
Discussiones Mathematicae 251
Graph Theory 25 (2005 ) 251–259

DOMINATION AND LEAF DENSITY IN GRAPHS

Anders Sune Pedersen

Department of Mathematics, Aalborg University
Fredrik Bajers Vej 7G, DK 9220 Aalborg, Denmark

e-mail: asp@math.auc.dk

Abstract

The domination number γ(G) of a graph G is the minimum car-
dinality of a subset D of V (G) with the property that each vertex of
V (G) − D is adjacent to at least one vertex of D. For a graph G
with n vertices we define ε(G) to be the number of leaves in G mi-
nus the number of stems in G, and we define the leaf density ζ(G) to
equal ε(G)/n. We prove that for any graph G with no isolated vertex,
γ(G) ≤ n(1−ζ(G))/2 and we characterize the extremal graphs for this
bound. Similar results are obtained for the total domination number
and the partition domination number.
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tion; total domination number.
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1. Introduction

A subset D of the vertex set of a graph G is a dominating set of G if each
vertex of V (G)−D is adjacent to at least one vertex of D. The domination
number γ(G) of a graph G is the minimum cardinality of a dominating set
of G. A leaf is a vertex of degree one.

The problem of determining the domination number is NP-complete
[4] and therefore much effort has been put into attaining upper and lower
bounds for the domination number. An early result due to Ore [8] states
that the domination number of any graph G of order n and containing no
isolated vertex is at most n/2. Better upper bounds have been obtained
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for graphs with minimum degree greater than one (see Haynes et al. [6]).
However, for some graphs with many leaves the n/2-bound is far from the
actual value of the domination number. For instance, γ(K1,n−1) ≤ n/2 is
a rather crude bound when n is large. We give a new upper bound, which
takes into account the density of the leaves.

We use the following notation. Let L(G) denote the set of leaves in a
graph G, and let L(v) denote the set of leaves adjacent to v. A vertex that
is adjacent to a leaf is called a stem, and the set of all stems of G will be
denoted by S(G). For i = 1, . . . ,∆(G) we define

Si(G) = {v ∈ V (G) | v is adjacent to precisely i leaves }.

Thus the elements of Si(G) are the vertices of G with precisely i adjacent
leaves. Let si(G) = |Si(G)|, s(G) := |S(G)| =

∑
i≥1 si(G), and l(G) =

|L(G)|. A corona graph G is a graph where s1(G) = n/2, i.e., each vertex is
a leaf or a stem adjacent to exactly one leaf.

We introduce two new graph parameters; ε and ζ. First, we define

ε(G) :=
∆(G)∑

i=2

si(G)(i− 1) = l(G)− s(G).

Secondly, we define the leaf density ζ(G) of a graph G by

ζ(G) :=
ε(G)

n
=

l(G)− s(G)
n

.

This concept enables us to compare the leaf density of different graphs.
For any graph parameter µ(G), we may write µ whenever the graph G

under consideration is given by the context.
In the following sections, we consider three different domination param-

eters and give upper bounds for the domination parameters in terms of the
order and the leaf density. In each case, we exhibit the extremal graphs.

2. An Improvement of Ore’s Theorem

We shall use the following two classical theorems on domination.

Theorem 2.1 [8]. If G is a graph with no isolated vertex, then γ(G) ≤ n/2.
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Theorem 2.2. For any graph G with no isolated vertex, γ(G) = n/2 if and
only if each component of G is a 4-cycle or a corona graph.

The above theorem was proved independently by [9] and [3]. Our result is
as follows.

Theorem 2.3. Let G denote any graph with no isolated vertex. Then

(1) γ(G) ≤ n− ε

2
= (1− ζ)

n

2
,

and equality holds, if and only if, each component of G is a 4-cycle or a
connected graph in which each vertex is a leaf or a stem.

Proof. Let G′ denote the subgraph of G obtained by removing |L(v)| − 1
leaves from each stem v of G. Then G′ is a graph with no isolated vertex,
and

n(G′) = n(G)−
∆(G)∑

i=2

si(i− 1) = n(G)− ε(G).

From Theorem 2.1 we obtain γ(G′) ≤ n(G′)/2 = (n(G) − ε(G))/2. Let D
be a γ(G′)-set which contains all stems of G′ and no leaves of G′. Then D
is also a dominating set of G, and so γ(G) ≤ (n(G)− ε(G))/2.

Now, suppose that γ(G) = (n(G)−ε(G))/2. Let D be a γ(G′)-set which
contains all stems of G′ and no leaves of G′. Then D is also a dominating
set of G, and |D| < n(G′)/2 would imply γ(G) < (n(G) − ε(G))/2, a con-
tradiction. Hence we must have γ(G′) = n(G′)/2, which, by Theorem 2.2,
implies that each component H of G′ is either a 4-cycle or a corona graph.

If H is a 4-cycle, then H is also a 4-cycle component of G, and if H is
a corona graph, then H corresponds to a component in G in which every
vertex is a leaf or a stem.

Now for the converse. Let H1, . . . ,Hk denote the components of G.
Then ε(G) = ε(H1) + · · · + ε(Hk), and showing γ(G) = (n(G) − ε(G))/2 is
equivalent to showing γ(Hj) = (n(Hj)− ε(Hj))/2 for every j ∈ {1, . . . , k}.

If Hj = C4, then ε(Hj) = 0 and γ(Hj) = 2 = (n(Hj) − ε(Hj))/2, and
we have the desired equality. Now suppose that every vertex of Hj is a leaf
or a stem. If Hj = K2, then ε(Hj) = 0 and γ(Hj) = 1 = (n(Hj)− ε(Hj))/2.
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Otherwise, if Hj 6= K2, then every vertex of Hj is either a leaf or a stem
vertex, but not both. This implies n(Hj) = l(Hj) + s(Hj). Let D denote a
γ(Hj)-set. We may w.l.o.g. assume S(Hj) ⊆ D. On the other hand, S(Hj)
is a dominating set, and so D = S(Hj). Hence

γ(Hj) = s(Hj)

=
l(Hj) + s(Hj)− (l(Hj)− s(Hj))

2
=

n(Hj)− ε(Hj)
2

,

and we have the desired equality. This completes the proof.

3. Total Domination and Leaf Density

In this section we give an upper bound of the total domination number γt

in terms of the number of vertices and the leaf density. A subset S of the
vertex set V (G) of a graph G is a total dominating set of G if every vertex of
V (G) is adjacent to some vertex of S. The total domination number γt(G)
of G is the minimum cardinality of a total dominating set of G.

The 2-corona of a graph H is the graph of order 3n(H) obtained from
H by attaching a K2 at each vertex of H. If a graph G is a 2-corona of some
graph H, then G is said to be a 2-corona graph. Clearly, a 2-corona graph
G has total domination number equal to 2n(G)/3.

We use the notion of leaf density to extend the two following theorems
on total domination.

Theorem 3.1 [2]. Let G denote a connected graph of order n ≥ 3. Then
γt(G) ≤ 2n/3.

Theorem 3.2 [1]. Let G denote a connected graph of order n ≥ 3. Then
γt(G) = 2n/3 if and only if G ∈ {C3, C6} or G is a 2-corona graph.

Our result is as follows.

Theorem 3.3. Let G denote a connected graph of order n ≥ 3. If G =
K1,n−1 then γt(G) = 2, otherwise

(2) γt(G) ≤ 2
3
(n− ε) =

2
3
n(1− ζ),
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and equality holds, if and only if, G ∈{C3, C6} or G can be constructed from a
2-corona graph H by attaching some (possibly none) leaves at the stems of H.

Proof. Obviously, γt(K1,n−1) = 2, so we may assume G 6= K1,n−1. Let G′

denote the subgraph of G obtained by removing |L(v)| − 1 leaves from each
stem v of G. Then G′ is a connected graph, and

n(G′) = n(G)−
∆(G)∑

i=2

si(i− 1) = n(G)− ε(G).

Since G 6= K1,n−1, the graph G′ must contain at least three vertices, and
so Theorem 3.1 implies γt(G′) ≤ 2n(G′)/3 = 2(n(G)− ε(G))/3. Let D be a
γt(G′)-set. Since D must dominate the leaves of G′ from the stems of G′, it
follows that D contains all stems of G and so D is a total dominating set of
G. Thus, γt(G) ≤ |D| ≤ 2(n(G)− ε(G))/3.

Suppose γt(G) = 2(n − ε)/3. Then we must have γt(G′) = 2n(G′)/3
and, by Theorem 3.2, either G′ ∈ {C3, C6} or G′ is a 2-corona graph. In the
former case we find that G ∈ {C3, C6} and in the latter case we find that G
can be constructed from the 2-corona graph G′ by attaching some (possibly
none) leaves at the stems of G′.

Conversely, if G ∈ {C3, C6}, then we clearly obtain equality in (2). Now
suppose that G can be constructed from a 2-corona graph H by attaching
some (possibly none) leaves at the stems of H. Then γt(G) = γt(H) =
2n(H)/3 and n(H) = n(G)− ε(G). This completes the proof.

4. Partition Domination and Leaf Density

In this section we give an upper bound of the k-partition domination number
γ(G, πk) in terms of the number of vertices and the leaf density. The concept
of partition domination was introduced by Hartnell and Vestergaard [5].
Other references on this topic include [7], [10] and [11].

By a k-partition (k = 2, 3, . . .) of V (G) we shall mean pairwise disjoint
subsets V1, V2 . . . , Vk ⊆ V (G) such that V1 ∪ V2 · · · ∪ Vk = V (G). Note
that some of the subsets V1, . . . , Vk may be empty. If Vi 6= ∅, then a set
Di ⊆ V (G) is called a dominating set for Vi if each vertex of Vi not in
Di has a neighbour in Di. The domination number γG(Vi) is the smallest
cardinality of a dominating set of Vi. We define γG(∅) = 0.
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The k-partition domination number γ(G, πk) of a graph G with respect to
a k-partition πk is defined to be the number

γ(G, πk) = γ(G) +
k∑

i=1

γG(Vi).

Since any dominating set of G is also a dominating set for Vi, we obtain the
following.

Observation 4.1. For any graph G and k-partition πk, we have γ(G, πk) ≤
(k + 1)γ(G).

Together, Observation 4.1 and Theorem 2.3 imply the following result.

Corollary 4.2. Let k denote any positive integer greater than one and let
G denote any graph with no isolated vertex. Then

γ(G, πk) ≤ (k + 1)
n− ε

2
= (k + 1)(1− ζ)

n

2
.

For k = 2, the extremal graphs of the bound stated in Corollary 4.2 are
given in Theorem 4.3 below. An example of an extremal graph is given in
Figure 1.

v1 v2v1v2v1v2

Figure 1. Let all the vertices labelled v1 be contained in V1 and let all the vertices la-
belled v2 be contained in V2. The unlabelled vertices may be arbitrarily distributed
among V1 and V2. With this partition we obtain γ(G, π2) = 3s = 3(n− ε)/2.

Theorem 4.3. Let G denote any graph with no isolated vertex. Then

γ(G, π2) =
3 (n− ε)

2
= 3(1− ζ)

n

2

if and only if each component H of G is either a K2 with one vertex in each
partition set V1 and V2, or H satisfies (i) and (ii):
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(i) Every vertex in H is either a stem or a leaf, and
(ii) for every v ∈ S(H), we must have L(v) ∩ V1 6= ∅ and L(v) ∩ V2 6= ∅.

Proof. First, suppose that γ(G, π2) = 3(n − ε)/2. Then we must have
γ(G) = (n − ε)/2, γG(V1) = (n − ε)/2 and γG(V2) = (n − ε)/2. Now, by
Theorem 2.3, each component H of G is either a 4-cycle or every vertex of
H is a stem or a leaf. Moreover, γH(V ′

1) = γ(V ′
2) = (n(H) − ε(H))/2. For

H = C4, we obtain γ(H, π′2) = 4 < 6 = 3(n(H)− ε(H))/2, a contradiction.
If H = K2, then γ(H, π′2) = 3(n(H)− ε(H))/2 = 3 if and only if H has one
vertex in V1 and the other in V2, and we are done. If H 6= K2, then every
vertex of G is either a stem or a leaf. This proves (i).

Assume that there is a vertex v ∈ S(H) such that L(v) ⊆ V ′
1 or L(v) ⊆

V ′
2 , say L(v) ⊆ V ′

1 . Let k := |L(v)|. If the graph H − L(v) only consists
of the vertex v, then we obtain a contradiction with γH(V ′

1) = (n(H) −
ε(H))/2. It follows that H−L(v) contains no isolated vertices, and therefore
γ(H − L(v)) ≤ (n(H − L(v)) − ε(H − L(v)))/2. If the vertex v is a leaf in
H − L(v), then l(H − L(v)) = l(H) − k + 1 and s(H − L(v)) ≤ s(H),
otherwise l(H −L(v)) = l(H)− k and s(H −L(v)) = s(H)− 1. In any case
ε(H − L(v)) ≥ ε(H) − k + 1, and, since γH−L(v))(V ′

2) ≤ γ(H − L(v)), we
obtain

γH(V ′
2) ≤ γH−L(v)(V

′
2) ≤

n(H − L(v))− ε(H − L(v))
2

≤ n(H)− k − (ε(H)− k + 1)
2

<
n(H)− ε(H)

2
,

which is a contradiction. This proves (ii).
For the converse we need to show γ(H, π′2) = (n(H)− ε(H))/2 for each

component H of G. If H = K2 with one vertex in each partition set V1

and V2, then clearly the desired equality holds. Suppose that H satisfies
(i) and (ii). Then S(H) is a minimum dominating set of V (H), V ′

1 , and V ′
2 ,

that is, γ(H, π′2) = 3s(H). Since every vertex is either a leaf or a stem we
obtain l(H)+s(H) = n(H), which implies n(H) = 2s(H)+(l(H)−s(H)) =
2s(H) + ε(H), and γ(H, π′2) = 3s(H) = 3(n(H)− ε(H))/2. This completes
the proof.

The following generalization of Theorem 4.3 may be obtained by a similar
proof.
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Theorem 4.4. Let G denote any graph with no isolated vertex, and let k
denote any integer greater than two. Then

γ(G, πk) = (k + 1)
(n− ε)

2
= (k + 1)(1− ζ)

n

2

if and only if each component H of G satisfies (i) and (ii).
(i) Every vertex in H is either a stem or a leaf, and
(ii) for every v ∈ S(H) and j ∈ {1, 2, . . . , k}, L(v) ∩ Vj 6= ∅.

Hartnell and Vestergaard [5] gave another upper bound of γ(G, π2).

Theorem 4.5 [5]. If G is a connected graph of order n ≥ 3, then γ(G, π2) ≤
5n/4.

Now the question is which of the two bounds presented in Theorem 4.5 and
Corollary 4.2 is better. Calculations show that

3(1− ζ)
n

2
<

5
4
n ⇐⇒ ζ >

1
6
.

Hence we have obtained a better bound of γ(G, π2) for graphs with leaf
density ζ > 1/6.
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