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Abstract

In [2], Brousek characterizes all triples of connected graphs, G1,
G2, G3, with Gi = K1,3 for some i = 1, 2, or 3, such that all G1G2G3-
free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Ja-
cobson and Lesniak consider the problem of finding triples of graphs
G1, G2, G3, none of which is a K1,s, s ≥ 3 such that G1G2G3-free
graphs of sufficiently large order contain a hamiltonian cycle. In [6],
a characterization was given of all triples G1, G2, G3 with none being
K1,3, such that all G1G2G3-free graphs are hamiltonian. This result,
together with the triples given by Brousek, completely characterize
the forbidden triples G1, G2, G3 such that all G1G2G3-free graphs are
hamiltonian. In this paper we consider the question of which triples
(including K1,s, s ≥ 3) of forbidden subgraphs potentially imply all
sufficiently large graphs are hamiltonian. For s ≥ 4 we characterize
these families.
Keywords: hamiltonian, forbidden subgraph, claw-free, induced
subgraph.
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1. Introduction

The problem of recognizing graph properties based on forbidden connected
subgraphs has received considerable attention. A wide variety of properties
and forbidden families have been studied. In particular, the property of
being hamiltonian has been widely studied. A series of results culminated
in the characterization of the pairs of forbidden subgraphs which imply all
graphs free of these pairs of graphs are hamiltonian by Bedrossian [1]. In
his proof, Bedrossian used a small order nonhamiltonian graph to eliminate
some cases. Faudree and Gould [5] extended the collection to characterize
the forbidden pairs which imply all sufficiently large (n ≥ 10 suffices) graphs
are hamiltonian.

Since the only single forbidden subgraph that implies a graph is hamil-
tonian is P3 (the path on 3 vertices) and it forces the graph to be complete,
the problem of all single or pairs of forbidden subgraphs implying hamil-
tonicity has been completely characterized, both for all graphs and for all
sufficiently large graphs.

An interesting feature of both characterizations for pairs is that the
claw, K1,3, must be one of the graphs in each pair. This led naturally to
the question: If we consider triples of forbidden subgraphs implying hamil-
tonicity, must the claw always be one of the graphs in the triple? This
question was answered negatively in [8]. There, all triples containing no
K1,t, t ≥ 3 which imply all sufficiently large graphs are hamiltonian were
given. Brousek [2] gave the collection of all triples which include the claw
that imply all 2-connected graphs are hamiltonian.

We follow the notation of [4]. In addition, we say a graph H is G1G2G3-
free if H does not contain Gi, i = 1, 2, 3 as an induced subgraph. In [6],
a characterization was given of all triples G1, G2, G3 with none being K1,3,
such that all G1G2G3-free graphs are hamiltonian. Thus, the remaining
case is, for sufficiently large graphs, to determine the possible triples where
G1 = K1,s, with s ≥ 3.

The purpose of this paper is to study those triples which include K1,s,
s ≥ 3 such that all 2-connected graphs of sufficiently large order and free of
such triples are hamiltonian. For s ≥ 4 we characterize these triples. For
s = 3 we present a list of triples which potentially imply hamiltonicity. The
triples containing K1,3 will be further studied in [7].

Given a cycle with an implied orientation, we write x+ and x− for the
successor and predecessor of x on the cycle, respectively. Further, by [x, y]
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we mean the subpath of C beginning at x and ending at y and following the
orientation of C. We also use the notation H ≤ G to mean that H is an
induced subgraph of G.

For the remainder of this paper we will assume G1, G2 and G3 are con-
nected. We define the graph C(i, j, k) (see Figure 1 for C(2, 2, 1)) to be
the graph obtained by identifying the end vertex of paths of lengths i, j
and k, respectively. This graph may be thought of as a form of generalized
claw as K1,3 = C(1, 1, 1). Define the graphs Zi(m) and Ji(m) to be the
complete graph on m vertices (m ≥ 3) with a path of length i or i edges
joined to a single vertex of the Km, respectively (see Figure 1 for Z1(m)
and J2(m)). Note that Z1 = Z1(3) is the notation common in the literature.
The book Bn is obtained by identifying an edge from each of n copies of K3

(see Figure 1 for B2).

J

K Km m

2
Z (m)1

(m) C(2,2,1) B 2

Figure 1. Common forbidden graphs.

Let C3 = K3 and Pn be a path on n vertices. Let the family N(i, j, k)
be obtained by identifying an endvertex of each of Pi+1, Pj+1 and Pk+1

with distinct vertices of a K3. We follow the standard that i ≥ j ≥ k. In
particular, we denote the net N = N(1, 1, 1) (see Figure 2), while other spe-
cial cases have been commonly denoted in the literature as Z3 = N(3, 0, 0),
B = N(1, 1, 0) and W = N(2, 1, 0). We further define the graph family
N(G1, G2, G3) to be those graphs obtained by identifying a distinct vertex
of K3 with a distinct vertex of G1, G2 and G3 respectively. If the vertex of
Gi to be identified is important, we specify it as in the definition of N(i, j, k).
In particular, if Gi = Z1(m), for some i, then the vertex being identified
from Z1(m) will always be the vertex of degree one. For our purposes, the
graphs Gi (i = 1, 2, 3) will always be one of Kn, Pn, or Z1(m), and hence,
there will be no ambiguity in the graph constructed.
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N(1,1,1) = N

N(3,0,0) = Z
3

Figure 2. More common forbidden graphs.

We will need the following characterization of forbidden pairs from [5].

Theorem 1.1. Let R and S be connected graphs (R, S 6= P3) and G a
2-connected graph of order n ≥ 10. Then G is (R, S)-free implies G is
hamiltonian if, and only if, R = K1,3 and S is an induced subgraph of one
of N(1, 1, 1), N(3, 0, 0), N(2, 1, 0) or P6.

2. Triples Including K1,s, s ≥ 4

In this section, we characterize those triples G1, G2, G3, one of which is
K1,s, (s ≥ 4) such that G1G2G3-free graphs of sufficiently large order are
hamiltonian. We begin by showing certain triples containing K1,s do imply
hamiltonicity.

Theorem 2.1. If G is a 2-connected K1,sP4J2(m)-free graph (s ≥ 4 and
fixed, m ≥ 3 and fixed) of sufficiently large order n, then G is hamiltonian.

Proof. Observe first that there must be a vertex of degree at least
√

n− 1,
for otherwise G would have diameter at least four and an induced P4 would
result.

Using the neighborhood of such a vertex, for n sufficiently large, since
G contains no induced K1,s, by Ramsey’s Theorem, G contains a Kl′ (where
l′ = l′(n) > ms). Select a largest clique Kl in G. Note that there are no
vertices at distance 2 from this clique, for if there were, an induced P4 is
easily found. Thus, every vertex not in Kl is adjacent to vertices in Kl.

Let S = V (G)− V (Kl) and

SL = {v ∈ S| 1 ≤ degKl
(v) < l − (m− 2)} and

SB = S − SL.
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Let x, y ∈ SL and suppose that x and y are not adjacent. Further, without
loss of generality, suppose that degKl

(x) ≤ degKl
(y). If the neighborhood

NKl
(x) 6⊆ NKl

(y), then there exist vertices w1 ∈ NKl
(x) − NKl

(y) and
w2 ∈ NKl

(y)−NKl
(x) such that w1, x, w2, y is an induced P4, a contradiction.

But now, x and y must have at least one common neighbor in Kl and a J2(m)
results. Hence, the induced graph on SL, 〈SL〉, must be complete.

Now in 〈SB〉 we select a longest path P1. If P1 is not all of SB, we select
a longest path in 〈SB − V (P1)〉, and continue this process until all of SB is
covered by these paths. It is easy to see there are at most s− 1 such paths,
for otherwise, due to the degree condition on SB, there would be a vertex
of Kl common to the neighborhoods of all the final vertices of these paths
and K1,s would result.

Now for each path Pi, i = 1, . . . , t (t < s) created above and for some
spanning path of 〈SL〉, we match the 2(t + 1) end vertices of these paths to
2(t + 1) distinct vertices of Kl. Note that in the special case that V (〈SL〉)
has only one neighbor in Kl, the fact G is 2-connected implies V (〈SL〉) has a
neighbor in SB. Include that neighbor in SL and proceed as above. Hence,
G is clearly hamiltonian, completing the proof of the Theorem.

Theorem 2.2. If G is a 2-connected K1,sP4B2-free graph (s ≥ 4) of suffi-
ciently large order n, then G is hamiltonian.

Proof. From Theorem 3 in [8], G being 2-connected P4B2K2,dn+1
2
e-free

implies G is hamiltonian and K1,s ≤ K2,dn+1
2
e, if s ≤ dn+1

2 e, and so the
result follows.

Theorem 2.3. If G is a 2-connected K1,sPrZ1(m)-free graph (with r ≥ 5,
s ≥ 4, m ≥ 3 fixed) of sufficiently large order n, then G is hamiltonian.

Proof. As before, G contains a vertex of degree at least n
1
r or Pr would be

an induced subgraph of G. By Ramsey’s Theorem, since K1,s 6≤ G, we see
G contains Kl′ for l′ > sm and l′ = l′(n). Choose a largest clique Kl in G.

Since G is 2-connected, there exists x ∈ V (G)− V (Kl) with x adjacent
to vertices of Kl. Note that x must be nonadjacent to at most m−2 vertices
of Kl, for otherwise a Z1(m) results.

If there exists a vertex y at distance 2 from Kl through x, since l >
sm, then an m-clique including x along with y forms a Z1(m), again a
contradiction. Thus, every vertex of S = V − V (Kl) must have adjacencies
in Kl. Further, SL (defined as before) is empty, hence SB = S.
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As before, choose a system of longest paths Pi, i = 1, . . . , t, that covers S.
If t ≥ s, since l > s(m− 2) we would find K1,s in G, a contradiction.

Thus, since the end vertices of these t < s paths all have high degree
(≥ l − (m − 2)) to Kl and l > s(m − 2), we can match the end vertices
of each of these paths to 2t distinct vertices of Kl and thus, G is clearly
hamiltonian.

Note, Theorem 2.3 also holds when r = 4, however this triple follows from
Theorem 2.1.

Theorem 2.4. If G is a 2-connected K1,sC(l, 1, 1)Z1-free (l, s fixed, l ≥ 2,
s ≥ 4) graph of sufficiently large order n, then G is hamiltonian.

Proof. Suppose G is not hamiltonian. Then, from our previous result, we
know that G contains a long induced path. Choose P = Pr with r > ls to
be a longest induced path in G. Since V (P ) 6= V (G) and G is 2-connected,
there exists a vertex x /∈ V (P ) adjacent to a vertex on P . Say x is adjacent
to v (where v is not an end vertex of P ). If x is also adjacent to v+, then
since P is an induced path, we see that Z1 results unless x is adjacent to
the entire path. But if x is adjacent to all of P , since r > ls, a K1,s would
result.

Now we note that if x has no adjacencies within l vertices of v (on either
side), then C(l, 1, 1) results. Hence, x must have an adjacency within every
l vertices of any other adjacency on P . But r > ls, so again K1,s ≤ G. The
only remaining possibility is that x must be adjacent to both end vertices
of P .

Now suppose y is at distance 2 from P through x. Then we immediately
find C(l, 1, 1) ≤ G. Hence, all vertices of V (G) − V (P ) are at distance one
from P and therefore are adjacent to only the end vertices of P .

Suppose x and y are two vertices at distance one from P . If xy /∈ E(G),
then C(l, 1, 1) is found using either end vertex, say w, of P along with x, y
and an l vertex segment of P following w. Thus, xy ∈ E(G) and now
〈x, y, w, w+〉 ∼= Z1, a contradiction.

In order to complete the characterization of triples containing K1,s with
s ≥ 4, we need the families of graphs in Figure 3. For convenience, the
graph H2 = F1 (see Figure 4).

We now show that the triples shown to imply hamiltonicity in Theorems
2.1 – 2.4 form a complete list.
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Figure 3. More nonhamiltonian graphs.

Theorem 2.5. If G is a 2-connected graph of sufficiently large order which
is G1G2G3-free where G1G2G3 are one of the following triples:

(a) K1,s, P4, J2(m); s ≥ 4, m ≥ 3,

(b) K1,s, P4, B2; s ≥ 4,
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(c) K1,s, Pr, Z1(m); r ≥ 5, s ≥ 4, m ≥ 3,

(d) K1,s, C(l, 1, 1), Z1(3) = Z1; l ≥ 2, s ≥ 4
or G1G2G3 is a triple of induced subgraphs of one of these triples, then G
is hamiltonian. Furthermore, these are the only possible triples that contain
K1,s, s ≥ 4.

Proof. We know each of these triples implies hamiltonicity by Theorems
2.1 – 2.4. Thus, we need only show there are no other possibilities.

Since the graphs H0–H7 of Figure 3 are all K1,s-free (s ≥ 4) non-
hamiltonian, we may assume without loss of generality G2 ≤ H0. Thus,
P4 ≤ G2 ≤ C(i, j, k). Further, since P4 6≤ H3 and P4 6≤ H4, we see that
G3 ≤ H3 and G3 ≤ H4. This implies that Kr ≤ G3 ≤ J2(m), for r ≥ 3 and
some m ≥ 3, or else G3 ≤ B2.

Since in either case K3 ≤ G3 and G3 6≤ H1 then G2 ≤ H1. Hence, as
G2 ≤ H0, we see that G2 ≤ C(l, 1, 1), for some l ≥ 2. Thus, either G2 is a
path Pk, k ≥ 4, or G2 = C(l, 1, 1), that is Pk ≤ G2 ≤ C(l, 1, 1).

Case 1. Suppose G2 = Pr, r ≥ 6.

Since P6 6≤ H4, P6 6≤ H5 and P6 6≤ H6, then G3 ≤ H4, G3 ≤ H5 and
G3 ≤ H6. But then, G3 ≤ Z1(m) for some m ≥ 3. This yields triple (c),
when r ≥ 6.

Case 2. Suppose G2 = P5.

Note H5 is K1,sP5J2(m)-free, where s ≥ 4. Thus, the triple K1,s, P5, J2(m)
is excluded from consideration. Next consider H7, which is K1,4P5B2-free,
excluding this triple from consideration. Now consider H4, H5 which are
K1,4, P5-free. This implies G3 is a subgraph of both H4 and H5, hence
G3 ≤ Z1(m), m ≥ 3. This completes case (c).

Case 3. Suppose G2 = P4.

Since H3 and H4 are K1,sP4-free, we see that G3 ≤ H3 and G3 ≤ H4. Thus,
G3 ≤ J2(m) for some m ≥ 3 or G3 ≤ B2. Hence, we obtain the triples of
(a) and (b).

Case 4. Suppose G2 = C(l, 1, 1), l ≥ 2.

Now G2 6≤ H2, G2 6≤ H3 and G3 6≤ H4 thus, G3 ≤ H2, G3 ≤ H3 and
G3 ≤ H4. Hence, using H2, we see that K3 ≤ G3 and thus, ω(G3) = 3.
But then, using H2 and H3 or H4, we see that G3 ≤ Z1, and we obtain
family (d).
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3. Determining Families of Triples Including K1,3

In this section the graphs of Figures 4, 5 and 6 represent families of K1,3-
free nonhamiltonian graphs. Note that F1 = H2. For i = 2, 3, 5, 6, 7, 8, 9 we
denote by Fi(t) the graph from the family Fi for fixed t, (t ≥ 3 for i = 2, 3
and t ≥ 1 for i = 5, 6, . . . , 9 respectively). Note that in Fi(t), i = 5, . . . , 9,
the vertices at distance one from the Kt are in fact adjacent to all vertices
of the Kt.

Let A be the collection of triples G1G2G3 with G1 = K1,3 so that 2-
connected G1G2G3-free graphs of sufficiently large order are hamiltonian.
We use the families of graphs of Figures 4, 5 and 6 to arrive at a restricted
class of triples which contains A. Due to the size of this class, we continue
the study of these triples in [7]. Note that the case that no Gi, i = 1, 2, 3, is
equal to a star was characterized in [8].
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t
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K
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Figure 4. Forbidden families F1 through F5.
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Figure 5. Forbidden families F6 to F9.
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Figure 6. Forbidden families F10 and F11.
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Without loss of generality, we may assume G2 ≤ F1. This implies G2 ≤
N(i, j, k), i ≥ j ≥ k ≥ 0, where possibly G2 = Pl, l ≥ 4. If l ≤ 6, then
K1,3Pl implies G is hamiltonian. Now, based on the different structures of
G2, we determine the possibilities for G3. First we present three Lemmas
which will help expedite the cases. Throughout this section we consider only
2-connected G1G2G3-free graphs G.

Lemma 3.1. If G3 is an induced subgraph of all of the graphs in {F2, F3, F6}
then either

(a) G3 ≤ G1 where G is K1,3G1-free implies G is hamiltonian or
(b) the clique number ω(G3) ≥ 4.

Proof. If ω(G3) ≤ 2, then by the cycle structure of F2 and F3, G3 must
be a path. Since there are no induced K1,3 and F2 contains no induced
P7, it follows that G3 ≤ P6. But K1,3P6-free graphs are hamiltonian by
Theorem 1.1.

If ω(G3) = 3, then G3 contains at most one K3, since the distance
between two distinct K3 in F2 is at most one and it is more than one in F3.
Also note that there are no cycles other than K3 in G3, since F2 has only
4-cycles as other induced cycles, while F3 has only 6-cycles as other induced
cycles. Thus, G3 ≤ N(i, j, k) where i, j, k ≥ 0.

If i, j, k > 0, then G3 ≤ N(2, 1, 1) by F2 or F3 and by F6 it follows that
G3 ≤ N(1, 1, 1), hence we are again done by Theorem 1.1. If k = 0 and
i, j > 0, then by F3, j = 1 and by F6, i ≤ 2. Thus, G3 ≤ N(2, 1, 0) and we
are done by Theorem 1.1. If j = k = 0 and i > 0, then F2 implies that i ≤ 3
and so G3 ≤ N(3, 0, 0) and we are again done by Theorem 1.1. Thus, either
ω(G3) ≥ 4 or we have a pair of graphs implying G is hamiltonian.

Lemma 3.2. If G is a 2-connected non-hamiltonian K1,3G3-free graph of
sufficiently large order n and G3 is an induced subgraph of each of the graphs
of {F2, F3, F5, F6} or {F2, F3, F6, F7}, then G3 ≤ Z3(m), m ≥ 4.

Proof. By Lemma 3.1, ω(G3) ≥ 4. Since G3 is an induced subgraph of F5

and F6 (or F6 and F7) containing a K4, it follows that G3 ≤ Zt(m), with
m ≥ 4 and G3 ≤ F2 implies that t ≤ 3.

Lemma 3.3. If G is a 2-connected non-hamiltonian K1,3G3-free graph of
sufficiently large order n and G3 is an induced subgraph of each of the graphs
in {F2, F3, F5, F6, F10}, then G3 ≤ Z2(4).
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Proof. By Lemma 3.1, ω(G3) ≥ 4, and since G3 ≤ F10, we see that ω(G3) ≤
4, so ω(G3) = 4. Lemma 3.2 now implies that G3 ≤ Z3(4) and by considering
F10 it follows that G3 ≤ Z2(4).

For Propositions 3.1 – 3.7 of this Section, we assume that G2 = N(i, j, k)
for certain values of i ≥ j ≥ k and G1 = K1,3.

Proposition 3.1. If k ≥ 2, then K1,3G3 implies G is hamiltonian.

Proof. If G is K1,3-free and non-hamiltonian and k ≥ 2, then we have that
G2 ≥ N(2, 2, 2). Since F2 − F10 are all K1,3N(2, 2, 2)-free, G3 must be an
induced subgraph of each of them. But then F4 implies ω(G3) ≤ 3. Now by
Lemma 3.1 we are done.

Thus, we next need to consider the cases where k = 1 or k = 0.

Proposition 3.2. Suppose k = 1 and j > 1. Then,

(a) G3 ≤ Z2(4) when j ≥ 3 and
(b) G3 ≤ Z3(m), with m ≥ 4, when j = 2.

Proof. Since each of F2, F3, F5, F6 are K1,3N(i, 3, 1)G3-free, if j ≥ 3, apply
Lemma 3.3 and if j = 2, apply Lemma 3.2.

The graph H2(l1, l2, l3) (li ≥ 3 for i = 1, 2, 3) is two copies of K3 with
corresponding vertices joined by Pli ’s whose endvertices are identified with
the corresponding vertices of the two copies of K3. Note that this graph is
just one particular member of the family H2 = F1.

Proposition 3.3. Suppose k = j = 1, then

(a) If i ≥ 4, then G3 ≤ Z3(m), m ≥ 4.
(b) If i = 3, then G3 ≤ Z3(m), m ≥ 4 or G3 ≤ N(Km,K3, P1), m ≥ 4 or

G3 ≤ N(K3, P2, P2).
(c) If i = 2, then G3 ≤ F6(m).
(d) If i = 1, then G2 = N(1, 1, 1) and K1,3N(1, 1, 1)-free implies hamil-

tonicity.

Proof. Suppose i ≥ 4. Since F2, F3, F5 and F6 are all K1,3N(4, 1, 1)-free, by
Lemma 3.1, ω(G3) ≥ 4, and then Lemma 3.2 implies G3 ≤ Z3(m), m ≥ 4.
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If i = 3, we note that F2, F5, F6 and F7 are all K1,3N(3, 1, 1)-free. Suppose
ω(G3) = 3 and G3 contains more than one K3. Then F2 and F5 imply
G3 contains only two K3 and these two K3 share a vertex. Thus, G3 ≤
N(K3, 1, 1).

Suppose w(G3) ≥ 4. By considering F6 and F7 we see that at most
one vertex, say w, of the large clique may have adjacencies outside the
clique. If w has one adjacency outside the clique, then F2 and F5 imply
G3 ≤ Z3(m), m ≥ 4. If w has more than one adjacency outside the clique,
then F2 implies the degree outside the clique is exactly two and those two
vertices must be adjacent. The family F2 implies there can be only one of
these two with additional adjacencies. Then F5 and F7 imply the extension
beyond these two vertices can be at most one edge from one vertex, hence
G3 ≤ N(Km, 1, 0), m ≥ 4.

If i = 2, since F6 is K1,3N(2, 1, 1)-free, we conclude that G3 ≤ F6(m).
If i = 1, apply Theorem 1.1.

Proposition 3.4. Suppose k = 0 and j ≥ 3, then G3 ≤ Z2(4).

Proof. If j ≥ 3, the families of graphs F2, F3, F5, F6 and F10 are all
K1,3N(3, 3, 0)-free, so by Lemma 3.1, ω(G3) ≥ 4 and using family F10 and
Lemma 3.3, it follows that ω(G3) = 4, and thus, G3 ≤ Z2(4).

Proposition 3.5. Suppose k = 0 and j = 2, then

(a) If i ≥ 3, then G3 ≤ Z3(m), m ≥ 4.

(b) If i = 2, then G3 ≤ P7 or

G3 = C6 if ω(G3) = 2, or

G3 ≤ H2(3, 3, 3) or

G3 ≤ N(4, 0, 0), if ω(G3) = 3 or

G3 ≤ Z4(m), with m ≥ 4 if ω(G3) ≥ 4.

Proof. (a) If j = 2 and i ≥ 3, again F2, F3, F5, F6 and F7 are K1,3N(3, 2, 0)-
free, so by Lemma 3.1, ω(G3) ≥ 4 and by Lemma 3.2, we see that G3 ≤
Z3(m),m ≥ 4.

(b) If j = 2 and i = 2, then only families F3 and F5 are N(2, 2, 0)-free.
First suppose that ω(G3) = 2. Then we see that G3 ≤ P7 or G3 = C6.
Suppose ω(G3) = 3. Now if G3 contains two K3, then from F3 we see they
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are disjoint and we get that G3 ≤ H2(3, 3, 3). If G3 contains only one K3,
then F3 implies G3 ≤ N(4, 0, 0) or G3 ≤ N(3, 1, 0), or G3 ≤ N(2, 1, 1). But
then note that N(3, 1, 0) and N(2, 1, 1) are subgraphs of H2(3, 3, 3). Finally,
if ω(G3) ≥ 4, then F3 imply G3 ≤ Z4(m).

Proposition 3.6. Suppose k = 0 and j = 1, then

(a) If i ≥ 4, then G3 ≤ P6 if ω(G3) = 2 or

G3 ≤ Z3(m) if ω(G3) ≥ 3.

(b) If i = 3, then G3 ≤ P6 if ω(G3) = 2, or

G3 ≤ N(Km,K3, P2) or

G3 ≤ N(Z1(m), P3, P1) if ω(G3) ≥ 3.

(c) If 1 ≤ i ≤ 2, then G2 ≤ N(2, 1, 0), and K1,3N(2, 1, 0)-free implies
hamiltonicity.

Proof.

(a) If j = 1 and i ≥ 4, families F6, F7, F8, F9 and F11 are K1,3N(4, 1, 0)-free
and so G3 ≤ P6 if ω(G3) = 2. If ω(G3) ≥ 3, by examining the largest
common subgraphs of F6, F7, F8, F9, and F11, we see that G3 ≤ Z3(m).

(b) If j = 1 and i = 3, families F6, F7, F8 are K1,3N(3, 1, 0)-free and so
G3 ≤ P6 if ω(G3) = 2. By examing the largest common subgraphs of
F6, F7, F8, the other graphs are immediate.

(c) If j = 1 and i = 2, we note that all K1,3N(2, 1, 0)-free graphs are
hamiltonian by Theorem 1.1.

Proposition 3.7. Suppose k = 0 and j = 0, then

(a) If i ≥ 5, then G3 ≤ Z3(m), m ≥ 4.

(b) If i = 4, then G3 ≤ F2(3).

(c) If 0 ≤ i ≤ 3, then G2 ≤ Z3 and K1,3G2 is sufficient to imply hamil-
tonicity.

Proof.

(a) If j = 0 and i ≥ 5, then F2, F3, F6 and F7 are all K1,3N(5, 0, 0)-free and
so by Lemma 3.2, G3 ≤ Z3(m), m ≥ 4.
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(b) If j = 0 and i = 4, G3 ≤ F2, as F2 and F11 are the only K1,3N(4, 0, 0)-
free families.

(c) If j = 0 and i = 3, then all K1,3N(3, 0, 0)-free graphs of order n ≥ 10
are hamiltonian by Theorem 1.1.

All other cases for i lead directly to G2 being one of the graphs of Theo-
rem 1.1 and hence, no new triples result.

We next consider the situation when G2 = Pl, for l ≥ 7.

Theorem 3.1. Suppose G2 = Pl, l ≥ 7.

(a) If l = 7, then G3 ≤ F2(3) or

G3 ≤ N(Km,K3, P1) or

G3 ≤ N(Z1, 1, 0).

(b) If l ≥ 8, then G3 ≤ Z3(m), where m ≥ 4.

Proof. If l = 7, an argument similar to earlier ones involving the number
of copies of K3 in G3 produces the result. If l ≥ 8, then since F2, F3, F5, F6

and F7 must contain G3, applying Lemma 3.2 we obtain the result.

We end this section by summarizing the potential triples determined in this
section.

In 2-connected Claw, N(i, j, k), G3-Free with i ≥ j ≥ k ≥ 1
i, j, k Possible Maximal Third Graph(s) G3

k ≥ 2 No new triples
k = 1, j ≥ 3 Z2(4)
k = 1, j = 2 Z3(m), m ≥ 4
k = j = 1 i ≥ 4 Z3(m), m ≥ 4
k = j = 1 i = 3 Z3(m), N(Km, P2, P1), m ≥ 4, N(K3, P2, P2)
k = j = 1, i = 2 F2(m), m ≥ 4
k = j = 1, i = 1 No new triples
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In 2-connected Claw, N(i, j, 0), G3-Free with i ≥ j

i, j, 0 Possible Maximal Third Graph(s) G3

j ≥ 3 Z2(4)
j = 2, i ≥ 3 Z3(m), m ≥ 4
j = 2, i = 2 if ω(G3) = 2: P7, C6

j = 2, i = 2 if ω(G3) = 3: H2(3, 3, 3), N(4, 0, 0)
j = 2, i = 2 if ω(G3) ≥ 4: Z4(m), m ≥ 4
j = 1, i ≥ 4 if ω(G3) = 2: No new triples
j = 1, i ≥ 4 if ω(G3) ≥ 3: N(Z1(m), P2, P1)
j = 1, i = 3 if ω(G3) = 2: no new triples
j = 1, i = 3 if ω(G3) ≥ 3: N(Km,K3, P2), N(Z1(m), P3, P1)
j = 1, 1 ≤ i ≤ 2 No new triples
j = 0, i ≥ 5 Z3(m), m ≥ 4
j = 0, i = 4 F2(3)
j = 0, 0 ≤ i ≤ 3 No new triples

In 2-connected Claw, Pt, G3-Free
t Possible Third Graph(s) G3

t ≥ 8 Z3(m), m ≥ 4
t = 7 F2(3), N(Km,K3, P1), N(Z1, P2, P1)
t ≤ 6 No new triples
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