CONNECTED ODD DOMINATING SETS IN GRAPHS

Yair Caro
Department of Mathematics
University of Haifa - Oranim
Tivon-36006, Israel
e-mail: yairc@macam.ac.il
William F. Klostermeyer
Department of Computer and Information Sciences
University of North Florida
Jacksonville, FL 32224, USA
e-mail: klostermeyer@hotmail.com

AND
Raphael Yuster
Department of Mathematics
University of Haifa - Oranim
Tivon - 36006, Israel
e-mail: raphy@research.haifa.ac.il

Abstract

An odd dominating set of a simple, undirected graph $G=(V, E)$ is a set of vertices $D \subseteq V$ such that $|N[v] \cap D| \equiv 1 \bmod 2$ for all vertices $v \in V$. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we prove there are only 15 grid graphs that have a connected odd dominating set.

Keywords: dominating set, odd dominating set.
2000 Mathematics Subject Classification: 05C35.

1. Introduction

An odd dominating set of a simple, undirected graph $G=(V, E)$ is a set of vertices $D \subseteq V$ such that $|N[v] \cap D| \equiv 1 \bmod 2$ for all vertices $v \in V$, where $N[v]$ denotes the closed neighborhood of v. Odd dominating sets and the analogously defined even dominating sets have received considerable attention in the literature, see $[1,2,3,4,5,6,7,8,9,10,11,12,14]$. Sutner proved that every graph contains at least one odd dominating set [14] and other proofs of this can be found in $[4,8]$. Sutner also showed that deciding if a graph contains an odd dominating set of size at most k is NP-complete [14]. Caro et al. considered the size of the smallest odd dominating set in certain classes of graphs [5, 6].

A well-known variation on the concept of a dominating set is that of a connected dominating set (cf. [13]). In this paper, we extend this notion to odd dominating sets by examining connected odd dominating sets or $C O D S$. A CODS of a graph is an odd dominating set D such that the subgraph induced by D is connected. If D is a CODS, then either D is a single vertex or the subgraph induced by D has all vertices of even degree. Thus, stars are the only trees that have CODS and, more generally, graphs having "real bridges" (bridges whose endpoints have degree at least 2) do not have CODS, a path with four vertices being the smallest example. We show that the problem of deciding if a graph has a CODS is NP-complete, whereas one can decide in polynomial time if a series-parallel graph contains a CODS. We also examine CODS in various classes of graphs such as grids, complete partite graphs and complements of powers of cycles. In particular, we prove that only 15 grid graphs have CODS.

2. Computational Aspects

2.. 1 NP-Completeness

Theorem 1. It is NP-complete to decide if a graph has a CODS.
Proof. The problem is obviously in NP. To show it is NP-hard, we do a reduction from the NP-complete 1-in-3 3SAT with no negated literals (1-in-3). A figure detailing the most intricate subgraph in the reduction is shown in Figure 1. Let F be an instance of 1 -in- 3 with clause set $C=$ $c_{1}, c_{2}, \ldots, c_{p}$ and variable set $U=u_{1}, u_{2}, \ldots u_{q}$. Denote the three variables in clause c_{i} as $u_{1}^{i}, u_{2}^{i}, u_{3}^{i}$.

Construct a graph as follows. For each clause c_{i} create a clause vertex c_{i} and three variable vertices $u_{1}^{i}, u_{2}^{i}, u_{3}^{i}$ that are adjacent to c_{i}. Create three parity vertices for this clause, $x_{1}^{i}, x_{2}^{i}, x_{3}^{i}$ where x_{1}^{i} is adjacent to u_{1}^{1} and u_{2}^{i}; x_{2}^{i} is adjacent to u_{1}^{i} and u_{3}^{i}; and x_{3}^{i} is adjacent to u_{2}^{i} and u_{3}^{i}. To each parity vertex x_{j}^{i} attach a parity check vertex p_{j}^{i} and to parity check vertex p_{j}^{i} attach a vertex q_{j}^{i} and make each q_{j}^{i} adjacent to c_{i}. For each x_{j}^{i} create three new vertices t_{1}, t_{2}, t_{3} (superscripts omitted for clarity) so that x_{j}^{i} is adjacent to t_{1}, t_{1} is adjacent to t_{2}, and t_{2} is adjacent to t_{3}. (Note that only one of the three t type paths is shown in Figure 1.) Also attach to c_{i} a path $w_{1}^{i}, w_{2}^{i}, w_{3}^{i}$ so that w_{1}^{i} is adjacent to c_{i}, w_{2}^{i} is adjacent to w_{1}^{i} and w_{3}^{i} is adjacent to w_{2}^{i}.

Figure 1. Gadget
Next create three vertices f_{1}^{i}, f_{2}^{i}, f_{3}^{i} so that f_{1}^{i} is adjacent to f_{2}^{i} and f_{2}^{i} is adjacent to f_{3}^{i}. Connect f_{1}^{i} to both u_{3}^{i} and p_{3}^{i}. Then create three vertices $g_{1}^{i}, g_{2}^{i}, g_{3}^{i}$ so that g_{1}^{i} is adjacent to g_{2}^{i} and g_{2}^{i} is adjacent to g_{3}^{i}. Connect g_{1}^{i} to both u_{2}^{i} and p_{1}^{i}. Then create three vertices $h_{1}^{i}, h_{2}^{i}, h_{3}^{i}$ so that h_{1}^{i} is adjacent to h_{2}^{i} and h_{2}^{i} is adjacent to h_{3}^{i}. Connect h_{1}^{i} to both u_{1}^{i} and p_{2}^{i}. Now create a vertex e^{i} that is adjacent to f_{2}^{i}, g_{2}^{i} and h_{2}^{i}. (Note that the f and h type vertices are not shown in Figure 1.)

If variable u_{j} appears in clauses c_{i} and c_{k} create a consistency vertex $y_{j}^{i k}$ that is adjacent to both u_{j}^{i} and u_{j}^{k}. This is done for every pair of distinct clauses that a given variable appears in. To each $y_{j}^{i k}$ attach a two vertex subgraph z_{1}, z_{2} (omitting the subscripts, but being clear that each $y_{j}^{i k}$ is attached to distinct such subgraph) where $y_{j}^{i k}$ is adjacent to z_{1} and z_{1} is adjacent to z_{2}.

Connect all $3 p$ variable vertices in a complete subgraph. Create a supervertex a_{1} and another vertex a_{2} where a_{1} is adjacent to a_{2}. Then connect a_{1} to the following vertices: w_{2}^{i}, for all $i ; p_{i}^{j}$ for all $i, j ; q_{i}^{j}$, for all $i, j ; f_{2}^{i}$, for all $i ; g_{2}^{i}$ for all $i ; h_{2}^{i}$ for all $i ; f_{3}^{i}$, for all $i ; g_{3}^{i}$ for all $i ; h_{3}^{i}$ for all i; and to each z_{1} and t_{2} vertex. Repeat the same process with another super-vertex b_{1}, which has a pendant vertex b_{2} attached to it and make a_{1} adjacent to b_{1}. If p is even then connect a_{1} to u_{j}^{i}, for all i, j; else connect both a_{1} and b_{1} to u_{j}^{i}, for all i, j. Let the graph constructed so far be called G.

To complete the construction, if a_{1} has odd number of neighbors other than a_{2} and b_{1} has an odd number of neighbors other than b_{2}, attach new vertex d to a_{1} and b_{1} with a pendant vertex d_{1} connected to d. Else if a_{1} has an odd number of neighbors other than a_{2}, then create a copy of G called G^{\prime} and connect a_{1} with the corresponding vertex a_{1}^{\prime} in G^{\prime}. Likewise, if b_{1}, rather than a_{1}, has an odd number of neighbors (in G) other than b_{2}. Let G^{*} denote the final graph constructed. It is easy to see that G^{*} can be constructed from F in polynomial time.

We claim that F is 1-in-3 satisfiable if and only if G^{*} has a connected odd dominating set. In the following, a vertex is defined to be adjacent to itself. Suppose F is 1 -in- 3 satisfiable, i.e., F can be satisfied so that each clause contains exactly one "true" variable. Say $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is the set of variables that are assigned "true" in this satisfying assignment. Then a connected odd dominating set D is formed by the set of variable vertices u_{j}^{i} where u_{j}^{i} is the unique variable vertex adjacent to clause vertex c_{i} corresponding to the "true" variable in clause c_{i}, plus the appropriate two q_{k}^{i} vertices for each i (e.g., q_{1}^{i}, q_{2}^{i} if $u_{1}^{i} \in D$), plus the appropriate p_{j}^{i} vertex for each i (e.g., p_{3}^{i} if $u_{1}^{i} \in D$), plus the appropriate one of $\left\{f_{2}^{i}, f_{3}^{i}\right\}$ for each i, plus the appropriate one of $\left\{g_{2}^{i}, g_{3}^{i}\right\}$ for each i, plus the appropriate one of $\left\{h_{2}^{i}, h_{3}^{i}\right\}$ for each i, plus each of the z_{1}, w_{2}, and t_{2} vertices, plus a_{1} and b_{1}, plus d if it exists. This set of vertices is clearly connected since a_{1} and b_{1} are adjacent to each other (and to d) and since a_{1} is adjacent to each other vertex in D (except in the case where we create a copy of G, G^{\prime}, in which case a_{1} is also adjacent to a_{1}^{\prime}). Note that since D contains one vertex from
each u_{j}^{i} triple of vertices, then exactly one p_{j}^{i} vertex will be in D for each i, two q_{j}^{i} vertices will be in D for each i, one of $\left\{f_{2}^{i}, g_{2}^{i}, h_{2}^{i}\right\}$ will be in D for each i, and two of $\left\{f_{3}^{i}, g_{3}^{i}, h_{3}^{i}\right\}$ will be in D for each i.

It is not difficult to see that D is an odd dominating set: each u_{j}^{i} vertex is adjacent to the other u_{j}^{i} vertices and a_{1} and possibly b_{1} (depending on the parity of p); each c_{i} vertex is adjacent to three vertices in D; each $w_{1}, w_{3}, t_{1}, t_{3}$ vertex is adjacent to one vertex in D, each w_{2} and t_{2} vertex is adjacent to three vertices in D; each $y_{j}^{i k}$ vertex is adjacent to either one or three vertices in D; each x_{j}^{i} is adjacent to one vertex in D; each p_{j}^{i}, q_{j}^{i} is adjacent to three vertices in D; each z_{1} is adjacent to three vertices in D; each z_{2} is adjacent to one vertex in D; each f_{1}^{i}, g_{1}^{i} and h_{1}^{i} vertex is adjacent to one vertex in D; each f_{2}^{i}, g_{2}^{i} and h_{2}^{i} vertex is adjacent to three vertices in D; each f_{3}^{i}, g_{3}^{i} and h_{3}^{i} vertex is adjacent to three vertices in D; each e^{i} is adjacent to one vertex in D; each of a_{2}, b_{2} are adjacent to one vertex in D; and we constructed G^{*} so that a_{1}, b_{1} (and d if it exists) will have an odd number of neighbors in D, since every neighbor of a_{1} and of b_{1} (except for a_{2} and $\left.b_{2}\right)$ is in D.

Now suppose D is a connected odd dominating set of G^{*}. A few simple observations show that the u_{j}^{i} vertices in D correspond to a 1-in-3 satisfying assignment for F. Note that any pendant vertex v in G^{*} cannot be in D, in fact, v 's neighbor must be in D. So no x_{j}^{i} vertex can be in D because each t_{2} vertex must be in D. Likewise, each w_{2} vertex must be in D and thus no w_{1} vertex, nor any c_{i} vertex, can be in D. It follows that at least one of $u_{1}^{i}, u_{2}^{i}, u_{3}^{i}$ must be in D for each clause c_{i} in order to dominate the vertex c_{i}. This is because if none of $u_{1}^{i}, u_{2}^{i}, u_{3}^{i}$ were in D, then neither would any of $q_{1}^{i}, q_{2}^{i}, q_{3}^{i}$ be in D (since if no u_{j}^{i} vertices were in D, each of the three p_{j}^{i} would have to be in D in order to dominate the x_{j}^{i} vertices). There cannot be exactly two vertices from $u_{1}^{i}, u_{2}^{i}, u_{3}^{i}$ in D, else in order to avoid an x_{j}^{i} having an even number of neighbors in D, we would have to add to D the p_{j}^{i} vertex that is adjacent to x_{j}^{i}. But this implies that c_{i} has four neighbors in D (two u_{j}^{i} type vertices and two type q_{j}^{i} vertices). Note that we cannot have both p_{j}^{i} and q_{j}^{i} in D as this would mean that each of these are adjacent to four vertices in D since a_{1} and b_{1} must also be in D. Nor can there be three vertices from $u_{1}^{i}, u_{2}^{i}, u_{3}^{i}$ in D, because this would force each of three p_{j}^{i} vertices to be in D. This in turn would force that each of f_{2}^{i}, g_{2}^{i} and h_{2}^{i} vertices be in D (since, for instance, at least one of f_{2}^{i}, f_{3}^{i} must be in D as each f_{2}^{i} and f_{3}^{i} are adjacent to both a_{1} and b_{1}). But then e^{i} would have no
neighbors in D (and e^{i} cannot be in D else D would not be connected).
Finally, it is easily seen that the $y_{j}^{i j}$ consistency vertices force that if a variable appears in more than one clause, the corresponding variable vertices in each clause are either both in D or both not in D. Thus the u_{j}^{i} vertices in D correspond to a 1-in-3 satisfying assignment for F.

2..2 Series-Parallel graphs

Proposition 2. Let G be a series-parallel graph with n vertices. There is an $O(n)$ time algorithm to decide if G contains a CODS.

Proof. The algorithm is similar to that given in [2] to compute the smallest odd dominating set in a graph. As in that algorithm, we begin by computing a binary tree T that describes the series and parallel constructions used to build G. That is, each non-leaf node of T represents either a series or parallel construction of the two series-parallel graphs that are its children as well as which vertices are the terminals of the resulting graph. Such a tree is called the parse tree of the series-parallel graph [2]. The remainder of the algorithm is a simple dynamic programming algorithm, whose correctness follows by induction (the details of which are straightforward and omitted). Working from the leaf level of T upwards to the root level, we process a node in T as follows. We store at each node v of T additional information as we process T, namely, whether there exists a CODS of the series-parallel graph G_{v} that is described by the subtree of T whose root is v and also which of the terminals of G_{v} can possibly be in such a CODS. Let y and z be the children of v in T. Let y_{1}, y_{2} be the two terminals of G_{y} and z_{1}, z_{2} be the two terminals of G_{z}.

If v represents a series construction of G_{y} with G_{z} (with y_{2} identified with z_{1}), then there is a CODS of G_{v} if and only if there is a CODS of G_{y} containing y_{2} and a CODS of G_{z} containing z_{1}. We must record at v whether or not there is a CODS of G_{v} containing y_{1} (which is the case if there is a CODS of G_{v} and there is a CODS of G_{y} containing y_{1}) and if there is a CODS of G_{v} containing z_{2} (which is the case if there is a CODS of G_{v} and there is a CODS of G_{z} containing z_{2}).

If v represents a parallel construction of G_{y} and G_{z}, then G_{v} has a CODS if and only if G_{y} has a CODS containing y_{1} and y_{2} and G_{z} has a CODS containing z_{1} and z_{2}, in which case G_{v} has a CODS containing both its terminals. Note that we do not need to consider the case when both G_{y} and G_{z} are P_{2} 's, since G is required to be a simple graph.

2.3 k -exclusive graphs

k-exclusive graphs were defined in [6].
Definition. A graph is k-exclusive if its vertices can be ordered v_{1}, \ldots, v_{n} such that for every $j>k, v_{j}$ is the unique neighbor in $\left\{v_{j}, \ldots, v_{n}\right\}$ of at least one vertex in $\left\{v_{1}, \ldots, v_{j-1}\right\}$.

Note that this class contains several well-known classes of graphs including the $k^{t h}$ power of paths and cycles and grids of dimension $k \times m$. The following was proved in [6].

Proposition 3. Let G be a k-exclusive graph with vertex ordering v_{1}, \ldots, v_{n} realizing the k-exclusiveness. Then for every $j \geq 1$, the following hold:

1. At most k vertices in $\left\{v_{1}, \ldots, v_{j}\right\}$ have neighbors in $\left\{v_{j+1}, \ldots, v_{n}\right\}$.
2. Vertex v_{j} is adjacent to at most k vertices preceding it.

We note that k-exclusive graphs have pathwidth k (this follows from (1) of Proposition 3) and hence also treewidth k.

We now describe the CODS algorithm for k-exclusive graphs.
Proposition 4. Let G be a k-exclusive graph with n vertices and its k exclusive vertex ordering given. Then a CODS can be found or be determined not to exist in time $O\left(2^{k} k^{3} n\right)$.

Proof. Let v_{1}, \ldots, v_{n} be a vertex order realizing the k-exclusiveness of G. Using an "exhaustive-search" strategy, we shall construct a candidate dominating set, D, by considering all possible 2^{k} combinations of vertices $\left\{v_{1}, \ldots, v_{k}\right\}$. Let f denote the characteristic function of D. For each combination of these k vertices, we verify that each vertex v in $\left\{v_{1}, \ldots, v_{k}\right\}$ that has no neighbor in $\left\{v_{k+1}, \ldots, v_{n}\right\}$ satisfies $|N[v] \cap D| \equiv b \bmod 2$. If this congruence is satisfied for all such vertices in $\left\{v_{1}, \ldots, v_{k}\right\}$, we can continue. Otherwise, the initial combination is illegal and the next combination is tested. If the initial combination is legal, we consider (in increasing order of index) vertex v_{j}, which is the unique neighbor in $\left\{v_{j}, \ldots, v_{n}\right\}$ of at least one vertex in $\left\{v_{1}, \ldots, v_{j-1}\right\}$ and, by Proposition 3 , of at most k vertices, in $\left\{v_{1}, \ldots, v_{j-1}\right\}$. The possible value, 0 or 1 , of $f\left(v_{j}\right)$ is completely determined by those vertices in $\left\{v_{1}, \ldots, v_{j-1}\right\}$ for which v_{j} is the unique neighbor in
the set $\left\{v_{j}, \ldots, v_{n}\right\}$. Add v_{j} to D (or not) if its addition (omission) properly satisfies the parity domination constraints for these vertices and the requirement that D be connected. If so, proceed to v_{j+1}, otherwise consider the next initial combination. If this algorithm does not terminate with a successful construction of D, then we infer no CODS exists.

Testing each initial combination takes $O\left(k^{2}\right)$ time. As we can maintain during the algorithm the value $p(v) \equiv|N[v] \cap D| \bmod 2$ for every vertex v already visited, we can decide "legality" of the value of $f\left(v_{j}\right)$ in $O(k)$ time: updating the $p(v)$ values that may be changed can be done in $O(k)$ time as v_{j} has at most k neighbors. Thus the running time of the algorithm is as claimed.

3. Combinatorial Aspects

3..1 Grid graphs

Much of the attention on even and odd dominating sets has focused on grid graphs $[2,6,9,10,11]$. We show in this section that only a handful of grids have CODS.

Denote by $G_{m, n}$ the grid with m rows and n columns, where $n \geq m$. The vertices of the grid are the pairs $(i, j), i=1, \ldots, m$ and $j=1, \ldots, n$.

Theorem 5. For all $7<m \leq n$, the grid $G_{m, n}$ does not have a CODS. There are precisely 15 finite grids that have CODS.

Proof. We first prove that for all $21 \leq m \leq n$, the grid $G_{m, n}$ does not have a CODS. Fix a grid $G_{m, n}$ with $m \geq 21$. Let $A=\{(1,1),(2,1), \ldots,(21,1)\}$ denote the first 21 vertices in the first column of $G_{m, n}$. We will show that for any possible choice of a subset $B \subset A$, and any choice of $D \subset V\left(G_{m, n}\right)$ satisfying $D \cap A=B$, then D is not a CODS. Consequently, $G_{m, n}$ has no CODS. Notice that there are precisely 2^{21} choices for B.

Fix a choice of B. We claim that if D is an odd dominating set of $G_{m, n}$ which satisfies $D \cap A=B$ then the membership in D of all pairs (i, j) for $j=2, \ldots, 21$ and $i=1, \ldots, 22-j$ is determined. Indeed, for $j=2$ we have that for all $i=1, \ldots, 20$, the vertex $(i, 2)$ is in D if and only if $|D \cap\{(i, 1),(i-1,1),(i+1,1)\}|$ is even. Similarly, for $j=3$ we have that for all $i=1, \ldots, 19$, the vertex $(i, 3)$ is in D if and only if $\mid D \cap\{(i, 2)$, $(i-1,2),(i+1,2),(i, 1)\} \mid$ is even, and so on until $j=21$. We have shown
that the membership in D of all the 231 vertices in the "lower left" triangle with side length 21 is determined.

Let $C \subset D$ denote the vertices of this "lower left" triangle that belong to D. Namely, $C=\{(i, j) \in D: 1 \leq i \leq 21,1 \leq j \leq 22-i\}$. Notice that $B \subset C$ and notice that B determines C uniquely. We claim that the subgraph of $G_{m, n}$ induced by C has (at least one) connected component W consisting of vertices not belonging to the external diagonal of C. Namely, W consists only of vertices from $\{(i, j): 1 \leq i \leq 20,1 \leq j \leq 21-i\}$. This implies that W is also a connected component of the subgraph of $G_{m, n}$ induced by D. In particular, D does not induce a connected subgraph of $G_{m, n}$, completing the proof.

A computer program was used to verify our last claim. [The program can be found on the second author's web site.] The program generates all 2^{21} possible B (the function "nextB" in the program). For any B generated by our program, the program computes C (the function "buildC"). Then, the program checks whether any vertex of C is reachable from the external diagonal (the function "checkC"). Any vertex of C not reachable from the external diagonal demonstrates the existence of W, and hence such a B is discarded. If all vertices of C are reachable from the boundary, then C is output (the function "printC"). It turns out that the choice of the constant 21 is the lowest number that causes the program to output nothing. Figure 2 demonstrates a plausible B and C that have no W in case we try to replace 21 by 20 . Notice that all vertices of C are reachable from the external diagonal. In fact, this example is unique up to transposing the columns and rows, (namely, the output of the program in the case of the constant 20 consists of two plausible C : the one from Figure 2 and its transpose).

Finally, we need to show how to reduce the constant 21 to the constant 8 , as stated in the theorem. For each fixed $m=1, \ldots, 20$ we perform the following algorithm. Consider a grid $G_{m, \infty}$. Notice the obvious fact that any odd dominating set D of $G_{m, \infty}$ is determined by the vertices of D belonging to the first column. Thus, there are precisely 2^{m} possible choices for D. Fix a subset B of the vertices of the first column that corresponds to the vertices of D belonging to the first column. We now sequentially construct, using our program, the vertices of D belonging to columns $2,3,4, \ldots$. We do this until we reach a column consisting of no vertices of D (i.e., a column of zeroes, which we call a null column). Indeed, an easy periodicity argument shows that we must always eventually reach a null column (our program shows that the index of the null column never exceeds 2000 in case $m \leq 20$).

Figure 2

11101100000111001110	11011011
1011110111010100101	11111111
100010110111010010	01011010
10011010000011001	11000011
1001011110011000	10000001
100101101001011	11111111
10011000100101	00000000
1000110010011	
101101001000	
11110100101	
0010110011	
011010000	
01011111	
0101100	
011001	
00111	
1100	
01	

Figure 3

11011011
11111111
01011010
11000011
10000001
11111111
10011000100101
00000000
1000110010011
101101001000
11110100101
0010110011
011010000
01011111
0101100
011001
00111
1100
111
01
1

Once the null column is reached, there is no point to continue since we are searching for connected D. Thus, when reaching the null column we check whether the resulting D is connected. If so, we output D, but only in the case where the index of the null column is greater than m (to avoid multiplicities we assume m is the smaller dimension). In case the index of the null column is equal to m, we output D only if the column before the null column is completely within D (since, in this case, the null column is allowed to be part of the grid). Our program functions "nextSmallB", "nextColumn", "checkSmallC" and "PrintSmallC" perform the operations mentioned here. It turns out that the program outputs nothing for $m=8, \ldots, 20$.

For $m=1, \ldots, 7$ the program outputs all grids that have CODS, and their respective CODS (in some cases there are more than one CODS). In fact, the following grids have CODS: $G_{1,1}, G_{1,2}, G_{1,3}, G_{2,2}, G_{2,3}, G_{2,4}, G_{3,4}$, $G_{3,5}, G_{3,6}, G_{4,4}, G_{4,5}, G_{6,7}, G_{6,8}, G_{6,9}, G_{7,8}$. Figure 3 shows one of the two possible CODS of $G_{7,8}$.

Notice that an immediate corollary of the theorem is that if either m or n (or both) is infinite, then the resulting infinite grid has no CODS.

A detailed analysis of length of the periodicity of the related recurrence for even dominating sets of grids can be found in [9, 11].

3..2 Complements of powers of cycles

Odd dominating sets in powers of cycles and their complements were studied in [6]. Denote these as C_{n}^{k} and $\overline{C_{n}^{k}}$, respectively, where $n \geq 3, k \geq 1$. It is easy to see that C_{n}^{k} is either complete or an Eulerian graph and thus always has a CODS, likewise $\overline{C_{n}^{k}}$ is either isolated or Eulerian when n is odd (notice that C_{n}^{k} is connected only for $n \geq 2 k+3$). The situation is not so clear when n is even; the following represents a partial characterization.

Theorem 6. Let n, k be positive integers such that $n \geq 2 k+3$. The graph C_{n}^{k} has a CODS in the following cases:
(1) $\overline{C_{n}^{k}}$ has a CODS if $n \equiv 1 \bmod 2$.
(2) $\overline{C_{n}^{k}}$ has a CODS if $n \equiv 2 \bmod 4$.
(3) $\overline{C_{n}^{1}}$ has a CODS and $\overline{C_{n}^{2}}$ has a CODS.
(4) $\overline{C_{n}^{k}}$ and $\overline{C_{n}^{k+1}}$ have CODS if k is odd and $n \equiv 0 \bmod 2(k+1)$.
(5) $\overline{C_{12 k}^{4 k}}$ has a CODS.

Proof. 1. If $n \equiv 1 \bmod 2$ then the graph is Eulerian and we simply take $V(G)$ as a CODS.
2. If $n \equiv 2 \bmod 4$ then label the vertices $0,1,2, \ldots, n-1$ and take for the CODS the set of vertices with even label. Notice that $|D|=n / 2$ is odd and, by symmetry, every vertex is not a neighbor of an even number of vertices in D. Hence, D is an odd dominating set. Furthermore, D induces a connected subgraph as D has the following Hamiltonian cycle: $0, n / 2+1,2, n / 2+3, \ldots, n / 2-3, n-2, n / 2-1,0$.
3. We must show that $\overline{C_{n}^{1}}$ has a CODS and $\overline{C_{n}^{2}}$ has a CODS. By the previous cases, we only need to check the case $n \equiv 0 \bmod 4$. Label the vertices $0,1,2, \ldots, n-1$ and take for the CODS the set of vertices $D=\{z$: $z \equiv 0,1 \bmod 4\}$. It is straightforward to verify that D is a CODS.
4. We must show that $\overline{C_{n}^{k}}$ and $\overline{C_{n}^{k+1}}$ have CODS if k is odd and $n \equiv$ $0 \bmod 2(k+1)$. Indeed, label the vertices $0,1,2, \ldots, n-1$ and consider this
labeling over $Z_{2(k+1)}$. Take the CODS to be the set of vertices $D=\{z: z \equiv$ $0,1,2, \ldots, k \bmod 2(k+1)\}$. It is not hard to verify that D is a CODS.
5. We must show that $\overline{C_{12 k}^{4 k}}$ has a CODS. Label the vertices $0,1, \ldots$, $12 k-1$ and consider the set of vertices $D=V-\{0,4 k, 8 k\}$. So $|D|=12 k-3$ and the verification that D is indeed a CODS is easy.
Let 01^{n} denote the sequence consisting of one " 0 " followed by n " 1 "'s and in general let a^{n} denote the sequence a repeated n times.

Theorem 7. Let n and k be positive integers, where $n>8 k$. Suppose k is odd and n is even. Let $t=\operatorname{gcd}(n-2(k+1), k+1, n)$. If $(n-2(k+1)) / t$ is odd then the sequence $\left(01^{t-1}\right)^{n / t}$ is the characteristic function of a CODS of $\overline{C_{n}^{k}}$ and $\overline{C_{n}^{k+1}}$.

We provide two examples before giving the proof (in the first example $n \leq$ $8 k$, but the idea is the same).

Example 1. $n=12, k=3$. Then $t=\operatorname{gcd}(12-8,12,4)=4$ and $(12-8) / 4=$ $4 / 4=1$. Thus, 011101110111 is a CODS for $\overline{C_{12}^{3}}$ and $\overline{C_{12}^{4}}$.

Example 2. $n=36, k=3$. Then $t=\operatorname{gcd}(n-2(k+1), k+1, n)=$ $\operatorname{gcd}(28,4,36)=4$ and $(n-2(k+1)) / t=28 / 4=7$ is odd. Hence $(0111)^{9}$ is a CODS for $\overline{C_{36}^{3}}$ and $\overline{C_{36}^{4}}$.

Proof of Theorem 7. Observe that $n-2(k+1)$ is just one less than the degree of $\overline{C_{n}^{k}}$. We also observe that the length of the sequence 01^{t-1} is even (as n and $k+1$ are even) and thus $t-1$ is odd and so the number of " 1 "'s in $(n-2(k+1)) / t$ repetitions of the sequence is $(n-2(k+1))(t-1) / t$, which is odd.

Take $D=V-\{z: z \equiv 0 \bmod t\}$. We claim D is a CODS of $\overline{C_{n}^{k}}$. We first show the odd-domination property. The vertex v_{0} is adjacent to precisely $(n-2(k+1)) / t$ repetitions of 01^{t-1} plus an extra 0 as its degree is $n-2(k+1)+1$ and as $t \mid(k+1)$. So the first edge emanating from v_{0}, going clockwise around the cycle, is to a vertex v_{j}, where $j \equiv 0 \bmod t$ and hence v_{j} is not in D. For the same reason, the last edge out of v_{0} is to a vertex v_{r}, where $r \equiv 0 \bmod t$, and thus v_{r} is not in D. Hence v_{0} has an odd number of " 1 "'s in its closed neighborhood, $(n-2(k+1))(t-1) / t$ to be exact. The vertices v_{1}, \ldots, v_{t-1} are not adjacent to the first 0 that is adjacent to $v_{0}\left(\right.$ which is $\left.v_{j}\right)$, but each are adjacent to two additional " 1 "'s, as compared to v_{0} (one of these additional " 1 "'s is themselves).

As to $\overline{C_{n}^{k+1}}$, it follows that, in comparison with v_{0} in $\overline{C_{n}^{k}}, v_{0}$ in $\overline{C_{n}^{k+1}}$ loses the first and the last " 0 " in its neighborhood (denoted v_{j} and v_{r} above) and so, as before, v_{0} 's closed neighborhood contains an odd number of members of D, while each of v_{1}, \ldots, v_{t-1} add one " 0 " $\left(v_{r}\right)$ and lose one " 1 " (relative to v_{0}), but they themselves add " 1 " to their closed neighborhood and again have an odd number of (closed) neighbors in D.

Finally, D is connected since $n>8 k$ and the fact that $t \geq 2$ implies that the subgraph induced by D has minimum degree at least half its order.

It is plausible that Theorem 7 holds for all $n \geq 2 k+5$. One might guess that $n \geq 2 k+3$ is a necessary and sufficient condition for $\overline{C_{n}^{k}}$ to have a CODS. This however is not the case, since $\overline{C_{16}^{5}}, \overline{C_{16}^{6}}$ and $\overline{C_{24}^{10}}$ have no CODS, as we verified using a computer.

3.3 Complete partite graphs

Proposition 8. A complete q-partite graph $K_{a_{1}, \ldots a_{q}}, q \geq 2$ has a CODS if and only if
(a) $\left(a_{1}, \ldots, a_{q}\right) \equiv(0,0, \ldots, 0)(\bmod 2)$; or
(b) there exist distinct i, j, k such that $\left(a_{i}, a_{j}, a_{k}\right)=(1,1,1)(\bmod 2)$; or
(c) $a_{i}=1$ for some $1 \leq i \leq q$.

Proof. Clearly the graphs in (a), (b) and (c) have CODS. Now assuming our graph is not one of (a), (b) or (c), then it must have one or two vertex classes with odd cardinality at least 3 . Since vertices in the same class are transitive, each class is either completely in or completely out of an odd dominating set. In case there is precisely one class with odd cardinality at least 3 , it is easily checked that whether this class is in or out of a dominating set, such a dominating set is not a CODS. Similarly, if there are two classes with odd cardinality at least 3 , it is easily checked that whether none, one of, or both of the classes are in a dominating set, such a dominating set is not a CODS.

3..4 Powers of paths

Let P_{n}^{k} denote the $k^{\text {th }}$ power of the path on n vertices.

Proposition 9. If $2 k+1 \geq n$, then P_{n}^{k} has a CODS (a vertex of the centroid of the path). If $2 k+1<n$ then P_{n}^{k} has no CODS.

Proof. If $2 k+1 \geq n$, the vertex in position $\lfloor n / 2\rfloor$ is connected to all other vertices and hence constitutes a CODS. So we assume $2 k+1<n$. Let v_{1}, \ldots, v_{n} be the vertices of the path, and suppose D is a CODS of P_{n}^{k}. Define $q(v)=1$ if $v \in D$ and $q(v)=0$ otherwise. Clearly $q\left(v_{1}\right)+$ $q\left(v_{2}\right)+\cdots+q\left(v_{k+1}\right)=\left|N\left[v_{1}\right] \cap D\right| \equiv 1 \bmod 2$. Also $q\left(v_{1}\right)+q\left(v_{2}\right)+\cdots+$ $q\left(v_{k+1}\right)+q\left(v_{k+2}\right)=\left|N\left[v_{2}\right] \cap D\right| \equiv 1 \bmod 2$, forcing $q\left(v_{k+2}\right)=0$. And $q\left(v_{1}\right)+q\left(v_{2}\right)+\cdots+q\left(v_{k+2}\right)+q\left(v_{k+3}\right)=\left|N\left[v_{3}\right] \cap D\right| \equiv 1 \bmod 2$, forcing $q\left(v_{k+3}\right)=0$. This pattern continues until $q\left(v_{1}\right)+q\left(v_{2}\right)+\cdots+q\left(v_{k+2}\right)+$ $q\left(v_{2 k+1}\right)=\left|N\left[v_{k+1}\right] \cap D\right| \equiv 1 \bmod 2$, forcing $q\left(v_{2 k+1}\right)=0$. But then the k consecutive vertices $v_{k+2}, v_{k+3}, \ldots, v_{2 k+1}$ are not in D and hence D is not connected since $n>2 k+1$.

3..5 Graph products and cubes

Fact 10. If G has a CODS and H is Eulerian then $G \times H$ has a CODS.

For example, we can use this fact to deduce that for all $d \geq 1$, the d dimensional cube Q_{d} has a CODS. Indeed, it is trivial for $d=1$. For d even, Q_{d} is Eulerian. For d odd, we use the fact that $Q_{d+1}=K_{2} \times Q_{d}$ and Fact 10 .

4. Concluding Remarks and Open Problems

Characterizing which complements of powers of cycles have CODS is a problem that remains. We state three problems:

1. The general problem: For which n and k, such that $n \geq 2 k+3$, does $\overline{C_{n}^{k}}$ have a CODS?
2. Is it true that $\overline{C_{n}^{3}}$ and $\overline{C_{n}^{4}}$ always have a CODS provided $n \geq 2 k+3$?
3. Is it true that $\overline{C_{n}^{k}}$ has a CODS for $n \equiv 4 \bmod 8$ provided $n \geq 2 k+3$?

It is of interest to resolve the complexity of the CODS problem for several classes of graphs: interval graphs, bipartite graphs, planar graphs, and partial k-trees for $k>2$.

Acknowledgements

The authors wish to thank the anonymous referee for their valuable comments.

References

[1] A. Amin, L. Clark and P. Slater, Parity dimension for graphs, Discrete Math. 187 (1998) 1-17.
[2] A. Amin and P. Slater, Neighborhood domination with parity restriction in graphs, Congr. Numer. 91 (1992) 19-30.
[3] A. Amin and P. Slater, All parity realizable trees, J. Combin. Math. and Combin. Comput. 20 (1996) 53-63.
[4] Y. Caro, Simple proofs to three parity theorems, Ars Combin. 42 (1996) 175-180.
[5] Y. Caro and W. Klostermeyer, The odd domination number of a graph, J. Combin. Math. Combin. Comput. 44 (2003) 65-84.
[6] Y. Caro, W. Klostermeyer and J. Goldwasser, Odd and residue domination numbers of a graph, Discuss. Math. Graph Theory 21 (2001) 119-136.
[7] M. Conlon, M. Falidas, M. Forde, J. Kennedy, S. McIlwaine and J. Stern, Inversion numbers of graphs, Graph Theory Notes of New York XXXVII (1999) 43-49.
[8] R. Cowen, S. Hechler, J. Kennedy and A. Ryba, Inversion and neighborhood inversion in graphs, Graph Theory Notes of New York XXXVII (1999) 38-42.
[9] J. Goldwasser, W. Klostermeyer and G. Trapp, Characterizing switch-setting problems, Linear and Multilinear Algebra 43 (1997) 121-135.
[10] J. Goldwasser and W. Klostermeyer, Maximization versions of "Lights Out" games in grids and graphs, Congr. Numer. 126 (1997) 99-111.
[11] J. Goldwasser, W. Klostermeyer and H. Ware, Fibonacci polynomials and parity domination in grid graphs, Graphs and Combinatorics 18 (2002) 271-283.
[12] M. Halldorsson, J. Kratochvil and J. Telle, Mod-2 independence and domination in graphs, in: Proceedings Workshop on Graph-Theoretic Concepts in Computer Science '99, Ascona, Switzerland (Springer-Verlag, Lecture Notes in Computer Science, 1999) 101-109.
[13] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[14] K. Sutner, Linear cellular automata and the Garden-of-Eden, The Mathematical Intelligencer 11 (2) (1989) 49-53.

Received 7 May 2003
Revised 19 January 2005

