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Abstract

In this version of the Cops and Robber game, the cops move in
tandems, or pairs, such that they are at distance at most one from
each other after every move. The problem is to determine, for a given
graph G, the minimum number of tandems sufficient to guarantee a
win for the cops. We investigate this game on three graph products,
the Cartesian, categorical and strong products.
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1. Introduction

The game of Cops and Robber is played on a reflexive graph, i.e., a graph
with a loop at every vertex. The cops choose vertices to occupy, then the
robber chooses a vertex. The two sides then move alternately, where a move
is to slide along an edge or along a loop, i.e., pass. Both sides have perfect
information, and the cops win if any of the cops and the robber occupy the
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same vertex at the same time. Graphs on which one cop suffices to win are
called copwin graphs and are characterized in [7, 8]. The minimum number
of cops that suffice to win on a graph G is the copnumber of G, denoted
c(G). The game has been considered on infinite graphs but, in this paper,
we only consider finite graphs.

We use a ∼ b to indicate that vertex a is adjacent to vertex b (a 6= b),
and a ' b if a is adjacent or equal to b. For x ∈ V (G), N(x) = {y | y ∼ x}
is the open neighborhood of x and N [x] = N(x)∪{x} is the closed neighbor-
hood. A subgraph H is a retract of a graph G if there is a homomorphism
f : V (G) → V (H) such that f(x) = x, for all x ∈ V (H). Note that, since
G is reflexive, a homomorphism can send two adjacent vertices to the same
vertex.

Sometimes we need to consider the situation where the cops are play-
ing on a retract H, while the robber is playing on the full graph G. If
r is the vertex occupied by the robber and f is a fixed retraction map
of G onto H, then we refer to f(r) as the robber’s image. A vertex u
of a graph G is c-dominated if there exists a vertex v in G such that
N [u] ⊆ N [v]; also we say that v c-dominates u. A vertex u of a graph
G is o-dominated if there exists a vertex v in G such that N(u) ⊆ N(v). We
say that the vertex v o-dominates u. (In the literature of Cops and Robber,
c-dominated vertices were first called irreducible, because of the similarities
between copwin graphs and dismantlable, partially ordered sets. Later, they
were called either corners or pitfalls, because the robber really should stay
away from them. Here we adopt, but adapt, the notation of [1]. To avoid
confusion with the usual notions of domination, we use o- and c- to make
specific the references to the open and closed neighborhoods.)

In [2, 3], we propose a variation of the game in which the cop side
consists of two cops. The cops must be within distance one of each other
after every move. A graph on which two cops playing in tandem in this
way can win is said to be tandem-win. A strategy that can be used by a
tandem of cops to win on a tandem-win graph is given in [2, 3] and is called
a Tandem-win Strategy. The minimum number of tandems that suffice to
win on a graph G is the tandem number of G, denoted T (G). Hence, if H
is a tandem-win graph, then T (H) = 1.

In particular, a 4-cycle shows that a tandem of cops can win on more
graphs than a single cop. Copwin graphs are characterized in [7] by an
elimination order (see [1]) (v0, v1, . . . , vn), where each vi is c-dominated in
G − {v0, v1, . . . , vi−1}. In [2, 3] we show that if G has an elimination order



A Tandem Version of the Cops and ... 243

(tandem-win decomposition) (v0, v1, . . . , vn), where each vi is o-dominated
in G − {v0, v1, . . . , vi−1}, then G is tandem-win. This is a characterization
of triangle-free tandem-win graphs (which turn out to be bipartite), but not
of tandem-win graphs in general.

Graph products with two factors can be represented by 3× 3 matrices
called edge matrices as introduced by Imrich & Izbicki [4]. The rows and
columns correspond to the first and second factors respectively. The rows
and columns each receive one of three labels: E indicating adjacency of
the vertices of the corresponding factor, N indicating nonadjacency, and ∆
indicating that the vertices are the same. The entries of the matrix are also
E, N , and ∆, representing the adjacency relations between the vertices of
the product. It should be noted that if the relationship in both factors is
∆, then the corresponding matrix entry is also ∆ since the two vertices are
the same.




E ∆ N

E − − −
∆ − ∆ −
N − − −




The edge matrices of the Cartesian, categorical and strong products of two
graphs G and H are given.

Cartesian : G H Categorical : G×H Strong : G × H




N E N
E ∆ N
N N N







E N N
N ∆ N
N N N







E E N
E ∆ N
N N N




In this paper, we present results regarding tandem-win graphs and these
three products, and compare them with results known for copnumbers.

2. Cartesian Product

Tos̆ić [9] and, independently, Maamoun and Meyniel [5] prove that if G and
H are graphs with copnumbers c(G) and c(H), then c(G H) ≤ c(G)+c(H).
It follows that c( n

i=1Gi) ≤
∑n

i=1 c(Gi).
Following their proof, it is easy to show a similar result.

Observation 1. T (G H) ≤ T (G) + T (H).
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The Cartesian product of two copwin graphs has copnumber at least 2 since
it contains a 4-cycle as a retract, and hence, is not copwin. However, in a
special case we can say more.

For all v ∈ V (G), let T · v be the subgraph of T G whose vertices have
second coordinate v.

Theorem 2. The Cartesian product of a tree T and a copwin graph G is
tandem-win.

Proof. We show that two cops playing in tandem have a winning strategy
on T G. This strategy has two phases. During the first phase, the cops
move to capture the robber’s image on T · v, for some v ∈ V (G).

Having captured the robber’s image, the second phase is to capture the
actual robber.

(a) If the robber moves from a vertex in T · u to a vertex in T · u,
u ∈ V (G), and the result of this move is that at least one of the cops is
no longer on the robber’s image, then the cops move so as to capture the
image.

(b) If the robber moves from a vertex in T ·u to a vertex in T ·u and at
least one of the cops remains on the robber’s image, then the cops are able
to move according to their winning strategy in G.

(c) Finally, if the robber moves from T · u to T · w, u,w ∈ V (G), then
the cops remain on the robber’s image and are then able to move according
to their winning strategy in G.

Note that the robber can play a move of type (a) only a finite number of
consecutive times since he will eventually come to a leaf. If the robber only
plays moves of type (c), he will be captured on G. If the robber plays a
move of type (b), he has passed on G and given the cops a free move on G.
The robber can then play finitely many moves of type (a), all passes in G
for the cops, before having to play a move of type (b) or (c), a resumption
of the game on G.

3. Categorical Product

In [6] it is proven that the copnumber of the categorical product of
two copwin graphs is at most 3 and, more generally, if G and H are con-
nected, non-bipartite graphs with c(H) ≥ c(G) and c(H) ≥ 2, then
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c(G × H) ≤ 2c(G) + c(H) − 1. Here we show that two tandems suffice
on the categorical product of certain tandem-win graphs.

Let G and H be triangle-free tandem-win graphs, each having at least
one cycle. A graph G has a ‘special’ tandem-win decomposition by o-
dominated vertices if (1) leaves are retracted (as o-dominated vertices) before
any other vertices, and then (2) the o-dominated vertices are retracted. See
Figure 1 for an example. Note that the subgraph formed by the last four
vertices in the decomposition is a 4-cycle.

Lemma 3. Let G be a triangle-free tandem-win graph with at least one cycle.
If G has a special tandem-win decomposition, then the subgraph formed by
the last four vertices in this decomposition can be chosen to be a 4-cycle.

Proof. If not, consider the retraction from a subgraph G′ in the tandem-
win decomposition to a subgraph G′′ in the decomposition which resulted in
a tree. Let the o-dominated vertex be x with o-dominating vertex y. There
are no leaves (since any leaves were retracted first and this decomposition
does not introduce any leaves). So G′ contains a cycle, but G′′ does not.
Now any cycle in G′ must include x since G′′ is a tree. Therefore G′ is
isomorphic to K2,m, m ≥ 2. Suppose the independent sets are {1, 2} and
{c1, c2, . . . , cm}. We can alter the decomposition to first eliminate members
of the set {c1, c2, . . . , cm} until a subgraph isomorphic to K2,2 remains. (See
Figure 1 when m = 6.)

1

4

5

6

1

2

c

c

c

c

c

c 3

2

Figure 1: K2,6 reduces to K2,2.

Let V (G) = {a1, a2, . . . , ag+4} have a special decomposition ending in a 4-
cycle so that G = a1∪a2∪· · ·∪ag ∪C4. Similarly H = b1∪ b2∪· · ·∪ bh∪C4,
where V (H) = {b1, b2, . . . , bh+4}, has a special decomposition ending in a
4-cycle.
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Lemma 4. Let G and H be triangle-free tandem-win graphs, each having
at least one cycle. If y o-dominates x in H (y 6∼ x) and G has a special
tandem-win decomposition, then G×H reduces to G× (H−x) by retraction
of o-dominated vertices.

Proof. Inductively, suppose ai is o-dominated by ci ∈ G − ∪j<iaj . If
(b, z) ∈ N((ai, x)), then b ∼ ai and z ∼ x. It follows that b ∼ ci and
z ∼ y. Thus (b, z) ∼ (ci, y) or, equivalently, N((ai, x)) ⊆ N((ci, y)) in
(G− ∪j<iaj)×H.

Theorem 5. Let G and H be triangle-free tandem-win graphs, each having
at least one cycle. If G and H have special tandem-win decompositions, then
T (G×H) = 2.

Proof. Apply Lemma 4 to the graph G×H to obtain G×C4, and again to
obtain C4×C4. Now C4×C4 reduces to e×C4, where e ∈ E(G), with another
application. Thus T (G×H) = T (e×C4). Finally notice e×C4

∼= 2C4, and
so 2 tandems are required.

4. Strong Product

In [7], Nowakowski and Winkler show that the strong product of a finite
number of copwin graphs is copwin. An analogous result for the copnumbers
of graphs, due to Neufeld and Nowakowski [6], bounds the copnumber of the
strong product of two graphs in terms of the individual copnumbers of these
graphs. Surprisingly, we were not able to find tight bounds even if the graphs
are all 4-cycles. Theorems 7 and 8 give 2n−1 ≥ T (C4) > n.

Theorem 6. The strong product of a copwin graph G and a tandem-win
graph H is tandem-win.

Proof. Let G be a copwin graph and let H be a tandem-win graph. Let h
be the projection map from G ×H onto H, and let g be the projection map
from G × H onto G. For all x ∈ V (G), let x ·H be the subgraph of G × H
whose vertices have first coordinate x. Thus if both cops are located on
x ·H, then they project to the same image x under the map g. So the cops
first play on G × H so that, after each move, their positions project to the
same image on G. Since G is copwin, the image of the robber is captured
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by both cops on G. The cops then play a composition of moves so that
they stay with the image of the robber under g and play the Tandem-win
Strategy on H under h. Since two cops playing in tandem have a winning
strategy, G × H is tandem-win.

Example. This example refers to Figure 2. For j ∈ {0, 1, 2, 3}, the
c-dominated vertex (0, j) can be retracted onto the c-dominating vertex
(1, j), and then the c-dominated vertex (1, j) can be retracted onto the c-
dominating vertex (2, j). This leaves the 4-cycle given by the vertices (2, k),
k ∈ {0, 1, 2, 3}, which is known to be tandem-win.

0

1

2

0

3 2

1

(0,0) (0,1)

(0,4)(0,3)

(1,3) (1,2)

(1,1)(1,0)

(2,1)
(2,3)

(2,2)

(2,0)

Figure 2: An illustration of Theorem 6.

Note that the strong product of a tandem-win graph and a finite collection
of copwin graphs is tandem-win.

We now bound the tandem number of the strong product of a finite
number of tandem-win graphs.

Theorem 7. Let Gi, i = 1, 2, . . . , n, be a finite collection of graphs with
T (Gi) = 1, for all i. Then T (×n

i=1Gi) ≤ 2n−1.

Proof. Consider the projections of ×n
i=1Gi onto the Gi, i = 1, 2, . . . , n,

and we will assign the cops’ positions so that the projections of all the cops
lie on a single edge in each Gi.

Consider the following assignments. The cops’ positions in ×n
i=1Gi are

(c2j , c2j+1), j = 0, 1, . . . , 2n−1 − 1, the 2n−1 tandems. We will represent
(c2j , c2j+1) by ((2j)2, (2j)2) where (2j)2 = b1b2 · · · bn is the base 2 represen-
tation of 2j, (2j)2 is the complement of (2j)2, and leading zeros are permit-
ted. Note that the (2j)2 are distinct, as are the (2j)2. Hence (2j)2 and (2j)2,
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j = 1, . . . , 2n−1 − 1, exhaust all of the integers m, where 1 ≤ m < 2n − 1.
We consider (c0, c1) = (00 · · · 0, 11 · · · 1) as a reference pair.

Thus if in (2j)2 = b1b2 · · · bn, bi = 0, then c2j is projected to the same
position on Gi as c0. Otherwise c2j is projected to the same position on Gi

as c1.
The cops follow the robber on each projection until he is captured on

all n projections. It must be shown that the robber has been captured on
×n

i=1Gi.
Consider the binary number R = x1x2 · · ·xn, again with leading zeros

permitted, with xi = 0 if the projection of the robber on Gi is captured by
cop c0, and xi = 1 otherwise. Consider now the pair (c2j , c2j+1) which has
(2j)2 = x1x2 . . . xn or (2j)2 = x1x2 · · ·xn.

Suppose first (2j)2 = x1x2 · · ·xn. If xi = 0, then R projects onto c0,
but c2j is on c0 in Gi. If xi = 1, then R projects onto c1, but c2j is on c1 in
Gi. Hence c2j captures the robber on ×n

i=1Gi. Similarly, c2j+1 captures the
robber on ×n

i=1Gi if, instead, (2j)2 = x1x2 · · ·xn.

Example. When n = 3, T (×n
i=1Gi) ≤ 2n−1 = 4. In Table 1, the cops’

positions are shown in pairs, or tandems, along with the corresponding base
2 representations. The projections onto each of G1, G2 and G3 are also
indicated.

Table 1. T (×3
i=1Gi) ≤ 4.

projection
onto

G1 G2 G3

↓ ↓ ↓
c0 0 0 0
c1 1 1 1
c2 0 1 0
c3 1 0 1
c4 1 0 0
c5 0 1 1
c6 1 1 0
c7 0 0 1
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Theorem 8. If Gi
∼= C4, for i = 1, 2, . . . , 2n, then T (×2n

i=1Gi) > n.

Proof. Suppose n tandems of cops choose their vertices. The robber then
chooses a vertex so that, on Gi, the robber’s projection is two away from
the projection of cop ci. In one move, no cop can capture the robber on all
the projections, and thus not on ×2n

i=1C4. Thereafter, the robber moves to
maintain these distances. See Figure 3. Hence T (×2n

i=1C4) > n.

i
c

R
G

i

Figure 3: The robber is not captured on ×2n
i=1Gi.
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