≡ 1(mod
3), 1 ≤ i ≤ n− 1} is an exact doubly dominating set of Pn.

Chellali and Haynes [4] established the following upper bound for the double
domination number:

Theorem 12 ([4]). Every graph G without isolated vertices satisfies

γ×2(G) ≤ n− δ + 1.

Theorem 13. Let G be a graph that admits an exact doubly dominating set
S. Then |S| = n− δ + 1 if and only if either G = tK2 with t ≥ 1, if δ = 1,
or G = Kn with n ≥ 3 otherwise.

Proof. Let S be an exact doubly dominating set of G such that |S| =
n − δ + 1. If δ = 1, then |S| = n. Since S induces a 1-regular subgraph,
G itself is 1-regular, i.e., G = tK2 with t ≥ 1. Now assume that δ ≥ 2.
Let v be a vertex of S. Then V − S contains all the neighbours of v except
one, and so degG(v) − 1 ≤ |V − S| = n − (n − δ + 1) = δ − 1. Thus all
the vertices of S have the same degree δ, and |V − S| = δ − 1. Let u be
a vertex of N(v) ∩ S. Then u is adjacent to all the vertices of V − S and
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hence at this point every vertex of V − S is doubly dominated by u and v.
Thus S = {u, v} and all the vertices of V − S are mutually adjacent. So G
is a complete graph.

Next, we consider nontrivial trees. A vertex of degree 1 is called a leaf, and
a support vertex is any vertex adjacent to a leaf. It is easy to see that a
star with at least three vertices is an example of a tree that does not admit
an exact doubly dominating set. The following observation generalizes this
remark.

Observation 14.
• If a graph G has a leaf, then any doubly dominating set of G contains

this leaf and its neighbour.

• If a graph G has an exact doubly dominating set, then every support
vertex is adjacent to exactly one leaf, and no two support vertices are
adjacent.

We now define recursively a collection T of trees, where each tree T ∈ T
has two distinguished subsets A(T ), B(T ) of vertices. First, T contains any
tree T1 with two vertices x, y, and for such a tree we set A(T1) = {x, y} and
B(T1) = {y}. Next, if T ′ is any tree in T , then we put in T any tree T that
can be obtained from T ′ by any of the following two operations:

Type-1 operation: Attach a path P3 = uvw, with u, v, w /∈ V (T ′), by
adding an edge from w to one vertex of A(T ′). Set A(T ) = A(T ′) ∪ {u, v}
and B(T ) = B(T ′) ∪ {u}.

Type-2 operation: Attach a path P5 = a1a2a3a4a5, with a1, a2, a3, a4,
a5 /∈ V (T ′), by adding an edge from a3 to one vertex of V (T ′)−A(T ′). Set
A(T ) = A(T ′) ∪ {a1, a2, a4, a5} and B(T ) = B(T ′) ∪ {a1, a5}.

Lemma 15. If T ∈ T , then:

(a) A(T ) is the unique exact doubly dominating set of T .

(b) B(T ) is a neighbourhood packing set of T .

(c) |A(T )| = 2γ(T ).

Proof. Consider any T ∈ T . So T can be obtained from a sequence
T1, T2, . . . , Tk (k ≥ 1) of trees of T , where T1 is the tree with two vertices,
T = Tk, and, if 1 ≤ i ≤ k − 1, the tree Ti+1 is obtained from Ti by one of
the two operations. We prove (a) by induction on k. If k = 1, then A(T ) is
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obviously the unique exact doubly dominating set of T . Assume now that
k ≥ 2 holds for T and that the result holds for all trees in T that can be
constructed by a sequence of length at most k − 1. Let T ′ = Tk−1. We
distinguish between two cases.

Case 1. T is obtained from T ′ by using the Type-1 operation. Note
that A(T ) is an exact doubly dominating set of T since, by the induction
hypothesis, A(T ′) is an exact doubly dominating set of T ′ and u, v and the
neighbour of w in T ′ are in A(T ). Now let S be any exact doubly dominating
set of T . By Observation 14, we have {u, v} ⊂ S, and consequently w /∈ S
(for otherwise v would be dominated three times by S). If x is any vertex
in V (T ′), then x is not dominated by any of u, v, so S − {u, v} is an exact
doubly dominating set of T ′. By the inductive hypothesis A(T ′) is the unique
such set, so S − {u, v} = A(T ′), and so S = A(T ), which shows the unicity
anounced in (a).

Case 2. T is obtained from T ′ by using the Type-2 operation. Note
that A(T ) is an exact doubly dominating set of T since, by the induction
hypothesis, A(T ′) is an exact doubly dominating set of T ′ and the neighbour
of a3 in T ′ is not in A(T ′) while a1, a2, a4, a5 are in A(T ). Now let S
be any exact doubly dominating set of T . By Observation 14, we have
{a1, a2, a4, a5} ⊆ S, and consequently a3 /∈ S. If x is any vertex in V (T ′),
then x is not dominated by any of a1, a2, a4, a5, so S − {a1, a2, a4, a5} is an
exact doubly dominating set of T ′. By the inductive hypothesis we have
S − {a1, a2, a4, a5} = A(T ′), and so S = A(T ). So (a) is proved.

It is a routine matter to check item (b). Note that the tree T1 with two
vertices has |A(T1)| = 2 and |B(T1)| = 1; moreover, each operation adds
twice as many vertices to A(T ) as to B(T ), so |A(T )| = 2|B(T )| holds for
every tree T ∈ T . It follows from this and from (a) and (b) that γ×2(T ) ≤
|A(T )| = 2|B(T )| ≤ 2γ(T ), and we have equality throughout by Corollary 9.
This proves part (c) and concludes the proof of the lemma.

We now are ready to give a constructive characterization of trees with an
exact doubly dominating sets.

Theorem 16. Let T be a tree. Then T has an exact doubly dominating set
if and only if T ∈ T .

Proof. First suppose that T ∈ T . Then Lemma 15 implies that T has an
exact doubly dominating set. Conversely, assume that T is a tree that has
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an exact doubly dominating set S, and let n be the order of T . Clearly,
n ≥ 2. If n = 2, then T is in T . Observation 14 implies that n ∈ {3, 4} is
impossible and that n = 5 implies that T is a path on 5 vertices, which is
in T since it can be obtained from T1 by the Type-1 operation.

Now assume that n ≥ 6 and that every tree T ′ of order n′ with 2 ≤ n′ <
n such that T ′ has an exact doubly dominating set is in T . Root T at a
vertex r. Let u be a leaf at maximum distance from r, let v be the parent of
u in the rooted tree, and let w be the parent of v. By Observation 14, u is the
unique child of v, {u, v} ⊆ S, w /∈ S, and w is neither a support vertex nor
a leaf. This implies that every child of w is a support vertex. Furthermore
w has at most two children, for otherwise w would be dominated at least
3 times by S, a contradiction. So w 6= r. Let z be the parent of w in the
rooted tree.

Suppose that w has exactly one child in the rooted tree. Let T ′ =
T − {u, v, w}. Since {u, v} ⊆ S and w /∈ S, we have z ∈ S so that w is
dominated twice by S. Moreover, S − {u, v} is an exact doubly dominating
set of T ′. By the inductive hypothesis, we have T ′ ∈ T and, by Lemma 15,
S − {u, v} = A(T ′) is the unique exact doubly dominating set of T ′. Thus
T can be obtained from T ′ by using Type-1 operation (with the path uvw
and since z ∈ A(T ′)), so T ∈ T .

Now suppose that w has exactly two children v, v′ in the rooted tree.
Let Tw be the subtree of T induced by w and its descendants, rooted at w.
By Observation 14, each child of w has exactly one child, and we call u′ the
child of v′, so Tw is a path on five vertices uvwv′u′ with central vertex w.
Moreover, by Observation 14, we have {u, v, u′, v′} ⊆ S, w /∈ S, and z /∈ S
since w is dominated twice in S by v, v′. Thus z is doubly dominated by
S ∩ V (T ′) and consequently S ∩ V (T ′) is an exact doubly dominating set
of T ′. By the inductive hypothesis, we have T ′ ∈ T and, by Lemma 15,
S ∩V (T ′) = A(T ′) is the unique exact doubly dominating set of T ′. Thus T
can be obtained from T ′ by using Type-2 operation (with the path uvwv′u′

and since z /∈ A(T ′)), so T ∈ T . This completes the proof of the theorem.

The proof of the theorem suggests a polynomial-time algorithm which, given
a tree T with n vertices, decides whether T is in T and, if it is, returns the
set A(T ). Here is an outline of the algorithm. If T is a path on 2 or 5
vertices, answer T ∈ T , return the obvious set A(T ), and stop. Else, if
either n ≤ 5 or T is a star, answer T /∈ T and stop. Now suppose n ≥ 6.
Pick a vertex r, root the tree T at r, and pick a vertex u at maximum
distance from r. Let v be the parent of u in the rooted tree and w be the
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parent of v. If either v has at least two children, or w has at least three
children, or w has exactly two children and its second child has either zero
or at least two children, then return the answer T /∈ T and stop. Else, let z
be the parent of w. If w has exactly one child, call the algorithm recursively
on the tree T ′ = T − {u, v, w}; if the answer to the recursive call is T ′ ∈ T
and z ∈ A(T ′), then answer T ∈ T , return A(T ) = A(T ′)∪{u, v}, and stop,
else answer T /∈ T and stop. If w has exactly two children v, v′, call the
algorithm recursively on the tree T ′ = T − {u, v, w, v′, u′} (where u′ is the
child of v′); if the answer to the recursive call is T ′ ∈ T and z /∈ A(T ′), then
answer T ∈ T , return A(T ) = A(T ′) ∪ {u, v, u′, v′} and stop, else answer
T /∈ T and stop.

Next, we give a necessary and sufficient condition for the existence of
an exact doubly dominating set in a connected cubic graph. Recall that a
matching in a graph G = (V, E) is perfect if its size is |V |/2. With any
perfect matching M = {e1, e2, . . . , en/2} of a graph G we associate a simple
graph denoted by GM = (VM , EM ) where each edge ei ∈ M is represented
by a vertex in VM and two vertices of VM are adjacent if the corresponding
edges in M are joined by an edge in G. A graph is an equitable bipartite
graph if its vertex set can be partitioned into two independent sets S1 and
S2 such that |S1| = |S2|, and in this case (S1, S2) is called an equitable
bipartition of G.

Theorem 17. Let G be a connected cubic graph. Then G has an exact
doubly dominating set if and only if G has a perfect matching M such that
the associated graph GM is an equitable bipartite graph.

Proof. Let G be a connected cubic graph with an exact doubly dominating
set S. So S induces a 1-regular graph, whose edges form a matching M1,
and every vertex of S has two neighbours in V − S. Since every vertex of
V − S has exactly two neighbours in S, the subgraph induced by V − S
is 1-regular, and its edges form a matching M2. Thus G admits a perfect
matching M = M1 ∪M2. Each edge of E −M joins a vertex of S with a
vertex of V −S, and the bipartite subgraph (S, V −S; E−M) is 2-regular, so
|S| = |V − S|, and so |M1| = |M2|. It follows that the graph GM associated
with M is an equitable bipartite graph with equitable bipartition (M1, M2).

Conversely, let M be a perfect matching of a connected cubic graph G
such that the associated graph GM is equitable bipartite, with equitable bi-
partition (A,B). Let AM (resp. BM ) be the vertices of G that are contained
in the edges corresponding to the vertices of A (resp. B). Since A (resp. B)
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is independent in GM , the subgraph of G induced by AM (resp. by BM ) is
1-regular. This also implies that every vertex of AM (resp. of BM ) has two
neighbours in BM (resp. in AM ) since G is a cubic graph. Consequently, AM

and BM are two disjoint exact doubly dominating sets of G. This completes
the proof.
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