Discussiones Mathematicae Graph Theory 25 (2005) 267–272

ON GRAPHS G FOR WHICH BOTH G AND \overline{G} ARE CLAW-FREE

Shinya Fujita

Department of Mathematics Keio University Hiyoshi, Kohoku-ku, Yokohama, 223–8522, Japan

e-mail: shinyaa@comb.math.keio.ac.jp

Abstract

Let G be a graph with $|V(G)| \ge 10$. We prove that if both G and \overline{G} are claw-free, then $\min\{\Delta(G), \Delta(\overline{G})\} \le 2$. As a generalization of this result in the case where |V(G)| is sufficiently large, we also prove that if both G and \overline{G} are $K_{1,t}$ -free, then $\min\{\Delta(G), \Delta(\overline{G})\} \le r(t-1,t)-1$ where r(t-1,t) is the Ramsey number.

Keywords: claw-free, complement, maximum degree. 2000 Mathematics Subject Classification: 05C75, 05C99.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges. For a graph G, we denote by V(G), E(G) and $\Delta(G)$ the vertex set, the edge set and the maximum degree of G, respectively. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and $d_G(x) := |N_G(x)|$.

For a subset S of V(G), the subgraph in G induced by S is denoted by $\langle S \rangle_G$. For a subgraph H of G, $G - H = \langle V(G) - V(H) \rangle_G$. For disjoint subsets S and T of V(G), we let $E_G(S,T)$ denote the set of edges of G joining a vertex in S and a vertex in T. When S or T consists of a single vertex, say $S = \{x\}$ or $T = \{y\}$, we write $E_G(x,T)$ or $E_G(S,y)$ for $E_G(S,T)$. Let \overline{G} stand for the complement of G. For positive integers s, t, let r(s,t) be the Ramsey number, i.e., the smallest value of n for which every red-blue coloring of K_n yields a red K_s or a blue K_t . A graph G is said to be $K_{1,t}$ -free if G contains no $K_{1,t}$ as an induced subgraph. In particular, a graph G is said to be *claw-free* if G contains no $K_{1,3}$ as an induced subgraph.

In this paper, we are concerned with a structure of graphs G for which both G and \overline{G} are $K_{1,t}$ -free where $t \geq 3$. Our results are following.

Theorem A. Let G be a graph with $|V(G)| \ge 10$. If both G and \overline{G} are claw-free, then $\min\{\Delta(G), \Delta(\overline{G})\} \le 2$.

Theorem B. Let t be an integer with $t \ge 4$, and let G be a graph with $|V(G)| \ge r(t^2 - t + 2, t^2 - t + 2)$. If both G and \overline{G} are $K_{1,t}$ -free, then $\min\{\Delta(G), \Delta(\overline{G})\} \le r(t-1,t)-1$.

In Theorem A, the bound on |V(G)| is best possible. To see this, we construct a graph G of order 9 such that $\min\{\Delta(G), \Delta(\overline{G})\} > 2$. Let $C = v_1 v_2 \dots v_8 v_1$ be a cycle of length 8. Let v be a new vertex. Consider the graph G = (V(G), E(G)) such that $V(G) = V(C) \cup \{v\}$ and $E(G) = E(C) \cup \{v_i v_j \mid 1 \le i < j \le 8, i+j \equiv 0 \pmod{4}\} \cup \{v v_{2l} \mid 1 \le l \le 4\}$. Then |V(G)| = 9, $\min\{\Delta(G), \Delta(\overline{G})\} > 2$, and both G and \overline{G} are claw-free (and isomorphic). Note that the converse of Theorem A is not true. To see this, consider $G = K_3 \cup \overline{K_m}$ where m is a large positive integer. Then $\min\{\Delta(G), \Delta(\overline{G})\} = \Delta(G) = 2$. However, it is obvious that \overline{G} contains $K_{1,3}$ as an induced subgraph. Avoiding this particular case, we obtain the following corollary.

Corollary of Theorem A. Let G be a graph with $|V(G)| \ge 10$. Then the following statements are equivalent:

- (i) both G and \overline{G} are claw-free,
- (ii) either G or \overline{G} is a triangle-free graph of maximum degree at most 2.

Alternatively, the statement (ii) can be formulated as follows. (ii) either G or \overline{G} is a disjoint union of cycles of length $l \ge 4$, paths and isolated vertices.

Sketch of proof.

(i) \Rightarrow (ii). Theorem A implies that either G or \overline{G} (say, G) has maximum degree at most 2. Then it is easy to see that G is also triangle-free: if $\{x, y, z\} \subset V(G)$ induces a triangle in G, then this triangle is a component

of G since $\Delta(G) \leq 2$. Then for any vertex $u \in V(G) \setminus \{x, y, z\}$ (which exists since $|V(G)| \geq 10$), the set $\{u, x, y, z\}$ induces a claw in \overline{G} , centerd at u. (ii) \Leftarrow (i). Suppose that e.g. G is triangle-free with $\Delta(G) \leq 2$. Then G is claw-free since $\Delta(G) \leq 2$ and \overline{G} is claw-free since G is triangle-free. For \overline{G} the proof is similar.

Theorem B is a similar result concerning graphs G for which both G and \overline{G} are $K_{1,t}$ -free where $t \geq 4$. Now we show that there exists a graph G such that both G and \overline{G} are $K_{1,t}$ -free and $\min\{\Delta(G), \Delta(\overline{G})\} = r(t-1,t) - 1$. Let R be a graph with |V(R)| = r(t-1,t) - 1 such that R does not contain K_{t-1} or $\overline{K_t}$ as an induced subgraph. Let v be a new vertex. Consider $G = (R+v) \cup \overline{K_{|V(G)|-r(t-1,t)}}$ where |V(G)| is sufficiently large. Then G is a graph such that both G and \overline{G} are $K_{1,t}$ -free and $\min\{\Delta(G), \Delta(\overline{G})\} = r(t-1,t) - 1$.

2. Proof of Theorem A

By contradiction, suppose that $\Delta(G) \geq 3$ and $\Delta(\overline{G}) \geq 3$. Then by the assumption that both G and \overline{G} are claw-free, G contains a subgraph A such that $A \cong K_3$ in \overline{G} , and \overline{G} contains a subgraph B such that $B \cong K_3$ in \overline{G} .

Claim. Both G and \overline{G} do not contain a subgraph which is isomorphic to K_4 .

Proof. Suppose not. Then by symmetry, we may assume $\overline{G} \supset K_4$. Then G contains a subgraph S such that $\langle V(S) \rangle_G \cong \overline{K_4}$. Let $V(S) = \{a, b, c, d\}$. First suppose that G - S contains a subgraph T which is isomorphic to K_3 . Let $V(T) = \{e, f, g\}$. Since \overline{G} is claw-free, $E_G(x, V(T)) \neq \emptyset$ for every $x \in V(S)$. From |V(S)| = 4, there exists $y \in V(T)$ such that $|E_G(y, V(S))| \ge 2$. By symmetry, we may assume $ae, be \in E(G)$. Since G is claw-free and $\langle V(S) \rangle_G \cong \overline{K_4}$, it follows that $E_G(e, \{c, d\}) = \emptyset$. By the assumption that G is claw-free, $\langle \{e, a, b, f\} \rangle_G$ is not isomorphic to $K_{1,3}$. Hence by symmetry of the roles of a and b, we may assume $af \in E(G)$. Note that $\langle \{a, e, f\} \rangle_G \cong K_3$. Then by the assumption that \overline{G} is claw-free, $E_G(c, \{a, e, f\}) \neq \emptyset$ and $E_G(d, \{a, e, f\}) \neq \emptyset$. This forces $cf, df \in E(G)$. Then $\langle \{f, a, c, d\} \rangle_G \cong K_{1,3}$. This is a contradiction. Hence it follows that G - S does not contain a triangle. Since G contains a triangle, we may assume that there exist $u, v \in V(G - S)$ such that $\langle \{a, u, v\} \rangle_G \cong K_3$. Since \overline{G} is claw-free, $|E_G(\{b, c, d\}, \{u, v\})| \ge 3$. Then by the symmetry of the roles

of u and v, we may assume $bu, cu \in E(G)$. Then $\langle \{u, a, b, c\} \rangle_G \cong K_{1,3}$. This is a contradiction.

Case 1. $V(A) \cap V(B) = \emptyset$.

First suppose that there exist $x, y \in V(B)$ such that $N_G(x) \cap N_G(y) \cap$ $V(A) \neq \emptyset$. We may assume that $V(A) = \{a, b, c\}, V(B) = \{x, y, z\}$, and $ax, ay \in E(G)$. Since $\langle \{a, b, x, y\} \rangle_G \ncong K_{1,3}$, by the symmetry of the roles of x and y, we may assume $bx \in E(G)$. Since $\langle \{a, b, x\} \rangle_G \cong K_3, \langle \{a, x, y, z\} \rangle_G \ncong$ $K_{1,3}$ and \overline{G} is claw-free, it follows that $bz \in E(G)$. By the claim, $xc \notin C$ E(G). Hence it follows from $\langle \{b, c, x, z\} \rangle_G \ncong K_{1,3}$ that $cz \in E(G)$. Since $\langle b, c, z \rangle_G \cong K_3$ and both G and \overline{G} are claw-free, this forces $cy \in E(G)$. Hence by the claim, we have $E_G(A, B) = \{ax, ay, bx, bz, cy, cz\}$. Let $v \in$ V(G - A - B). Since \overline{G} is claw-free, it follows that $E_G(v, V(A)) \neq \emptyset$. By symmetry, we may assume $va \in E(G)$. Suppose that $vc \in E(G)$. Then it follows from the claim that $E_G(v, \{b, y\}) = \emptyset$. Then $\langle a, b, y, v \rangle_G \cong K_{1,3}$, a contradiction. Thus $vc \notin E(G)$. We can similarly obtain $vb \notin E(G)$. Since $\langle \{a, v, x, c\} \rangle_G \ncong K_{1,3}$ and $\langle \{a, v, y, b\} \rangle_G \ncong K_{1,3}$, it follows that $vx, vy \in$ E(G). Since \overline{G} is claw-free, $E_G(z, \{v, a, x\}) \neq \emptyset$. This forces $vz \in E(G)$. Then $\langle \{v, x, y, z\} \rangle_G \cong K_{1,3}$, a contradiction. Thus we may assume that there exist no two vertices $x, y \in V(B)$ such that $N_G(x) \cap N_G(y) \cap V(A) \neq \emptyset$. Since \overline{G} is claw-free, we may assume that $V(A) = \{a, b, c\}, V(B) = \{x, y, z\}$, and $E_G(V(A), V(B)) = \{ax, by, cz\}$. Take $v \in V(G - A - B)$. Since \overline{G} is clawfree, $E_G(v, V(A)) \neq \emptyset$. By symmetry, we may assume $av \in E(G)$. By the claim, $N_G(v) \not\supseteq V(A)$. By symmetry, we may assume $bv \notin E(G)$. Since $\langle \{a, v, x, b\} \rangle_G \ncong K_{1,3}, vx \in E(G)$. Then $\langle \{x, v, a\} \rangle_G \cong K_3$. This forces $vy, vz \in E(G)$ because \overline{G} is claw-free. Then $\langle \{v, x, y, z\} \rangle_G \cong K_{1,3}$. This is a contradiction.

Case 2. $V(A) \cap V(B) \neq \emptyset$.

We may assume that $V(A) = \{a, b, c\}$ and $V(B) = \{a, x, y\}$. Since both G and \overline{G} are claw-free, it follows that either $E_G(\{b, c\}, \{x, y\}) = \{bx, cy\}$ or $E_G(\{b, c\}, \{x, y\}) = \{cx, by\}$. By symmetry, we may assume $E_G(\{b, c\}, \{x, y\}) = \{bx, cy\}$. First suppose that there exist two vertices $u, v \in V(G - A - B)$ such that either $|E_G(b, \{u, v\})| = 2$ or $|E_G(c, \{u, v\})| = 2$. By symmetry, we may assume $|E_G(c, \{u, v\})| = 2$. Suppose that $av \in E(G)$. Then $xv \in E(G)$ because $\langle \{a, c, v\} \rangle_G \cong K_3$. Also by the claim, $vb \notin E(G)$. Since $\langle \{v\} \cup V(B) \rangle_G \ncong K_{1,3}, vy \notin E(G)$. Then $\langle \{c, v, y, b\} \rangle_G \cong K_{1,3}$. This is a contradiction. Thus we have $va \notin E(G)$. By the symmetry of the roles of u and

v, we can similarly have $ua \notin E(G)$. Then since $\langle \{c, a, u, v\} \rangle_G \ncong K_{1,3}$, it follows that $uv \in E(G)$. Since $\langle \{c, a, v, y\} \rangle_G \not\cong K_{1,3}$ and $\langle \{c, a, u, y\} \rangle_G \not\cong K_{1,3}$, it follows that $uy, vy \in E(G)$. Then $\langle \{c, u, v, y \rangle_G \cong K_4$, which contradicts the claim. Thus we may assume that there exist no two vertices $u, v \in V(G - A - B)$ such that $|E_G(b, \{u, v\})| = 2$ or $|E_G(c, \{u, v\})| = 2$ 2. Then $|E_G(a, V(G - A - B))| \geq 3$ because $|V(G)| \geq 10$ (note that $E_G(z, V(A)) \neq \emptyset$ for every $z \in V(G - A - B)$ since \overline{G} is claw-free). Let $u, v, w \in N_G(a) \cap V(G - A - B)$. Since $\langle \{a, u, v, w\} \rangle_G \ncong K_{1,3}$, we may assume $uv \in E(G)$. Since $\langle \{a, u, v\} \rangle_G \cong K_3$ and $\langle \{a, x, y\} \rangle_G \cong \overline{K_3}$, either $E_G(\{x, y\}, \{u, v\}) = \{vy, ux\}$ or $E_G(\{x, y\}, \{u, v\}) = \{vx, uy\}$. By symmetry, we may assume $E_G(\{x, y\}, \{u, v\}) = \{vy, ux\}$. If $\langle \{c, a, v\} \rangle_G \cong K_3$, then $xv \in E(G)$, which implies $\langle \{v, a, x, y\} \rangle_G \cong K_{1,3}$, a contradiction. Hence $vc \notin E(G)$. We can similarly have $ub \notin E(G)$. Suppose that $E_G(w, \{u, v\}) = \emptyset$. Then since $\langle \{a, b, u, w\} \rangle_G \ncong K_{1,3}$ and $\langle \{a, c, v, w\} \rangle_G \ncong$ $K_{1,3}$, this forces $wb, wc \in E(G)$, which contradicts the claim. Thus we may assume $E_G(w, \{u, v\}) \neq \emptyset$. By the claim, note that $|E_G(w, \{u, v\})| \leq 1$. By symmetry, we may assume $E_G(w, \{u, v\}) = \{wv\}$. Then $xw \in E(G)$ because $\langle \{a, w, v\} \rangle_G \cong K_3$. Since $\langle \{a, b, u, w\} \rangle_G \ncong K_{1,3}$, this forces $bw \in E(G)$. Then we have $yw \in E(G)$ because $\langle \{a, b, w\} \rangle_G \cong K_3$. Then $\langle \{w, a, x, y\} \rangle_G \cong$ $K_{1,3}$. This is a contradiction. This completes the proof of Theorem A.

3. Proof of Theorem B

By contradiction, suppose that $\Delta(G) \geq r(t-1,t)$ and $\Delta(\overline{G}) \geq r(t-1,t)$. Then both G and \overline{G} contain K_t because both G and \overline{G} are $K_{1,t}$ -free. Let A be a subgraph of G such that $A \cong K_t$. Since $|V(G)| \geq r(t^2 - t + 2, t^2 - t + 2)$, by symmetry, we may assume that G contains $\overline{K_{t^2-t+2}}$ as an induced subgraph. Hence there exists a subgraph H of G such that $\langle V(H) \rangle_G \cong \overline{K_{t^2-t+1}}$ and $V(A) \cap V(H) = \emptyset$. Since \overline{G} is $K_{1,t}$ -free, $E_G(x, V(A)) \neq \emptyset$ for every $x \in$ V(H). Since |V(H)| = t(t-1) + 1, there exists a $v \in V(A)$ such that $|E_G(v, V(H))| \geq t$. This implies that $\langle \{v\} \cup V(H) \rangle_G$ contains $K_{1,t}$ as a induced subgraph. This is a contradiction. This completes the proof of Theorem B.

Remark. Theorem A implies as an immediate corollary that the graph property "both G and \overline{G} are claw-free" is stable under the closure for claw-free graphs, i.e., if G has the property, then cl(G) has the property as well (see e.g. the survey paper [1]).

References

 H.J. Broersma, Z. Ryjaček and I. Schiermeyer, *Closure concepts — a survey*, Graphs and Combin. 16 (2000) 17–48.

> Received 23 November 2003 Revised 6 November 2004

272