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Abstract

An odd dominating set of a simple, undirected graph G = (V,E) is
a set of vertices D ⊆ V such that |N [v]∩D| ≡ 1 mod 2 for all vertices
v ∈ V . It is known that every graph has an odd dominating set. In
this paper we consider the concept of connected odd dominating sets.
We prove that the problem of deciding if a graph has a connected odd
dominating set is NP-complete. We also determine the existence or
non-existence of such sets in several classes of graphs. Among other
results, we prove there are only 15 grid graphs that have a connected
odd dominating set.
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1. Introduction

An odd dominating set of a simple, undirected graph G = (V, E) is a set
of vertices D ⊆ V such that |N [v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V ,
where N [v] denotes the closed neighborhood of v. Odd dominating sets
and the analogously defined even dominating sets have received considerable
attention in the literature, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14]. Sutner
proved that every graph contains at least one odd dominating set [14] and
other proofs of this can be found in [4, 8]. Sutner also showed that deciding
if a graph contains an odd dominating set of size at most k is NP-complete
[14]. Caro et al. considered the size of the smallest odd dominating set in
certain classes of graphs [5, 6].

A well-known variation on the concept of a dominating set is that of
a connected dominating set (cf. [13]). In this paper, we extend this notion
to odd dominating sets by examining connected odd dominating sets or
CODS. A CODS of a graph is an odd dominating set D such that the
subgraph induced by D is connected. If D is a CODS, then either D is a
single vertex or the subgraph induced by D has all vertices of even degree.
Thus, stars are the only trees that have CODS and, more generally, graphs
having “real bridges” (bridges whose endpoints have degree at least 2) do
not have CODS, a path with four vertices being the smallest example. We
show that the problem of deciding if a graph has a CODS is NP-complete,
whereas one can decide in polynomial time if a series-parallel graph contains
a CODS. We also examine CODS in various classes of graphs such as grids,
complete partite graphs and complements of powers of cycles. In particular,
we prove that only 15 grid graphs have CODS.

2. Computational Aspects

2..1 NP-Completeness

Theorem 1. It is NP-complete to decide if a graph has a CODS.

Proof. The problem is obviously in NP. To show it is NP-hard, we do
a reduction from the NP-complete 1-in-3 3SAT with no negated literals
(1-in-3). A figure detailing the most intricate subgraph in the reduction
is shown in Figure 1. Let F be an instance of 1-in-3 with clause set C =
c1, c2, . . . , cp and variable set U = u1, u2, . . . uq. Denote the three variables
in clause ci as ui

1, u
i
2, u

i
3.
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Construct a graph as follows. For each clause ci create a clause vertex ci

and three variable vertices ui
1, u

i
2, u

i
3 that are adjacent to ci. Create three

parity vertices for this clause, xi
1, x

i
2, x

i
3 where xi

1 is adjacent to u1
1 and ui

2;
xi

2 is adjacent to ui
1 and ui

3; and xi
3 is adjacent to ui

2 and ui
3. To each parity

vertex xi
j attach a parity check vertex pi

j and to parity check vertex pi
j attach

a vertex qi
j and make each qi

j adjacent to ci. For each xi
j create three new

vertices t1, t2, t3 (superscripts omitted for clarity) so that xi
j is adjacent to

t1, t1 is adjacent to t2, and t2 is adjacent to t3. (Note that only one of the
three t type paths is shown in Figure 1.) Also attach to ci a path wi

1, w
i
2, w

i
3

so that wi
1 is adjacent to ci, wi

2 is adjacent to wi
1 and wi

3 is adjacent to wi
2.
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Figure 1. Gadget

Next create three vertices f i
1, f

i
2, f

i
3 so that f i

1 is adjacent to f i
2 and f i

2 is
adjacent to f i

3. Connect f i
1 to both ui

3 and pi
3. Then create three vertices

gi
1, g

i
2, g

i
3 so that gi

1 is adjacent to gi
2 and gi

2 is adjacent to gi
3. Connect gi

1 to
both ui

2 and pi
1. Then create three vertices hi

1, h
i
2, h

i
3 so that hi

1 is adjacent
to hi

2 and hi
2 is adjacent to hi

3. Connect hi
1 to both ui

1 and pi
2. Now create

a vertex ei that is adjacent to f i
2, g

i
2 and hi

2. (Note that the f and h type
vertices are not shown in Figure 1.)
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If variable uj appears in clauses ci and ck create a consistency vertex yik
j that

is adjacent to both ui
j and uk

j . This is done for every pair of distinct clauses
that a given variable appears in. To each yik

j attach a two vertex subgraph
z1, z2 (omitting the subscripts, but being clear that each yik

j is attached to
distinct such subgraph) where yik

j is adjacent to z1 and z1 is adjacent to z2.
Connect all 3p variable vertices in a complete subgraph. Create a super-

vertex a1 and another vertex a2 where a1 is adjacent to a2. Then connect
a1 to the following vertices: wi

2, for all i; pj
i for all i, j; qj

i , for all i, j; f i
2, for

all i; gi
2 for all i; hi

2 for all i; f i
3, for all i; gi

3 for all i; hi
3 for all i; and to

each z1 and t2 vertex. Repeat the same process with another super-vertex
b1, which has a pendant vertex b2 attached to it and make a1 adjacent to
b1. If p is even then connect a1 to ui

j , for all i, j; else connect both a1 and
b1 to ui

j , for all i, j. Let the graph constructed so far be called G.
To complete the construction, if a1 has odd number of neighbors other

than a2 and b1 has an odd number of neighbors other than b2, attach new
vertex d to a1 and b1 with a pendant vertex d1 connected to d. Else if a1

has an odd number of neighbors other than a2, then create a copy of G
called G′ and connect a1 with the corresponding vertex a′1 in G′. Likewise,
if b1, rather than a1, has an odd number of neighbors (in G) other than b2.
Let G∗ denote the final graph constructed. It is easy to see that G∗ can be
constructed from F in polynomial time.

We claim that F is 1-in-3 satisfiable if and only if G∗ has a connected
odd dominating set. In the following, a vertex is defined to be adjacent
to itself. Suppose F is 1-in-3 satisfiable, i.e., F can be satisfied so that
each clause contains exactly one “true” variable. Say {u1, u2, . . . , ur} is
the set of variables that are assigned “true” in this satisfying assignment.
Then a connected odd dominating set D is formed by the set of variable
vertices ui

j where ui
j is the unique variable vertex adjacent to clause vertex

ci corresponding to the “true” variable in clause ci, plus the appropriate two
qi
k vertices for each i (e.g., qi

1, q
i
2 if ui

1 ∈ D), plus the appropriate pi
j vertex

for each i (e.g., pi
3 if ui

1 ∈ D), plus the appropriate one of {f i
2, f

i
3} for each

i, plus the appropriate one of {gi
2, g

i
3} for each i, plus the appropriate one of

{hi
2, h

i
3} for each i, plus each of the z1, w2, and t2 vertices, plus a1 and b1,

plus d if it exists. This set of vertices is clearly connected since a1 and b1

are adjacent to each other (and to d) and since a1 is adjacent to each other
vertex in D (except in the case where we create a copy of G, G′, in which
case a1 is also adjacent to a′1). Note that since D contains one vertex from
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each ui
j triple of vertices, then exactly one pi

j vertex will be in D for each
i, two qi

j vertices will be in D for each i, one of {f i
2, g

i
2, h

i
2} will be in D for

each i, and two of {f i
3, g

i
3, h

i
3} will be in D for each i.

It is not difficult to see that D is an odd dominating set: each ui
j vertex

is adjacent to the other ui
j vertices and a1 and possibly b1 (depending on

the parity of p); each ci vertex is adjacent to three vertices in D; each
w1, w3, t1, t3 vertex is adjacent to one vertex in D, each w2 and t2 vertex
is adjacent to three vertices in D; each yik

j vertex is adjacent to either one
or three vertices in D; each xi

j is adjacent to one vertex in D; each pi
j , q

i
j is

adjacent to three vertices in D; each z1 is adjacent to three vertices in D;
each z2 is adjacent to one vertex in D; each f i

1, g
i
1 and hi

1 vertex is adjacent
to one vertex in D; each f i

2, g
i
2 and hi

2 vertex is adjacent to three vertices
in D; each f i

3, g
i
3 and hi

3 vertex is adjacent to three vertices in D; each ei

is adjacent to one vertex in D; each of a2, b2 are adjacent to one vertex in
D; and we constructed G∗ so that a1, b1 (and d if it exists) will have an odd
number of neighbors in D, since every neighbor of a1 and of b1 (except for
a2 and b2) is in D.

Now suppose D is a connected odd dominating set of G∗. A few simple
observations show that the ui

j vertices in D correspond to a 1-in-3 satisfying
assignment for F . Note that any pendant vertex v in G∗ cannot be in D, in
fact, v’s neighbor must be in D. So no xi

j vertex can be in D because each
t2 vertex must be in D. Likewise, each w2 vertex must be in D and thus
no w1 vertex, nor any ci vertex, can be in D. It follows that at least one of
ui

1, u
i
2, u

i
3 must be in D for each clause ci in order to dominate the vertex

ci. This is because if none of ui
1, u

i
2, u

i
3 were in D, then neither would any

of qi
1, q

i
2, q

i
3 be in D (since if no ui

j vertices were in D, each of the three pi
j

would have to be in D in order to dominate the xi
j vertices). There cannot

be exactly two vertices from ui
1, u

i
2, u

i
3 in D, else in order to avoid an xi

j

having an even number of neighbors in D, we would have to add to D the
pi

j vertex that is adjacent to xi
j . But this implies that ci has four neighbors

in D (two ui
j type vertices and two type qi

j vertices). Note that we cannot
have both pi

j and qi
j in D as this would mean that each of these are adjacent

to four vertices in D since a1 and b1 must also be in D. Nor can there be
three vertices from ui

1, u
i
2, u

i
3 in D, because this would force each of three

pi
j vertices to be in D. This in turn would force that each of f i

2, g
i
2 and hi

2

vertices be in D (since, for instance, at least one of f i
2, f

i
3 must be in D as

each f i
2 and f i

3 are adjacent to both a1 and b1). But then ei would have no
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neighbors in D (and ei cannot be in D else D would not be connected).
Finally, it is easily seen that the yij

j consistency vertices force that if a
variable appears in more than one clause, the corresponding variable vertices
in each clause are either both in D or both not in D. Thus the ui

j vertices
in D correspond to a 1-in-3 satisfying assignment for F .

2..2 Series-Parallel graphs

Proposition 2. Let G be a series-parallel graph with n vertices. There is
an O(n) time algorithm to decide if G contains a CODS.

Proof. The algorithm is similar to that given in [2] to compute the smallest
odd dominating set in a graph. As in that algorithm, we begin by computing
a binary tree T that describes the series and parallel constructions used to
build G. That is, each non-leaf node of T represents either a series or parallel
construction of the two series-parallel graphs that are its children as well as
which vertices are the terminals of the resulting graph. Such a tree is called
the parse tree of the series-parallel graph [2]. The remainder of the algorithm
is a simple dynamic programming algorithm, whose correctness follows by
induction (the details of which are straightforward and omitted). Working
from the leaf level of T upwards to the root level, we process a node in
T as follows. We store at each node v of T additional information as we
process T , namely, whether there exists a CODS of the series-parallel graph
Gv that is described by the subtree of T whose root is v and also which of
the terminals of Gv can possibly be in such a CODS. Let y and z be the
children of v in T . Let y1, y2 be the two terminals of Gy and z1, z2 be the
two terminals of Gz.

If v represents a series construction of Gy with Gz (with y2 identified
with z1), then there is a CODS of Gv if and only if there is a CODS of
Gy containing y2 and a CODS of Gz containing z1. We must record at v
whether or not there is a CODS of Gv containing y1 (which is the case if
there is a CODS of Gv and there is a CODS of Gy containing y1) and if
there is a CODS of Gv containing z2 (which is the case if there is a CODS
of Gv and there is a CODS of Gz containing z2).

If v represents a parallel construction of Gy and Gz, then Gv has a
CODS if and only if Gy has a CODS containing y1 and y2 and Gz has a
CODS containing z1 and z2, in which case Gv has a CODS containing both
its terminals. Note that we do not need to consider the case when both Gy

and Gz are P2’s, since G is required to be a simple graph.
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2..3 k-exclusive graphs

k-exclusive graphs were defined in [6].

Definition. A graph is k-exclusive if its vertices can be ordered v1, . . . , vn

such that for every j > k, vj is the unique neighbor in {vj , . . . , vn} of at
least one vertex in {v1, . . . , vj−1}.

Note that this class contains several well-known classes of graphs including
the kth power of paths and cycles and grids of dimension k×m. The following
was proved in [6].

Proposition 3. Let G be a k-exclusive graph with vertex ordering v1, . . . , vn

realizing the k-exclusiveness. Then for every j ≥ 1, the following hold:

1. At most k vertices in {v1, . . . , vj} have neighbors in {vj+1, . . . , vn}.
2. Vertex vj is adjacent to at most k vertices preceding it.

We note that k-exclusive graphs have pathwidth k (this follows from (1) of
Proposition 3) and hence also treewidth k.

We now describe the CODS algorithm for k-exclusive graphs.

Proposition 4. Let G be a k-exclusive graph with n vertices and its k-
exclusive vertex ordering given. Then a CODS can be found or be determined
not to exist in time O(2kk3n).

Proof. Let v1, . . . , vn be a vertex order realizing the k-exclusiveness of G.
Using an “exhaustive-search” strategy, we shall construct a candidate domi-
nating set, D, by considering all possible 2k combinations of vertices
{v1, . . . , vk}. Let f denote the characteristic function of D. For each combi-
nation of these k vertices, we verify that each vertex v in {v1, . . . , vk} that
has no neighbor in {vk+1, . . . , vn} satisfies |N [v] ∩ D| ≡ b mod 2. If this
congruence is satisfied for all such vertices in {v1, . . . , vk}, we can continue.
Otherwise, the initial combination is illegal and the next combination is
tested. If the initial combination is legal, we consider (in increasing order
of index) vertex vj , which is the unique neighbor in {vj , . . . , vn} of at least
one vertex in {v1, . . . , vj−1} and, by Proposition 3, of at most k vertices, in
{v1, . . . , vj−1}. The possible value, 0 or 1, of f(vj) is completely determined
by those vertices in {v1, . . . , vj−1} for which vj is the unique neighbor in
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the set {vj , . . . , vn}. Add vj to D (or not) if its addition (omission) prop-
erly satisfies the parity domination constraints for these vertices and the
requirement that D be connected. If so, proceed to vj+1, otherwise consider
the next initial combination. If this algorithm does not terminate with a
successful construction of D, then we infer no CODS exists.

Testing each initial combination takes O(k2) time. As we can maintain
during the algorithm the value p(v) ≡ |N [v] ∩D| mod 2 for every vertex v
already visited, we can decide “legality” of the value of f(vj) in O(k) time:
updating the p(v) values that may be changed can be done in O(k) time as
vj has at most k neighbors. Thus the running time of the algorithm is as
claimed.

3. Combinatorial Aspects

3..1 Grid graphs

Much of the attention on even and odd dominating sets has focused on grid
graphs [2, 6, 9, 10, 11]. We show in this section that only a handful of grids
have CODS.

Denote by Gm,n the grid with m rows and n columns, where n ≥ m.
The vertices of the grid are the pairs (i, j), i = 1, . . . , m and j = 1, . . . , n.

Theorem 5. For all 7 < m ≤ n, the grid Gm,n does not have a CODS.
There are precisely 15 finite grids that have CODS.

Proof. We first prove that for all 21 ≤ m ≤ n, the grid Gm,n does not have
a CODS. Fix a grid Gm,n with m ≥ 21. Let A = {(1, 1), (2, 1), . . . , (21, 1)}
denote the first 21 vertices in the first column of Gm,n. We will show that
for any possible choice of a subset B ⊂ A, and any choice of D ⊂ V (Gm,n)
satisfying D ∩ A = B, then D is not a CODS. Consequently, Gm,n has no
CODS. Notice that there are precisely 221 choices for B.

Fix a choice of B. We claim that if D is an odd dominating set of
Gm,n which satisfies D ∩A = B then the membership in D of all pairs (i, j)
for j = 2, . . . , 21 and i = 1, . . . , 22 − j is determined. Indeed, for j = 2
we have that for all i = 1, . . . , 20, the vertex (i, 2) is in D if and only if
|D ∩ {(i, 1), (i − 1, 1), (i + 1, 1)}| is even. Similarly, for j = 3 we have that
for all i = 1, . . . , 19, the vertex (i, 3) is in D if and only if |D ∩ {(i, 2),
(i − 1, 2), (i + 1, 2), (i, 1)}| is even, and so on until j = 21. We have shown



Connected Odd Dominating Sets in Graphs 233

that the membership in D of all the 231 vertices in the “lower left” triangle
with side length 21 is determined.

Let C ⊂ D denote the vertices of this “lower left” triangle that belong
to D. Namely, C = {(i, j) ∈ D : 1 ≤ i ≤ 21, 1 ≤ j ≤ 22 − i}. Notice
that B ⊂ C and notice that B determines C uniquely. We claim that the
subgraph of Gm,n induced by C has (at least one) connected component W
consisting of vertices not belonging to the external diagonal of C. Namely,
W consists only of vertices from {(i, j) : 1 ≤ i ≤ 20, 1 ≤ j ≤ 21 − i}.
This implies that W is also a connected component of the subgraph of Gm,n

induced by D. In particular, D does not induce a connected subgraph of
Gm,n, completing the proof.

A computer program was used to verify our last claim. [The program
can be found on the second author’s web site.] The program generates all
221 possible B (the function “nextB” in the program). For any B generated
by our program, the program computes C (the function “buildC”). Then,
the program checks whether any vertex of C is reachable from the external
diagonal (the function “checkC”). Any vertex of C not reachable from the
external diagonal demonstrates the existence of W , and hence such a B is
discarded. If all vertices of C are reachable from the boundary, then C is
output (the function “printC”). It turns out that the choice of the constant
21 is the lowest number that causes the program to output nothing. Figure 2
demonstrates a plausible B and C that have no W in case we try to replace
21 by 20. Notice that all vertices of C are reachable from the external
diagonal. In fact, this example is unique up to transposing the columns and
rows, (namely, the output of the program in the case of the constant 20
consists of two plausible C: the one from Figure 2 and its transpose).

Finally, we need to show how to reduce the constant 21 to the constant
8, as stated in the theorem. For each fixed m = 1, . . . , 20 we perform the
following algorithm. Consider a grid Gm,∞. Notice the obvious fact that any
odd dominating set D of Gm,∞ is determined by the vertices of D belonging
to the first column. Thus, there are precisely 2m possible choices for D.
Fix a subset B of the vertices of the first column that corresponds to the
vertices of D belonging to the first column. We now sequentially construct,
using our program, the vertices of D belonging to columns 2, 3, 4, . . .. We do
this until we reach a column consisting of no vertices of D (i.e., a column of
zeroes, which we call a null column). Indeed, an easy periodicity argument
shows that we must always eventually reach a null column (our program
shows that the index of the null column never exceeds 2000 in case m ≤ 20).
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Figure 2 Figure 3

11101100000111001110 11011011
1011110111010100101 11111111
100010110111010010 01011010
10011010000011001 11000011
1001011110011000 10000001
100101101001011 11111111
10011000100101 00000000
1000110010011
101101001000
11110100101
0010110011
011010000
01011111
0101100
011001
00111
1100
111
01
1

Once the null column is reached, there is no point to continue since we are
searching for connected D. Thus, when reaching the null column we check
whether the resulting D is connected. If so, we output D, but only in the case
where the index of the null column is greater than m (to avoid multiplicities
we assume m is the smaller dimension). In case the index of the null column
is equal to m, we output D only if the column before the null column is
completely within D (since, in this case, the null column is allowed to be
part of the grid). Our program functions “nextSmallB”, “nextColumn”,
“checkSmallC” and “PrintSmallC” perform the operations mentioned here.
It turns out that the program outputs nothing for m = 8, . . . , 20.

For m = 1, . . . , 7 the program outputs all grids that have CODS, and
their respective CODS (in some cases there are more than one CODS). In
fact, the following grids have CODS: G1,1, G1,2, G1,3, G2,2, G2,3, G2,4, G3,4,
G3,5, G3,6, G4,4, G4,5, G6,7, G6,8, G6,9, G7,8. Figure 3 shows one of the two
possible CODS of G7,8.
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Notice that an immediate corollary of the theorem is that if either m or n
(or both) is infinite, then the resulting infinite grid has no CODS.

A detailed analysis of length of the periodicity of the related recurrence
for even dominating sets of grids can be found in [9, 11].

3..2 Complements of powers of cycles

Odd dominating sets in powers of cycles and their complements were studied
in [6]. Denote these as Ck

n and Ck
n, respectively, where n ≥ 3, k ≥ 1. It is

easy to see that Ck
n is either complete or an Eulerian graph and thus always

has a CODS, likewise Ck
n is either isolated or Eulerian when n is odd (notice

that Ck
n is connected only for n ≥ 2k + 3). The situation is not so clear

when n is even; the following represents a partial characterization.

Theorem 6. Let n, k be positive integers such that n ≥ 2k + 3. The graph
Ck

n has a CODS in the following cases:

(1) Ck
n has a CODS if n ≡ 1 mod 2.

(2) Ck
n has a CODS if n ≡ 2 mod 4.

(3) C1
n has a CODS and C2

n has a CODS.

(4) Ck
n and Ck+1

n have CODS if k is odd and n ≡ 0 mod 2(k + 1).

(5) C4k
12k has a CODS.

Proof. 1. If n ≡ 1 mod 2 then the graph is Eulerian and we simply take
V (G) as a CODS.

2. If n ≡ 2 mod 4 then label the vertices 0, 1, 2, . . . , n − 1 and take for
the CODS the set of vertices with even label. Notice that |D| = n/2 is
odd and, by symmetry, every vertex is not a neighbor of an even number
of vertices in D. Hence, D is an odd dominating set. Furthermore, D
induces a connected subgraph as D has the following Hamiltonian cycle:
0, n/2 + 1, 2, n/2 + 3, . . . , n/2− 3, n− 2, n/2− 1, 0.

3. We must show that C1
n has a CODS and C2

n has a CODS. By the
previous cases, we only need to check the case n ≡ 0 mod 4. Label the
vertices 0, 1, 2, . . . , n− 1 and take for the CODS the set of vertices D = {z :
z ≡ 0, 1 mod 4}. It is straightforward to verify that D is a CODS.

4. We must show that Ck
n and Ck+1

n have CODS if k is odd and n ≡
0 mod 2(k + 1). Indeed, label the vertices 0, 1, 2, . . . , n− 1 and consider this
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labeling over Z2(k+1). Take the CODS to be the set of vertices D = {z : z ≡
0, 1, 2, . . . , k mod 2(k + 1)}. It is not hard to verify that D is a CODS.

5. We must show that C4k
12k has a CODS. Label the vertices 0, 1, . . . ,

12k−1 and consider the set of vertices D = V −{0, 4k, 8k}. So |D| = 12k−3
and the verification that D is indeed a CODS is easy.

Let 01n denote the sequence consisting of one “0” followed by n “1”’s and
in general let an denote the sequence a repeated n times.

Theorem 7. Let n and k be positive integers, where n > 8k. Suppose k is
odd and n is even. Let t = gcd(n − 2(k + 1), k + 1, n). If (n − 2(k + 1))/t
is odd then the sequence (01t−1)n/t is the characteristic function of a CODS
of Ck

n and Ck+1
n .

We provide two examples before giving the proof (in the first example n ≤
8k, but the idea is the same).

Example 1. n = 12, k = 3. Then t = gcd(12−8, 12, 4) = 4 and (12−8)/4 =
4/4 = 1. Thus, 011101110111 is a CODS for C3

12 and C4
12.

Example 2. n = 36, k = 3. Then t = gcd(n − 2(k + 1), k + 1, n) =
gcd(28, 4, 36) = 4 and (n− 2(k + 1))/t = 28/4 = 7 is odd. Hence (0111)9 is
a CODS for C3

36 and C4
36.

Proof of Theorem 7. Observe that n − 2(k + 1) is just one less than
the degree of Ck

n. We also observe that the length of the sequence 01t−1 is
even (as n and k + 1 are even) and thus t− 1 is odd and so the number of
“1”’s in (n−2(k+1))/t repetitions of the sequence is (n−2(k+1))(t−1)/t,
which is odd.

Take D = V − {z : z ≡ 0 mod t}. We claim D is a CODS of Ck
n.

We first show the odd-domination property. The vertex v0 is adjacent to
precisely (n − 2(k + 1))/t repetitions of 01t−1 plus an extra 0 as its degree
is n − 2(k + 1) + 1 and as t|(k + 1). So the first edge emanating from v0,
going clockwise around the cycle, is to a vertex vj , where j ≡ 0 mod t and
hence vj is not in D. For the same reason, the last edge out of v0 is to a
vertex vr, where r ≡ 0 mod t, and thus vr is not in D. Hence v0 has an
odd number of “1”’s in its closed neighborhood, (n − 2(k + 1))(t − 1)/t to
be exact. The vertices v1, . . . , vt−1 are not adjacent to the first 0 that is
adjacent to v0 (which is vj), but each are adjacent to two additional “1 ”’s,
as compared to v0 (one of these additional “‘1”’s is themselves).
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As to Ck+1
n , it follows that, in comparison with v0 in Ck

n, v0 in Ck+1
n loses

the first and the last “0” in its neighborhood (denoted vj and vr above) and
so, as before, v0’s closed neighborhood contains an odd number of members
of D, while each of v1, . . . , vt−1 add one “0” (vr) and lose one “1” (relative
to v0), but they themselves add “1” to their closed neighborhood and again
have an odd number of (closed) neighbors in D.

Finally, D is connected since n > 8k and the fact that t ≥ 2 im-
plies that the subgraph induced by D has minimum degree at least half its
order.

It is plausible that Theorem 7 holds for all n ≥ 2k+5. One might guess that
n ≥ 2k + 3 is a necessary and sufficient condition for Ck

n to have a CODS.
This however is not the case, since C5

16, C6
16 and C10

24 have no CODS, as we
verified using a computer.

3..3 Complete partite graphs

Proposition 8. A complete q-partite graph Ka1,...aq , q ≥ 2 has a CODS
if and only if

(a) (a1, . . . , aq) ≡ (0, 0, . . . , 0)(mod 2); or

(b) there exist distinct i, j, k such that (ai, aj , ak) = (1, 1, 1)(mod 2); or

(c) ai = 1 for some 1 ≤ i ≤ q.

Proof. Clearly the graphs in (a), (b) and (c) have CODS. Now assuming
our graph is not one of (a), (b) or (c), then it must have one or two vertex
classes with odd cardinality at least 3. Since vertices in the same class are
transitive, each class is either completely in or completely out of an odd
dominating set. In case there is precisely one class with odd cardinality at
least 3, it is easily checked that whether this class is in or out of a dominating
set, such a dominating set is not a CODS. Similarly, if there are two classes
with odd cardinality at least 3, it is easily checked that whether none, one
of, or both of the classes are in a dominating set, such a dominating set is
not a CODS.

3..4 Powers of paths

Let P k
n denote the kth power of the path on n vertices.
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Proposition 9. If 2k + 1 ≥ n, then P k
n has a CODS (a vertex of the

centroid of the path). If 2k + 1 < n then P k
n has no CODS.

Proof. If 2k + 1 ≥ n, the vertex in position bn/2c is connected to all
other vertices and hence constitutes a CODS. So we assume 2k + 1 < n.
Let v1, . . . , vn be the vertices of the path, and suppose D is a CODS of
P k

n . Define q(v) = 1 if v ∈ D and q(v) = 0 otherwise. Clearly q(v1) +
q(v2) + · · · + q(vk+1) = |N [v1] ∩ D| ≡ 1 mod 2. Also q(v1) + q(v2) + · · · +
q(vk+1) + q(vk+2) = |N [v2] ∩ D| ≡ 1 mod 2, forcing q(vk+2) = 0. And
q(v1) + q(v2) + · · · + q(vk+2) + q(vk+3) = |N [v3] ∩ D| ≡ 1 mod 2, forcing
q(vk+3) = 0. This pattern continues until q(v1) + q(v2) + · · · + q(vk+2) +
q(v2k+1) = |N [vk+1] ∩D| ≡ 1 mod 2, forcing q(v2k+1) = 0. But then the k
consecutive vertices vk+2, vk+3, . . . , v2k+1 are not in D and hence D is not
connected since n > 2k + 1.

3..5 Graph products and cubes

Fact 10. If G has a CODS and H is Eulerian then G×H has a CODS.

For example, we can use this fact to deduce that for all d ≥ 1, the d-
dimensional cube Qd has a CODS. Indeed, it is trivial for d = 1. For d even,
Qd is Eulerian. For d odd, we use the fact that Qd+1 = K2×Qd and Fact 10.

4. Concluding Remarks and Open Problems

Characterizing which complements of powers of cycles have CODS is a prob-
lem that remains. We state three problems:

1. The general problem: For which n and k, such that n ≥ 2k +3, does Ck
n

have a CODS?

2. Is it true that C3
n and C4

n always have a CODS provided n ≥ 2k + 3?

3. Is it true that Ck
n has a CODS for n ≡ 4 mod 8 provided n ≥ 2k + 3?

It is of interest to resolve the complexity of the CODS problem for sev-
eral classes of graphs: interval graphs, bipartite graphs, planar graphs, and
partial k-trees for k > 2.
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