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Abstract

Let G be a graph with |V (G)| ≥ 10. We prove that if both G and G
are claw-free, then min{∆(G), ∆(G)} ≤ 2. As a generalization of this
result in the case where |V (G)| is sufficiently large, we also prove that
if both G and G are K1,t-free, then min{∆(G), ∆(G)} ≤ r(t− 1, t)− 1
where r(t− 1, t) is the Ramsey number.
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1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no
loops and no multiple edges. For a graph G, we denote by V (G), E(G) and
∆(G) the vertex set, the edge set and the maximum degree of G, respectively.
For a vertex x of a graph G, the neighborhood of x in G is denoted by NG(x),
and dG(x) := |NG(x)|.

For a subset S of V (G), the subgraph in G induced by S is denoted
by 〈S〉G. For a subgraph H of G, G −H = 〈V (G) − V (H)〉G. For disjoint
subsets S and T of V (G), we let EG(S, T ) denote the set of edges of G
joining a vertex in S and a vertex in T . When S or T consists of a single
vertex, say S = {x} or T = {y}, we write EG(x, T ) or EG(S, y) for EG(S, T ).
Let G stand for the complement of G. For positive integers s, t, let r(s, t)
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be the Ramsey number, i.e., the smallest value of n for which every red-blue
coloring of Kn yields a red Ks or a blue Kt. A graph G is said to be K1,t-free
if G contains no K1,t as an induced subgraph. In particular, a graph G is
said to be claw-free if G contains no K1,3 as an induced subgraph.

In this paper, we are concerned with a structure of graphs G for which
both G and G are K1,t-free where t ≥ 3. Our results are following.

Theorem A. Let G be a graph with |V (G)| ≥ 10. If both G and G are
claw-free, then min{∆(G),∆(G)} ≤ 2.

Theorem B. Let t be an integer with t ≥ 4, and let G be a graph with
|V (G)| ≥ r(t2 − t + 2, t2 − t + 2). If both G and G are K1,t-free, then
min{∆(G), ∆(G)} ≤ r(t− 1, t)− 1.

In Theorem A, the bound on |V (G)| is best possible. To see this, we
construct a graph G of order 9 such that min{∆(G), ∆(G)} > 2. Let
C = v1v2 . . . v8v1 be a cycle of length 8. Let v be a new vertex. Con-
sider the graph G = (V (G), E(G)) such that V (G) = V (C) ∪ {v} and
E(G) = E(C)∪{vivj | 1 ≤ i < j ≤ 8, i+j ≡ 0 (mod 4)}∪{vv2l | 1 ≤ l ≤ 4}.
Then |V (G)| = 9, min{∆(G), ∆(G)} > 2, and both G and G are claw-free
(and isomorphic). Note that the converse of Theorem A is not true. To
see this, consider G = K3 ∪Km where m is a large positive integer. Then
min{∆(G), ∆(G)} = ∆(G) = 2. However, it is obvious that G contains
K1,3 as an induced subgraph. Avoiding this particular case, we obtain the
following corollary.

Corollary of Theorem A. Let G be a graph with |V (G)| ≥ 10. Then the
following statements are equivalent:

(i) both G and G are claw-free,

(ii) either G or G is a triangle-free graph of maximum degree at most 2.

Alternatively, the statement (ii) can be formulated as follows.
(ii) either G or G is a disjoint union of cycles of length l ≥ 4, paths and
isolated vertices.

Sketch of proof.
(i)⇒(ii). Theorem A implies that either G or G (say, G) has maximum
degree at most 2. Then it is easy to see that G is also triangle-free: if
{x, y, z} ⊂ V (G) induces a triangle in G, then this triangle is a component
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of G since ∆(G) ≤ 2. Then for any vertex u ∈ V (G)\{x, y, z} (which exists
since |V (G)| ≥ 10), the set {u, x, y, z} induces a claw in G, centerd at u.
(ii)⇐(i). Suppose that e.g. G is triangle-free with ∆(G) ≤ 2. Then G is
claw-free since ∆(G) ≤ 2 and G is claw-free since G is triangle-free. For G
the proof is similar.

Theorem B is a similar result concerning graphs G for which both G and G
are K1,t-free where t ≥ 4. Now we show that there exists a graph G such
that both G and G are K1,t-free and min{∆(G),∆(G)} = r(t − 1, t) − 1.
Let R be a graph with |V (R)| = r(t− 1, t)− 1 such that R does not contain
Kt−1 or Kt as an induced subgraph. Let v be a new vertex. Consider
G = (R + v) ∪ K|V (G)|−r(t−1,t) where |V (G)| is sufficiently large. Then G

is a graph such that both G and G are K1,t-free and min{∆(G), ∆(G)} =
r(t− 1, t)− 1.

2. Proof of Theorem A

By contradiction, suppose that ∆(G) ≥ 3 and ∆(G) ≥ 3. Then by the
assumption that both G and G are claw-free, G contains a subgraph A such
that A ∼= K3 in G, and G contains a subgraph B such that B ∼= K3 in G.

Claim. Both G and G do not contain a subgraph which is isomorphic to K4.

Proof. Suppose not. Then by symmetry, we may assume G ⊃ K4. Then
G contains a subgraph S such that 〈V (S)〉G ∼= K4. Let V (S) = {a, b, c, d}.
First suppose that G − S contains a subgraph T which is isomorphic to
K3. Let V (T ) = {e, f, g}. Since G is claw-free, EG(x, V (T )) 6= ∅ for
every x ∈ V (S). From |V (S)| = 4, there exists y ∈ V (T ) such that
|EG(y, V (S))| ≥ 2. By symmetry, we may assume ae, be ∈ E(G). Since
G is claw-free and 〈V (S)〉G ∼= K4, it follows that EG(e, {c, d}) = ∅. By
the assumption that G is claw-free, 〈{e, a, b, f}〉G is not isomorphic to K1,3.
Hence by symmetry of the roles of a and b, we may assume af ∈ E(G).
Note that 〈{a, e, f}〉G ∼= K3. Then by the assumption that G is claw-free,
EG(c, {a, e, f}) 6= ∅ and EG(d, {a, e, f}) 6= ∅. This forces cf, df ∈ E(G).
Then 〈{f, a, c, d}〉G ∼= K1,3. This is a contradiction. Hence it follows that
G − S does not contain a triangle. Since G contains a triangle, we may
assume that there exist u, v ∈ V (G− S) such that 〈{a, u, v}〉G ∼= K3. Since
G is claw-free, |EG({b, c, d}, {u, v})| ≥ 3. Then by the symmetry of the roles
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of u and v, we may assume bu, cu ∈ E(G). Then 〈{u, a, b, c}〉G ∼= K1,3. This
is a contradiction.

Case 1. V (A) ∩ V (B) = ∅.
First suppose that there exist x, y ∈ V (B) such that NG(x) ∩ NG(y) ∩
V (A) 6= ∅. We may assume that V (A) = {a, b, c}, V (B) = {x, y, z}, and
ax, ay ∈ E(G). Since 〈{a, b, x, y}〉G � K1,3, by the symmetry of the roles of x
and y, we may assume bx ∈ E(G). Since 〈{a, b, x}〉G ∼= K3, 〈{a, x, y, z}〉G �
K1,3 and G is claw-free, it follows that bz ∈ E(G). By the claim, xc /∈
E(G). Hence it follows from 〈{b, c, x, z}〉G � K1,3 that cz ∈ E(G). Since
〈b, c, z〉G ∼= K3 and both G and G are claw-free, this forces cy ∈ E(G).
Hence by the claim, we have EG(A,B) = {ax, ay, bx, bz, cy, cz}. Let v ∈
V (G − A − B). Since G is claw-free, it follows that EG(v, V (A)) 6= ∅. By
symmetry, we may assume va ∈ E(G). Suppose that vc ∈ E(G). Then it
follows from the claim that EG(v, {b, y}) = ∅. Then 〈a, b, y, v〉G ∼= K1,3, a
contradiction. Thus vc /∈ E(G). We can similarly obtain vb /∈ E(G). Since
〈{a, v, x, c}〉G � K1,3 and 〈{a, v, y, b}〉G � K1,3, it follows that vx, vy ∈
E(G). Since G is claw-free, EG(z, {v, a, x}) 6= ∅. This forces vz ∈ E(G).
Then 〈{v, x, y, z}〉G ∼= K1,3, a contradiction. Thus we may assume that there
exist no two vertices x, y ∈ V (B) such that NG(x)∩NG(y)∩V (A) 6= ∅. Since
G is claw-free, we may assume that V (A) = {a, b, c}, V (B) = {x, y, z}, and
EG(V (A), V (B)) = {ax, by, cz}. Take v ∈ V (G − A − B). Since G is claw-
free, EG(v, V (A)) 6= ∅. By symmetry, we may assume av ∈ E(G). By the
claim, NG(v) + V (A). By symmetry, we may assume bv /∈ E(G). Since
〈{a, v, x, b}〉G � K1,3, vx ∈ E(G). Then 〈{x, v, a}〉G ∼= K3. This forces
vy, vz ∈ E(G) because G is claw-free. Then 〈{v, x, y, z}〉G ∼= K1,3. This is a
contradiction.

Case 2. V (A) ∩ V (B) 6= ∅.
We may assume that V (A) = {a, b, c} and V (B) = {a, x, y}. Since both
G and G are claw-free, it follows that either EG({b, c}, {x, y}) = {bx, cy}
or EG({b, c}, {x, y}) = {cx, by}. By symmetry, we may assume EG({b, c},
{x, y}) = {bx, cy}. First suppose that there exist two vertices u, v ∈ V (G−
A− B) such that either |EG(b, {u, v})| = 2 or |EG(c, {u, v})| = 2. By sym-
metry, we may assume |EG(c, {u, v})| = 2. Suppose that av ∈ E(G). Then
xv ∈ E(G) because 〈{a, c, v}〉G ∼= K3. Also by the claim, vb /∈ E(G). Since
〈{v}∪V (B)〉G � K1,3, vy /∈ E(G). Then 〈{c, v, y, b}〉G ∼= K1,3. This is a con-
tradiction. Thus we have va /∈ E(G). By the symmetry of the roles of u and
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v, we can similarly have ua /∈ E(G). Then since 〈{c, a, u, v}〉G � K1,3, it fol-
lows that uv ∈ E(G). Since 〈{c, a, v, y}〉G � K1,3 and 〈{c, a, u, y}〉G � K1,3,
it follows that uy, vy ∈ E(G). Then 〈{c, u, v, y〉G ∼= K4, which contra-
dicts the claim. Thus we may assume that there exist no two vertices
u, v ∈ V (G − A − B) such that |EG(b, {u, v})| = 2 or |EG(c, {u, v})| =
2. Then |EG(a, V (G − A − B))| ≥ 3 because |V (G)| ≥ 10 (note that
EG(z, V (A)) 6= ∅ for every z ∈ V (G − A − B) since G is claw-free). Let
u, v, w ∈ NG(a) ∩ V (G − A − B). Since 〈{a, u, v, w}〉G � K1,3, we may
assume uv ∈ E(G). Since 〈{a, u, v}〉G ∼= K3 and 〈{a, x, y}〉G ∼= K3, either
EG({x, y}, {u, v}) = {vy, ux} or EG({x, y}, {u, v}) = {vx, uy}. By symme-
try, we may assume EG({x, y}, {u, v}) = {vy, ux}. If 〈{c, a, v}〉G ∼= K3,
then xv ∈ E(G), which implies 〈{v, a, x, y}〉G ∼= K1,3, a contradiction.
Hence vc /∈ E(G). We can similarly have ub /∈ E(G). Suppose that
EG(w, {u, v}) = ∅. Then since 〈{a, b, u, w}〉G � K1,3 and 〈{a, c, v, w}〉G �
K1,3, this forces wb, wc ∈ E(G), which contradicts the claim. Thus we may
assume EG(w, {u, v}) 6= ∅. By the claim, note that |EG(w, {u, v})| ≤ 1.
By symmetry, we may assume EG(w, {u, v}) = {wv}. Then xw ∈ E(G) be-
cause 〈{a,w, v}〉G ∼= K3. Since 〈{a, b, u, w}〉G � K1,3, this forces bw ∈ E(G).
Then we have yw ∈ E(G) because 〈{a, b, w}〉G ∼= K3. Then 〈{w, a, x, y}〉G ∼=
K1,3. This is a contradiction. This completes the proof of Theorem A.

3. Proof of Theorem B

By contradiction, suppose that ∆(G) ≥ r(t − 1, t) and ∆(G) ≥ r(t − 1, t).
Then both G and G contain Kt because both G and G are K1,t-free. Let A be
a subgraph of G such that A ∼= Kt. Since |V (G)| ≥ r(t2−t+2, t2−t+2), by
symmetry, we may assume that G contains Kt2−t+2 as an induced subgraph.
Hence there exists a subgraph H of G such that 〈V (H)〉G ∼= Kt2−t+1 and
V (A) ∩ V (H) = ∅. Since G is K1,t-free, EG(x, V (A)) 6= ∅ for every x ∈
V (H). Since |V (H)| = t(t − 1) + 1, there exists a v ∈ V (A) such that
|EG(v, V (H))| ≥ t. This implies that 〈{v} ∪ V (H)〉G contains K1,t as a
induced subgraph. This is a contradiction. This completes the proof of
Theorem B.

Remark. Theorem A implies as an immediate corollary that the graph
property “both G and G are claw-free” is stable under the closure for claw-
free graphs, i.e., if G has the property, then cl(G) has the property as well
(see e.g. the survey paper [1]).
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