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Abstract

It is shown in this note that some matching-related properties of
graphs, such as their factor-criticality, regularizability and the exis-
tence of perfect 2-matchings, are preserved when iterating Mycielski’s
construction.
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Members of the sequence of graphs, obtained by starting with K2 and iter-
ating Mycielski’s construction ([4]), serve as the standard example of graphs
whose clique number is much smaller than their chromatic number. Myciel-
ski’s results were extended in [2], where the fractional chromatic number of
iterated Mycielskians was calculated. In the recent article [1] authors consid-
ered a number of other properties and graph-theoretic invariants of Myciel-
ski’s graphs, among others their diameter, Hamiltonicity, biclique partition
number, packing number and domination number, as well as some proper-
ties of their adjacency matrices. The purpose of this note is to present some
results concerning matching-related parameters and structural properties of
Mycielski’s graphs that have not been considered in previous papers.

All graphs considered in this paper will be simple and connected, unless
explicitly stated otherwise. For all the terms and concepts not defined here,
we refer the reader to the monograph [3].

For a given graph G on the vertex set V (G) = {v1, . . . , vn}, we de-
fine its Mycielskian µ(G) as follows. The vertex set of µ(G) is V (µ(G)) =
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{X, Y, z} = {x1, . . . , xn, y1, . . . , yn, z} with xiyj ∈ E(µ(G)) if and only if
vivj ∈ E(G), with xixj ∈ E(µ(G)) if and only if vivj ∈ E(G), with
yiz ∈ E(µ(G)) for all 1 ≤ i ≤ n and with µ(G) having no other edges.
We say that the edges xixj , xiyj , xjyi, yiz and yjz are generated by the edge
vivj ∈ E(G). For a graph G, its k-th iterated Mycielskian, µk(G), is defined
with µ0(G) = G, and µk(G) = µ(µk−1(G)), for k ≥ 1. As an example, we
show in Figure 1 the graph K2 and its first and second iterated Mycielskian,
the graphs C5 and the Grötzsch graf G11, respectively.

K2 C5 = µ(K2) G11 = µ2(K2)

Figure 1. The graph K2 and its first two iterated Mycielskians.

Recall that a matching M in G is a set of edges of G such that no two edges
from M have a vertex in common. The size of any largest matching in G is
called the matching number of G and denoted by ν(G). A matching M in
G is perfect if every vertex of G is incident to some edge from M .

Let us first consider the case when G contains no perfect matching.

Proposition 1. For a graph G without perfect matching, ν(µ(G)) ≥
2ν(G) + 1.

Proof. As there is no perfect matching in G, there must be at least one
vertex, say vk ∈ V (G), that is not incident to any edge e from some largest
matching M in G. By taking edges xiyj and xjyi for all edges vivj ∈ M ,
and the edge ykz we get a matching in µ(G) of size 2ν(G) + 1.

Let us now consider the more interesting case when G itself has a perfect
matching. Obviously, having an odd number of vertices, µ(G) cannot con-
tain a perfect matching, but the graph obtained from µ(G) by deleting any
vertex will have one. In order to formulate this more precisely, recall that
a graph G is factor-critical if G − v has a perfect matching for any vertex
v ∈ V (G).
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Theorem 2. Let G be a graph with a perfect matching. Then the graph
µ(G) is factor-critical.

Proof. Let F be a perfect matching in G. We want to show that µ(G)−w
contains a perfect matching for any w ∈ V (µ(G)).

Consider first the case w = z. It is obvious that the matching F ′ in µ(G),
containing the edges xiyj and xjyi for all vivj ∈ F , is a perfect matching of
µ(G)− z.

Let w now be an element of X, say w = xk. The vertex vk is incident
to some edge e = vkvl ∈ F . Form the matching F ′ in µ(G) by taking the
edges xiyj and xjyi for all vivj ∈ F − e. Extending the matching F ′ by the
edges xlyk and ylz we get a perfect matching in µ(G)− xk.

Let, finally, w = yl ∈ Y . The vertex vl is covered by some edge e =
vkvl ∈ F . Taking the edges xiyj and xjyi for all vivj ∈ F − e we get
a matching in µ(G), and adding the edges xkxl and ykz we get a perfect
matching in µ(G)− yl.

By similar reasoning, we can prove the following result.

Theorem 3. Let G be a factor-critical graph. Then the graph µ(G) is also
factor-critical.

Proof. Consider a vertex w = xk ∈ X. Let F be a matching in G that
misses the vertex vk only. By taking the edges xiyj and xjyi for all vivj ∈ F ,
we get a matching F ′ in µ(G). Adding the edge ykz, we get a matching in
µ(G) that misses xk only, i.e., a perfect matching in µ(G)− xk.

Let us now consider a matching F in G that misses some vertex v1 ∈
V (G) only. Then there is an odd cycle in G, C2k+1 = v1v2 . . . v2k+1v1, such
that the edges of C2k+1 are alternating with respect to F , and both edges of
C2k+1 incident to v1 do not belong to F . The edges of F −E(C2k+1) form a
perfect matching in F −C2k+1. Define a matching F ′′ in µ(G) by taking the
edges xiyj and xjyi for all vivj ∈ F − E(C2k+1). Extending this matching
by the edges x1y2, x2y3, . . . , x2ky2k+1, x2k+1y1 we get a perfect matching in
µ(G)−z. Extending F ′′ by the edges x1y2, x2y3, . . . , x2kx2k+1, y2k+1z we get
a perfect matching in µ(G) − y1. Hence µ(G) − w has a perfect matching
for all w ∈ V (µ(G)), so µ(G) is factor-critical.

As a consequence, we get the factor-criticality of all iterated Mycielskians
of a graph with perfect matching.
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Corollary 4. Let G be a graph with perfect matching. Then µk(G) is
factor-critical, for all k ≥ 1.

Now we consider the more general case of graphs with perfect 2-matchings.
A 2-matching of a graph G is an assignment of weights 0, 1 or 2 to the edges
of G such that the sum of the weights of the edges incident with any given
vertex is at most 2. A 2-matching is perfect if this sum is exactly 2 for all
vertices of G. First we prove a simple lemma.

Lemma 5. Let C be an odd cycle. Then every edge of µ(C) is contained in
some Hamiltonian cycle of µ(C).

Proof. Let C be an odd cycle v1v2 . . . , v2k+1v1. By taking the edges x1x2,
x2y3, y3x4, . . . ,x2ky2k+1, y2k+1z, zy1, y1x2k+1, x2k+1y2k, . . . ,x3y2, y2x1

we get a Hamiltonian cycle in µ(C). Since this procedure can start at any
vertex of C, the second claim follows too.

In the proof of the next theorem it is convenient to refer to edges of a 2-
matching F in a graph G which have weight 1 as edges of F ; therefore, by
referring to a cycle in F we mean a cycle in G consisting of edges of weight
1 in F .

Theorem 6. Let G be a graph with a perfect 2-matching. Then the graph
µ(G) also has a perfect 2-matching.

Proof. Take a perfect 2-matching F of the graph G. If F contains at least
one edge of weight 2, say e = vkvl, we construct a perfect 2-matching F ′ of
µ(G) as follows. Assign the weight 1 to the edges zyk, ykxl, xlxk, xkyl and
ylz generated by e. Assign the weight 0 to all other edges of the form yiz
and xixj . Finally, to the edges xiyj and xjyi assign the weight of the edge
vivj in F . In this way, for any odd cycle in F there will be a corresponding
even cycle in F ′ of double length; for any even cycle in F there will be a pair
of even cycles of the same length in F ′, and for any other edge of weight 2
in F there will be two edges of the same weight in F ′. Hence, F ′ is a perfect
2-matching.

If there are no edges of weight 2 in F , but F contains at least one even
cycle C, we construct a perfect 2-matching F1 for G by taking all the edges
of F − C and from C we take only every second edge, but with the weight
2. Now we consider F1 and proceed as in the previous case.



Mycielskians and Matchings 265

Consider, finally, the case when F consists of odd cycles only. Take such an
odd cycle and denote it by C ′. Then the subgraph of µ(G) induced by µ(C ′)
contains a Hamiltonian cycle C ′′. By assigning the weight 1 to all edges of
C ′′, the weight 1 to all edges xiyj and xjyi such that vivj has the weight 1 in
F , and the weight 0 to all other edges of µ(G), we get a perfect 2-matching
of µ(G).

Corollary 7. If a graph G contains a perfect 2-matching, then µk(G) also
contains a perfect 2-matching, for all k ≥ 0.

The graphs with perfect 2-matchings are related to regularizable graphs,
and regularizability is another matching-related property that is preserved
by iterating Mycielski’s construction. A graph G is regularizable if it is
possible to replace every edge of G by some non-empty set of parallel edges
so as to obtain a regular graph. For example, the Grötzsch graph G11 is
regularizable: Replacing each edge of the form yiz by two parallel edges and
each edge xiyj by four parallel edges, we get a regular (but not simple) graph
of degree 10. We shall use the following characterization of regularizable
graphs.

Theorem 8. A graph G is regularizable if and only if for each edge e of G
there exists a perfect 2-matching of G in which e has weight 1 or 2.

For the details of the proof, we refer the reader to [3], p. 218.

Theorem 9. If G is a regularizable graph, then µk(G) is also regularizable,
for all k ≥ 0.

Proof. For a given edge e′ ∈ E(µ(G)) we consider the edge e ∈ E(G) that
generates e′. If there is a perfect 2-matching F of G such that e has the
weight 2 in F , we construct a perfect 2-matching F ′ in µ(G) as follows: We
assign the weight 1 to all edges generated by e (hence also to e′). To the
edges of the form xiyj we assign the weight of the edge vivj in F , and to all
other edges of µ(G) we assign the weight 0.

If the edge e′ has weight 1 in all perfect 2-matchings of G, we consider
a perfect 2-matching M of G such that the weight of e in M is equal to 1.
Such a perfect 2-matching M must exist, since G is regularizable. The edge
e is then contained in some odd cycle C ⊆ M , and the claim now follows
from Lemma 5 and Theorem 6.
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As a consequence, we get regularizability of all iterated Mycielskians of a 1-
extendable graph. (A graph G is 1-extendable if every edge of G is contained
in some perfect matching of G.)

Corollary 10. Let G be a 1-extendable graph. Then µk(G) is regularizable,
for all k ≥ 0.

Proof. This follows from the fact that every perfect matching is also a
perfect 2-matching in G. Now, from Theorem 8 it follows that G itself is
regularizable, and by Theorem 9 so are all its iterated Mycielskians.
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