POTENTIAL FORBIDDEN TRIPLES IMPLYING HAMILTONICITY: FOR SUFFICIENTLY LARGE GRAPHS

Ralph J. Faudree
University of Memphis, Memphis, TN 38152, USA
Ronald J. Gould
Emory University, Atlanta, GA 30322, USA
AND
Michael S. Jacobson
University of Colorado at Denver
Denver, CO 80217, USA

Abstract

In [2], Brousek characterizes all triples of connected graphs, G_{1}, G_{2}, G_{3}, with $G_{i}=K_{1,3}$ for some $i=1,2$, or 3 , such that all $G_{1} G_{2} G_{3-}$ free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G_{1}, G_{2}, G_{3}, none of which is a $K_{1, s}, s \geq 3$ such that $G_{1} G_{2} G_{3}$-free graphs of sufficiently large order contain a hamiltonian cycle. In [6], a characterization was given of all triples G_{1}, G_{2}, G_{3} with none being $K_{1,3}$, such that all $G_{1} G_{2} G_{3}$-free graphs are hamiltonian. This result, together with the triples given by Brousek, completely characterize the forbidden triples G_{1}, G_{2}, G_{3} such that all $G_{1} G_{2} G_{3}$-free graphs are hamiltonian. In this paper we consider the question of which triples (including $K_{1, s}, s \geq 3$) of forbidden subgraphs potentially imply all sufficiently large graphs are hamiltonian. For $s \geq 4$ we characterize these families.

Keywords: hamiltonian, forbidden subgraph, claw-free, induced subgraph.
2000 Mathematics Subject Classification: 05C45.

1. Introduction

The problem of recognizing graph properties based on forbidden connected subgraphs has received considerable attention. A wide variety of properties and forbidden families have been studied. In particular, the property of being hamiltonian has been widely studied. A series of results culminated in the characterization of the pairs of forbidden subgraphs which imply all graphs free of these pairs of graphs are hamiltonian by Bedrossian [1]. In his proof, Bedrossian used a small order nonhamiltonian graph to eliminate some cases. Faudree and Gould [5] extended the collection to characterize the forbidden pairs which imply all sufficiently large ($n \geq 10$ suffices) graphs are hamiltonian.

Since the only single forbidden subgraph that implies a graph is hamiltonian is P_{3} (the path on 3 vertices) and it forces the graph to be complete, the problem of all single or pairs of forbidden subgraphs implying hamiltonicity has been completely characterized, both for all graphs and for all sufficiently large graphs.

An interesting feature of both characterizations for pairs is that the claw, $K_{1,3}$, must be one of the graphs in each pair. This led naturally to the question: If we consider triples of forbidden subgraphs implying hamiltonicity, must the claw always be one of the graphs in the triple? This question was answered negatively in [8]. There, all triples containing no $K_{1, t}, t \geq 3$ which imply all sufficiently large graphs are hamiltonian were given. Brousek [2] gave the collection of all triples which include the claw that imply all 2 -connected graphs are hamiltonian.

We follow the notation of [4]. In addition, we say a graph H is $G_{1} G_{2} G_{3-}$ free if H does not contain $G_{i}, i=1,2,3$ as an induced subgraph. In [6], a characterization was given of all triples G_{1}, G_{2}, G_{3} with none being $K_{1,3}$, such that all $G_{1} G_{2} G_{3}$-free graphs are hamiltonian. Thus, the remaining case is, for sufficiently large graphs, to determine the possible triples where $G_{1}=K_{1, s}$, with $s \geq 3$.

The purpose of this paper is to study those triples which include $K_{1, s}$, $s \geq 3$ such that all 2-connected graphs of sufficiently large order and free of such triples are hamiltonian. For $s \geq 4$ we characterize these triples. For $s=3$ we present a list of triples which potentially imply hamiltonicity. The triples containing $K_{1,3}$ will be further studied in [7].

Given a cycle with an implied orientation, we write x^{+}and x^{-}for the successor and predecessor of x on the cycle, respectively. Further, by $[x, y]$
we mean the subpath of C beginning at x and ending at y and following the orientation of C. We also use the notation $H \leq G$ to mean that H is an induced subgraph of G.

For the remainder of this paper we will assume G_{1}, G_{2} and G_{3} are connected. We define the graph $C(i, j, k)$ (see Figure 1 for $C(2,2,1)$) to be the graph obtained by identifying the end vertex of paths of lengths i, j and k, respectively. This graph may be thought of as a form of generalized claw as $K_{1,3}=C(1,1,1)$. Define the graphs $Z_{i}(m)$ and $J_{i}(m)$ to be the complete graph on m vertices $(m \geq 3)$ with a path of length i or i edges joined to a single vertex of the K_{m}, respectively (see Figure 1 for $Z_{1}(m)$ and $J_{2}(m)$). Note that $Z_{1}=Z_{1}(3)$ is the notation common in the literature. The book B_{n} is obtained by identifying an edge from each of n copies of K_{3} (see Figure 1 for B_{2}).

B_{2}

Figure 1. Common forbidden graphs.

Let $C_{3}=K_{3}$ and P_{n} be a path on n vertices. Let the family $N(i, j, k)$ be obtained by identifying an endvertex of each of P_{i+1}, P_{j+1} and P_{k+1} with distinct vertices of a K_{3}. We follow the standard that $i \geq j \geq k$. In particular, we denote the net $N=N(1,1,1)$ (see Figure 2), while other special cases have been commonly denoted in the literature as $Z_{3}=N(3,0,0)$, $B=N(1,1,0)$ and $W=N(2,1,0)$. We further define the graph family $N\left(G_{1}, G_{2}, G_{3}\right)$ to be those graphs obtained by identifying a distinct vertex of K_{3} with a distinct vertex of G_{1}, G_{2} and G_{3} respectively. If the vertex of G_{i} to be identified is important, we specify it as in the definition of $N(i, j, k)$. In particular, if $G_{i}=Z_{1}(m)$, for some i, then the vertex being identified from $Z_{1}(m)$ will always be the vertex of degree one. For our purposes, the graphs $G_{i}(i=1,2,3)$ will always be one of K_{n}, P_{n}, or $Z_{1}(m)$, and hence, there will be no ambiguity in the graph constructed.

Figure 2. More common forbidden graphs.
We will need the following characterization of forbidden pairs from [5].
Theorem 1.1. Let R and S be connected graphs $\left(R, S \neq P_{3}\right)$ and G a 2 -connected graph of order $n \geq 10$. Then G is (R, S)-free implies G is hamiltonian if, and only if, $R=K_{1,3}$ and S is an induced subgraph of one of $N(1,1,1), N(3,0,0), N(2,1,0)$ or P_{6}.

2. Triples Including $K_{1, s}, s \geq 4$

In this section, we characterize those triples G_{1}, G_{2}, G_{3}, one of which is $K_{1, s},(s \geq 4)$ such that $G_{1} G_{2} G_{3}$-free graphs of sufficiently large order are hamiltonian. We begin by showing certain triples containing $K_{1, s}$ do imply hamiltonicity.

Theorem 2.1. If G is a 2 -connected $K_{1, s} P_{4} J_{2}(m)$-free graph $(s \geq 4$ and fixed, $m \geq 3$ and fixed) of sufficiently large order n, then G is hamiltonian.

Proof. Observe first that there must be a vertex of degree at least $\sqrt{n-1}$, for otherwise G would have diameter at least four and an induced P_{4} would result.

Using the neighborhood of such a vertex, for n sufficiently large, since G contains no induced $K_{1, s}$, by Ramsey's Theorem, G contains a $K_{l^{\prime}}$ (where $\left.l^{\prime}=l^{\prime}(n)>m s\right)$. Select a largest clique K_{l} in G. Note that there are no vertices at distance 2 from this clique, for if there were, an induced P_{4} is easily found. Thus, every vertex not in K_{l} is adjacent to vertices in K_{l}.

Let $S=V(G)-V\left(K_{l}\right)$ and

$$
\begin{aligned}
& S_{L}=\left\{v \in S \mid 1 \leq \operatorname{deg}_{K_{l}}(v)<l-(m-2)\right\} \text { and } \\
& S_{B}=S-S_{L} .
\end{aligned}
$$

Let $x, y \in S_{L}$ and suppose that x and y are not adjacent. Further, without loss of generality, suppose that $\operatorname{deg}_{K_{l}}(x) \leq \operatorname{deg}_{K_{l}}(y)$. If the neighborhood $N_{K_{l}}(x) \nsubseteq N_{K_{l}}(y)$, then there exist vertices $w_{1} \in N_{K_{l}}(x)-N_{K_{l}}(y)$ and $w_{2} \in N_{K_{l}}(y)-N_{K_{l}}(x)$ such that w_{1}, x, w_{2}, y is an induced P_{4}, a contradiction. But now, x and y must have at least one common neighbor in K_{l} and a $J_{2}(m)$ results. Hence, the induced graph on $S_{L},\left\langle S_{L}\right\rangle$, must be complete.

Now in $\left\langle S_{B}\right\rangle$ we select a longest path P_{1}. If P_{1} is not all of S_{B}, we select a longest path in $\left\langle S_{B}-V\left(P_{1}\right)\right\rangle$, and continue this process until all of S_{B} is covered by these paths. It is easy to see there are at most $s-1$ such paths, for otherwise, due to the degree condition on S_{B}, there would be a vertex of K_{l} common to the neighborhoods of all the final vertices of these paths and $K_{1, s}$ would result.

Now for each path $P_{i}, i=1, \ldots, t(t<s)$ created above and for some spanning path of $\left\langle S_{L}\right\rangle$, we match the $2(t+1)$ end vertices of these paths to $2(t+1)$ distinct vertices of K_{l}. Note that in the special case that $V\left(\left\langle S_{L}\right\rangle\right)$ has only one neighbor in K_{l}, the fact G is 2 -connected implies $V\left(\left\langle S_{L}\right\rangle\right)$ has a neighbor in S_{B}. Include that neighbor in S_{L} and proceed as above. Hence, G is clearly hamiltonian, completing the proof of the Theorem.

Theorem 2.2. If G is a 2-connected $K_{1, s} P_{4} B_{2}$-free graph ($s \geq 4$) of sufficiently large order n, then G is hamiltonian.

Proof. From Theorem 3 in [8], G being 2-connected $\left.P_{4} B_{2} K_{2,\left\lceil\frac{n+1}{2}\right.}\right]^{7}$-free implies G is hamiltonian and $K_{1, s} \leq K_{2,\left\lceil\frac{n+1}{2}\right\rceil}$, if $s \leq\left\lceil\frac{n+1}{2}\right\rceil$, and so the result follows.

Theorem 2.3. If G is a 2 -connected $K_{1, s} P_{r} Z_{1}(m)$-free graph (with $r \geq 5$, $s \geq 4, m \geq 3$ fixed) of sufficiently large order n, then G is hamiltonian.

Proof. As before, G contains a vertex of degree at least $n^{\frac{1}{r}}$ or P_{r} would be an induced subgraph of G. By Ramsey's Theorem, since $K_{1, s} \not \subset G$, we see G contains $K_{l^{\prime}}$ for $l^{\prime}>s m$ and $l^{\prime}=l^{\prime}(n)$. Choose a largest clique K_{l} in G.

Since G is 2 -connected, there exists $x \in V(G)-V\left(K_{l}\right)$ with x adjacent to vertices of K_{l}. Note that x must be nonadjacent to at most $m-2$ vertices of K_{l}, for otherwise a $Z_{1}(m)$ results.

If there exists a vertex y at distance 2 from K_{l} through x, since $l>$ $s m$, then an m-clique including x along with y forms a $Z_{1}(m)$, again a contradiction. Thus, every vertex of $S=V-V\left(K_{l}\right)$ must have adjacencies in K_{l}. Further, S_{L} (defined as before) is empty, hence $S_{B}=S$.

As before, choose a system of longest paths $P_{i}, i=1, \ldots, t$, that covers S. If $t \geq s$, since $l>s(m-2)$ we would find $K_{1, s}$ in G, a contradiction.

Thus, since the end vertices of these $t<s$ paths all have high degree $(\geq l-(m-2))$ to K_{l} and $l>s(m-2)$, we can match the end vertices of each of these paths to $2 t$ distinct vertices of K_{l} and thus, G is clearly hamiltonian.

Note, Theorem 2.3 also holds when $r=4$, however this triple follows from Theorem 2.1.

Theorem 2.4. If G is a 2 -connected $K_{1, s} C(l, 1,1) Z_{1}$-free (l,s fixed, $l \geq 2$, $s \geq 4)$ graph of sufficiently large order n, then G is hamiltonian.

Proof. Suppose G is not hamiltonian. Then, from our previous result, we know that G contains a long induced path. Choose $P=P_{r}$ with $r>l s$ to be a longest induced path in G. Since $V(P) \neq V(G)$ and G is 2-connected, there exists a vertex $x \notin V(P)$ adjacent to a vertex on P. Say x is adjacent to v (where v is not an end vertex of P). If x is also adjacent to v^{+}, then since P is an induced path, we see that Z_{1} results unless x is adjacent to the entire path. But if x is adjacent to all of P, since $r>l s$, a $K_{1, s}$ would result.

Now we note that if x has no adjacencies within l vertices of v (on either side), then $C(l, 1,1)$ results. Hence, x must have an adjacency within every l vertices of any other adjacency on P. But $r>l s$, so again $K_{1, s} \leq G$. The only remaining possibility is that x must be adjacent to both end vertices of P.

Now suppose y is at distance 2 from P through x. Then we immediately find $C(l, 1,1) \leq G$. Hence, all vertices of $V(G)-V(P)$ are at distance one from P and therefore are adjacent to only the end vertices of P.

Suppose x and y are two vertices at distance one from P. If $x y \notin E(G)$, then $C(l, 1,1)$ is found using either end vertex, say w, of P along with x, y and an l vertex segment of P following w. Thus, $x y \in E(G)$ and now $\left\langle x, y, w, w^{+}\right\rangle \cong Z_{1}$, a contradiction.

In order to complete the characterization of triples containing $K_{1, s}$ with $s \geq 4$, we need the families of graphs in Figure 3. For convenience, the graph $H_{2}=F_{1}$ (see Figure 4).

We now show that the triples shown to imply hamiltonicity in Theorems $2.1-2.4$ form a complete list.

Figure 3. More nonhamiltonian graphs.
Theorem 2.5. If G is a 2-connected graph of sufficiently large order which is $G_{1} G_{2} G_{3}$-free where $G_{1} G_{2} G_{3}$ are one of the following triples:
(a) $K_{1, s}, P_{4}, J_{2}(m) ; \quad s \geq 4, m \geq 3$,
(b) $K_{1, s}, P_{4}, B_{2} ; s \geq 4$,
(c) $K_{1, s}, P_{r}, Z_{1}(m) ; r \geq 5, s \geq 4, m \geq 3$,
(d) $K_{1, s}, C(l, 1,1), Z_{1}(3)=Z_{1} ; l \geq 2, s \geq 4$
or $G_{1} G_{2} G_{3}$ is a triple of induced subgraphs of one of these triples, then G is hamiltonian. Furthermore, these are the only possible triples that contain $K_{1, s}, s \geq 4$.
Proof. We know each of these triples implies hamiltonicity by Theorems $2.1-2.4$. Thus, we need only show there are no other possibilities.

Since the graphs $H_{0}-H_{7}$ of Figure 3 are all $K_{1, s}$ free ($s \geq 4$) nonhamiltonian, we may assume without loss of generality $G_{2} \leq H_{0}$. Thus, $P_{4} \leq G_{2} \leq C(i, j, k)$. Further, since $P_{4} \not \leq H_{3}$ and $P_{4} \not \leq H_{4}$, we see that $G_{3} \leq H_{3}$ and $G_{3} \leq H_{4}$. This implies that $K_{r} \leq G_{3} \leq J_{2}(m)$, for $r \geq 3$ and some $m \geq 3$, or else $G_{3} \leq B_{2}$.

Since in either case $K_{3} \leq G_{3}$ and $G_{3} \not 又 H_{1}$ then $G_{2} \leq H_{1}$. Hence, as $G_{2} \leq H_{0}$, we see that $G_{2} \leq C(l, 1,1)$, for some $l \geq 2$. Thus, either G_{2} is a path $P_{k}, k \geq 4$, or $G_{2}=C(l, 1,1)$, that is $P_{k} \leq G_{2} \leq C(l, 1,1)$.

Case 1. Suppose $G_{2}=P_{r}, r \geq 6$.
Since $P_{6} \not \leq H_{4}, P_{6} \not \leq H_{5}$ and $P_{6} \not \leq H_{6}$, then $G_{3} \leq H_{4}, G_{3} \leq H_{5}$ and $G_{3} \leq H_{6}$. But then, $G_{3} \leq Z_{1}(m)$ for some $m \geq 3$. This yields triple (c), when $r \geq 6$.

Case 2. Suppose $G_{2}=P_{5}$.
Note H_{5} is $K_{1, s} P_{5} J_{2}(m)$-free, where $s \geq 4$. Thus, the triple $K_{1, s}, P_{5}, J_{2}(m)$ is excluded from consideration. Next consider H_{7}, which is $K_{1,4} P_{5} B_{2}$-free, excluding this triple from consideration. Now consider H_{4}, H_{5} which are $K_{1,4}, P_{5}$-free. This implies G_{3} is a subgraph of both H_{4} and H_{5}, hence $G_{3} \leq Z_{1}(m), m \geq 3$. This completes case (c).

Case 3. Suppose $G_{2}=P_{4}$.

Since H_{3} and H_{4} are $K_{1, s} P_{4}$-free, we see that $G_{3} \leq H_{3}$ and $G_{3} \leq H_{4}$. Thus, $G_{3} \leq J_{2}(m)$ for some $m \geq 3$ or $G_{3} \leq B_{2}$. Hence, we obtain the triples of (a) and (b).

$$
\text { Case 4. Suppose } G_{2}=C(l, 1,1), l \geq 2 \text {. }
$$

Now $G_{2} \not \leq H_{2}, G_{2} \not \leq H_{3}$ and $G_{3} \not \leq H_{4}$ thus, $G_{3} \leq H_{2}, G_{3} \leq H_{3}$ and $G_{3} \leq H_{4}$. Hence, using H_{2}, we see that $K_{3} \leq G_{3}$ and thus, $\omega\left(G_{3}\right)=3$. But then, using H_{2} and H_{3} or H_{4}, we see that $G_{3} \leq Z_{1}$, and we obtain family (d).

3. Determining Families of Triples Including $K_{1,3}$

In this section the graphs of Figures 4,5 and 6 represent families of $K_{1,3^{-}}$ free nonhamiltonian graphs. Note that $F_{1}=H_{2}$. For $i=2,3,5,6,7,8,9$ we denote by $F_{i}(t)$ the graph from the family F_{i} for fixed t, $(t \geq 3$ for $i=2,3$ and $t \geq 1$ for $i=5,6, \ldots, 9$ respectively). Note that in $F_{i}(t), i=5, \ldots, 9$, the vertices at distance one from the K_{t} are in fact adjacent to all vertices of the K_{t}.

Let \mathcal{A} be the collection of triples $G_{1} G_{2} G_{3}$ with $G_{1}=K_{1,3}$ so that 2connected $G_{1} G_{2} G_{3}$-free graphs of sufficiently large order are hamiltonian. We use the families of graphs of Figures 4, 5 and 6 to arrive at a restricted class of triples which contains \mathcal{A}. Due to the size of this class, we continue the study of these triples in [7]. Note that the case that no $G_{i}, i=1,2,3$, is equal to a star was characterized in [8].

Figure 4. Forbidden families F_{1} through F_{5}.

Figure 5. Forbidden families F_{6} to F_{9}.

Figure 6. Forbidden families F_{10} and F_{11}.

Without loss of generality, we may assume $G_{2} \leq F_{1}$. This implies $G_{2} \leq$ $N(i, j, k), i \geq j \geq k \geq 0$, where possibly $G_{2}=P_{l}, l \geq 4$. If $l \leq 6$, then $K_{1,3} P_{l}$ implies G is hamiltonian. Now, based on the different structures of G_{2}, we determine the possibilities for G_{3}. First we present three Lemmas which will help expedite the cases. Throughout this section we consider only 2 -connected $G_{1} G_{2} G_{3}$-free graphs G.

Lemma 3.1. If G_{3} is an induced subgraph of all of the graphs in $\left\{F_{2}, F_{3}, F_{6}\right\}$ then either
(a) $G_{3} \leq G_{1}$ where G is $K_{1,3} G_{1}$-free implies G is hamiltonian or
(b) the clique number $\omega\left(G_{3}\right) \geq 4$.

Proof. If $\omega\left(G_{3}\right) \leq 2$, then by the cycle structure of F_{2} and F_{3}, G_{3} must be a path. Since there are no induced $K_{1,3}$ and F_{2} contains no induced P_{7}, it follows that $G_{3} \leq P_{6}$. But $K_{1,3} P_{6}$-free graphs are hamiltonian by Theorem 1.1.

If $\omega\left(G_{3}\right)=3$, then G_{3} contains at most one K_{3}, since the distance between two distinct K_{3} in F_{2} is at most one and it is more than one in F_{3}. Also note that there are no cycles other than K_{3} in G_{3}, since F_{2} has only 4 -cycles as other induced cycles, while F_{3} has only 6 -cycles as other induced cycles. Thus, $G_{3} \leq N(i, j, k)$ where $i, j, k \geq 0$.

If $i, j, k>0$, then $G_{3} \leq N(2,1,1)$ by F_{2} or F_{3} and by F_{6} it follows that $G_{3} \leq N(1,1,1)$, hence we are again done by Theorem 1.1. If $k=0$ and $i, j>0$, then by $F_{3}, j=1$ and by $F_{6}, i \leq 2$. Thus, $G_{3} \leq N(2,1,0)$ and we are done by Theorem 1.1. If $j=k=0$ and $i>0$, then F_{2} implies that $i \leq 3$ and so $G_{3} \leq N(3,0,0)$ and we are again done by Theorem 1.1. Thus, either $\omega\left(G_{3}\right) \geq 4$ or we have a pair of graphs implying G is hamiltonian.

Lemma 3.2. If G is a 2 -connected non-hamiltonian $K_{1,3} G_{3}$-free graph of sufficiently large order n and G_{3} is an induced subgraph of each of the graphs of $\left\{F_{2}, F_{3}, F_{5}, F_{6}\right\}$ or $\left\{F_{2}, F_{3}, F_{6}, F_{7}\right\}$, then $G_{3} \leq Z_{3}(m), m \geq 4$.

Proof. By Lemma 3.1, $\omega\left(G_{3}\right) \geq 4$. Since G_{3} is an induced subgraph of F_{5} and F_{6} (or F_{6} and F_{7}) containing a K_{4}, it follows that $G_{3} \leq Z_{t}(m)$, with $m \geq 4$ and $G_{3} \leq F_{2}$ implies that $t \leq 3$.

Lemma 3.3. If G is a 2 -connected non-hamiltonian $K_{1,3} G_{3}$-free graph of sufficiently large order n and G_{3} is an induced subgraph of each of the graphs in $\left\{F_{2}, F_{3}, F_{5}, F_{6}, F_{10}\right\}$, then $G_{3} \leq Z_{2}(4)$.

Proof. By Lemma 3.1, $\omega\left(G_{3}\right) \geq 4$, and since $G_{3} \leq F_{10}$, we see that $\omega\left(G_{3}\right) \leq$ 4, so $\omega\left(G_{3}\right)=4$. Lemma 3.2 now implies that $G_{3} \leq Z_{3}(4)$ and by considering F_{10} it follows that $G_{3} \leq Z_{2}(4)$.

For Propositions $3.1-3.7$ of this Section, we assume that $G_{2}=N(i, j, k)$ for certain values of $i \geq j \geq k$ and $G_{1}=K_{1,3}$.

Proposition 3.1. If $k \geq 2$, then $K_{1,3} G_{3}$ implies G is hamiltonian.
Proof. If G is $K_{1,3}$-free and non-hamiltonian and $k \geq 2$, then we have that $G_{2} \geq N(2,2,2)$. Since $F_{2}-F_{10}$ are all $K_{1,3} N(2,2,2)$-free, G_{3} must be an induced subgraph of each of them. But then F_{4} implies $\omega\left(G_{3}\right) \leq 3$. Now by Lemma 3.1 we are done.

Thus, we next need to consider the cases where $k=1$ or $k=0$.

Proposition 3.2. Suppose $k=1$ and $j>1$. Then,
(a) $G_{3} \leq Z_{2}$ (4) when $j \geq 3$ and
(b) $G_{3} \leq Z_{3}(m)$, with $m \geq 4$, when $j=2$.

Proof. Since each of $F_{2}, F_{3}, F_{5}, F_{6}$ are $K_{1,3} N(i, 3,1) G_{3}$-free, if $j \geq 3$, apply Lemma 3.3 and if $j=2$, apply Lemma 3.2.
The graph $H_{2}\left(l_{1}, l_{2}, l_{3}\right)\left(l_{i} \geq 3\right.$ for $\left.i=1,2,3\right)$ is two copies of K_{3} with corresponding vertices joined by $P_{l_{i}}$'s whose endvertices are identified with the corresponding vertices of the two copies of K_{3}. Note that this graph is just one particular member of the family $H_{2}=F_{1}$.

Proposition 3.3. Suppose $k=j=1$, then
(a) If $i \geq 4$, then $G_{3} \leq Z_{3}(m), m \geq 4$.
(b) If $i=3$, then $G_{3} \leq Z_{3}(m), m \geq 4$ or $G_{3} \leq N\left(K_{m}, K_{3}, P_{1}\right)$, $m \geq 4$ or $G_{3} \leq N\left(K_{3}, P_{2}, P_{2}\right)$.
(c) If $i=2$, then $G_{3} \leq F_{6}(m)$.
(d) If $i=1$, then $G_{2}=N(1,1,1)$ and $K_{1,3} N(1,1,1)$-free implies hamiltonicity.

Proof. Suppose $i \geq 4$. Since F_{2}, F_{3}, F_{5} and F_{6} are all $K_{1,3} N(4,1,1)$-free, by Lemma 3.1, $\omega\left(G_{3}\right) \geq 4$, and then Lemma 3.2 implies $G_{3} \leq Z_{3}(m), m \geq 4$.

If $i=3$, we note that F_{2}, F_{5}, F_{6} and F_{7} are all $K_{1,3} N(3,1,1)$-free. Suppose $\omega\left(G_{3}\right)=3$ and G_{3} contains more than one K_{3}. Then F_{2} and F_{5} imply G_{3} contains only two K_{3} and these two K_{3} share a vertex. Thus, $G_{3} \leq$ $N\left(K_{3}, 1,1\right)$.

Suppose $w\left(G_{3}\right) \geq 4$. By considering F_{6} and F_{7} we see that at most one vertex, say w, of the large clique may have adjacencies outside the clique. If w has one adjacency outside the clique, then F_{2} and F_{5} imply $G_{3} \leq Z_{3}(m), m \geq 4$. If w has more than one adjacency outside the clique, then F_{2} implies the degree outside the clique is exactly two and those two vertices must be adjacent. The family F_{2} implies there can be only one of these two with additional adjacencies. Then F_{5} and F_{7} imply the extension beyond these two vertices can be at most one edge from one vertex, hence $G_{3} \leq N\left(K_{m}, 1,0\right), m \geq 4$.

If $i=2$, since F_{6} is $K_{1,3} N(2,1,1)$-free, we conclude that $G_{3} \leq F_{6}(m)$. If $i=1$, apply Theorem 1.1.

Proposition 3.4. Suppose $k=0$ and $j \geq 3$, then $G_{3} \leq Z_{2}(4)$.
Proof. If $j \geq 3$, the families of graphs $F_{2}, F_{3}, F_{5}, F_{6}$ and F_{10} are all $K_{1,3} N(3,3,0)$-free, so by Lemma 3.1, $\omega\left(G_{3}\right) \geq 4$ and using family F_{10} and Lemma 3.3, it follows that $\omega\left(G_{3}\right)=4$, and thus, $G_{3} \leq Z_{2}(4)$.

Proposition 3.5. Suppose $k=0$ and $j=2$, then
(a) If $i \geq 3$, then $G_{3} \leq Z_{3}(m), m \geq 4$.
(b) If $i=2$, then $G_{3} \leq P_{7}$ or

$$
\begin{aligned}
& G_{3}=C_{6} \text { if } \omega\left(G_{3}\right)=2, \text { or } \\
& G_{3} \leq H_{2}(3,3,3) \text { or } \\
& G_{3} \leq N(4,0,0) \text {, if } \omega\left(G_{3}\right)=3 \text { or } \\
& G_{3} \leq Z_{4}(m), \text { with } m \geq 4 \text { if } \omega\left(G_{3}\right) \geq 4 .
\end{aligned}
$$

Proof. (a) If $j=2$ and $i \geq 3$, again $F_{2}, F_{3}, F_{5}, F_{6}$ and F_{7} are $K_{1,3} N(3,2,0)$ free, so by Lemma 3.1, $\omega\left(G_{3}\right) \geq 4$ and by Lemma 3.2, we see that $G_{3} \leq$ $Z_{3}(m), m \geq 4$.
(b) If $j=2$ and $i=2$, then only families F_{3} and F_{5} are $N(2,2,0)$-free. First suppose that $\omega\left(G_{3}\right)=2$. Then we see that $G_{3} \leq P_{7}$ or $G_{3}=C_{6}$. Suppose $\omega\left(G_{3}\right)=3$. Now if G_{3} contains two K_{3}, then from F_{3} we see they
are disjoint and we get that $G_{3} \leq H_{2}(3,3,3)$. If G_{3} contains only one K_{3}, then F_{3} implies $G_{3} \leq N(4,0,0)$ or $G_{3} \leq N(3,1,0)$, or $G_{3} \leq N(2,1,1)$. But then note that $N(3,1,0)$ and $N(2,1,1)$ are subgraphs of $H_{2}(3,3,3)$. Finally, if $\omega\left(G_{3}\right) \geq 4$, then F_{3} imply $G_{3} \leq Z_{4}(m)$.

Proposition 3.6. Suppose $k=0$ and $j=1$, then
(a) If $i \geq 4$, then $G_{3} \leq P_{6}$ if $\omega\left(G_{3}\right)=2$ or

$$
G_{3} \leq Z_{3}(m) \text { if } \omega\left(G_{3}\right) \geq 3
$$

(b) If $i=3$, then $G_{3} \leq P_{6}$ if $\omega\left(G_{3}\right)=2$, or

$$
\begin{aligned}
& G_{3} \leq N\left(K_{m}, K_{3}, P_{2}\right) \text { or } \\
& G_{3} \leq N\left(Z_{1}(m), P_{3}, P_{1}\right) \text { if } \omega\left(G_{3}\right) \geq 3 .
\end{aligned}
$$

(c) If $1 \leq i \leq 2$, then $G_{2} \leq N(2,1,0)$, and $K_{1,3} N(2,1,0)$-free implies hamiltonicity.

Proof.

(a) If $j=1$ and $i \geq 4$, families $F_{6}, F_{7}, F_{8}, F_{9}$ and F_{11} are $K_{1,3} N(4,1,0)$-free and so $G_{3} \leq P_{6}$ if $\omega\left(G_{3}\right)=2$. If $\omega\left(G_{3}\right) \geq 3$, by examining the largest common subgraphs of $F_{6}, F_{7}, F_{8}, F_{9}$, and F_{11}, we see that $G_{3} \leq Z_{3}(m)$.
(b) If $j=1$ and $i=3$, families F_{6}, F_{7}, F_{8} are $K_{1,3} N(3,1,0)$-free and so $G_{3} \leq P_{6}$ if $\omega\left(G_{3}\right)=2$. By examing the largest common subgraphs of F_{6}, F_{7}, F_{8}, the other graphs are immediate.
(c) If $j=1$ and $i=2$, we note that all $K_{1,3} N(2,1,0)$-free graphs are hamiltonian by Theorem 1.1.

Proposition 3.7. Suppose $k=0$ and $j=0$, then
(a) If $i \geq 5$, then $G_{3} \leq Z_{3}(m), m \geq 4$.
(b) If $i=4$, then $G_{3} \leq F_{2}(3)$.
(c) If $0 \leq i \leq 3$, then $G_{2} \leq Z_{3}$ and $K_{1,3} G_{2}$ is sufficient to imply hamiltonicity.

Proof.

(a) If $j=0$ and $i \geq 5$, then F_{2}, F_{3}, F_{6} and F_{7} are all $K_{1,3} N(5,0,0)$-free and so by Lemma $3.2, G_{3} \leq Z_{3}(m), m \geq 4$.
(b) If $j=0$ and $i=4, G_{3} \leq F_{2}$, as F_{2} and F_{11} are the only $K_{1,3} N(4,0,0)$ free families.
(c) If $j=0$ and $i=3$, then all $K_{1,3} N(3,0,0)$-free graphs of order $n \geq 10$ are hamiltonian by Theorem 1.1.

All other cases for i lead directly to G_{2} being one of the graphs of Theorem 1.1 and hence, no new triples result.
We next consider the situation when $G_{2}=P_{l}$, for $l \geq 7$.
Theorem 3.1. Suppose $G_{2}=P_{l}, l \geq 7$.
(a) If $l=7$, then $G_{3} \leq F_{2}(3)$ or

$$
\begin{aligned}
G_{3} & \leq N\left(K_{m}, K_{3}, P_{1}\right) \text { or } \\
G_{3} & \leq N\left(Z_{1}, 1,0\right) .
\end{aligned}
$$

(b) If $l \geq 8$, then $G_{3} \leq Z_{3}(m)$, where $m \geq 4$.

Proof. If $l=7$, an argument similar to earlier ones involving the number of copies of K_{3} in G_{3} produces the result. If $l \geq 8$, then since $F_{2}, F_{3}, F_{5}, F_{6}$ and F_{7} must contain G_{3}, applying Lemma 3.2 we obtain the result.
We end this section by summarizing the potential triples determined in this section.

In 2-connected Claw, $N(i, j, k), G_{3}$-Free with $i \geq j \geq k \geq 1$	
i, j, k	Possible Maximal Third Graph(s) G_{3}
$k \geq 2$	No new triples
$k=1, j \geq 3$	$Z_{2}(4)$
$k=1, j=2$	$Z_{3}(m), m \geq 4$
$k=j=1 i \geq 4$	$Z_{3}(m), m \geq 4$
$k=j=1 i=3$	$Z_{3}(m), \quad N\left(K_{m}, P_{2}, P_{1}\right), m \geq 4, \quad N\left(K_{3}, P_{2}, P_{2}\right)$
$k=j=1, i=2$	$F_{2}(m), m \geq 4$
$k=j=1, i=1$	No new triples

In 2-connected Claw, $N(i, j, 0), G_{3}$-Free with $i \geq j$	
$i, j, 0$	Possible Maximal Third Graph(s) G_{3}
$j \geq 3$	$Z_{2}(4)$
$j=2, i \geq 3$	$Z_{3}(m), m \geq 4$
$j=2, i=2$	if $\omega\left(G_{3}\right)=2: P_{7}, C_{6}$
$j=2, i=2$	if $\omega\left(G_{3}\right)=3: H_{2}(3,3,3), N(4,0,0)$
$j=2, i=2$	if $\omega\left(G_{3}\right) \geq 4: Z_{4}(m), m \geq 4$
$j=1, i \geq 4$	if $\omega\left(G_{3}\right)=2:$ No new triples
$j=1, i \geq 4$	if $\omega\left(G_{3}\right) \geq 3: N\left(Z_{1}(m), P_{2}, P_{1}\right)$
$j=1, i=3$	if $\omega\left(G_{3}\right)=2:$ no new triples
$j=1, i=3$	if $\omega\left(G_{3}\right) \geq 3: N\left(K_{m}, K_{3}, P_{2}\right), N\left(Z_{1}(m), P_{3}, P_{1}\right)$
$j=1,1 \leq i \leq 2$	No new triples
$j=0, i \geq 5$	$Z_{3}(m), m \geq 4$
$j=0, i=4$	$F_{2}(3)$
$j=0,0 \leq i \leq 3$	No new triples

In 2-connected Claw, P_{t}, G_{3}-Free	
t	Possible Third Graph(s) G_{3}
$t \geq 8$	$Z_{3}(m), m \geq 4$
$t=7$	$F_{2}(3), N\left(K_{m}, K_{3}, P_{1}\right), N\left(Z_{1}, P_{2}, P_{1}\right)$
$t \leq 6$	No new triples

References

[1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity (Ph.D. Thesis, Memphis State University, 1991).
[2] J. Brousek, Forbidden triples and hamiltonicity, Discrete Math. 251 (2002) 71-76.
[3] J. Brousek, Z. Ryjáček and I. Schiermeyer, Forbidden subgraphs, stability and hamiltonicity, 18th British Combinatorial Conference (London, 1997), Discrete Math. 197/198 (1999) 143-155.
[4] G. Chartrand and L. Lesniak, Graphs \& Digraphs (3rd Edition, Chapman \& Hall, 1996).
[5] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997) 45-60.
[6] R.J. Faudree, R.J. Gould and M.S. Jacobson, Forbidden triples implying hamiltonicity: for all graphs, Discuss. Math. Graph Theory 24 (2004) 47-54.
[7] R.J. Faudree, R.J. Gould and M.S. Jacobson, Forbidden triples including $K_{1,3}$ implying hamiltonicity: for sufficiently large graphs, preprint.
[8] R.J. Faudree, R.J. Gould, M.S. Jacobson and L. Lesniak, Characterizing forbidden clawless triples implying hamiltonian graphs, Discrete Math. 249 (2002) 71-81.

