PROBLEMS COLUMN

Discussiones Mathematicae Graph Theory 25 (2005) 217–218

ESTIMATION OF CUT-VERTICES IN EDGE-COLOURED COMPLETE GRAPHS

Adam Idzik

Akademia Świętokrzyska 15 Świętokrzyska street, 25–406 Kielce, Poland and Institute of Computer Science

Polish Academy of Sciences 21 Ordona street, 01–237 Warsaw, Poland

e-mail: adidzik@ipipan.waw.pl

All graphs considered here are finite simple graphs, i.e., graphs without loops, multiple edges or directed edges. For a graph G = (V, E), where Vis a vertex set and E is an edge set, we write sometimes V(G) for V and E(G) for E to avoid ambiguity. We shall write $G \setminus v$ instead of $G_{V \setminus \{v\}} =$ $(V \setminus \{v\}, E \cap 2^{V \setminus \{v\}})$, the subgraph induced by $V \setminus \{v\}$. A vertex $v \in V(G)$ is called a *cut-vertex* of G if G is connected and $G \setminus v$ is not. By a *k-edgecolouring* of a graph we mean any finite partition of the set of its edges into k subsets. A graph (V, E) with a given k-edge-colouring (E^1, \dots, E^k) $(E^i \cap E^j = \emptyset$ for $i \neq j; i, j \in \{1, \dots, k\}$ and $\bigcup_{i \in \{1, \dots, k\}} E^i = E)$ is denoted by (V, E^1, \dots, E^k) . The graphs (V, E^i) are called monochromatic subgraphs of $(V, E^1, \dots, E^k), i \in \{1, \dots, k\}$. As usual, by K_m we denote the complete graph with m vertices.

Let $c(G^i)$ denote the number of cut-vertices of G^i in a monochromatic subgraph $G^i = (V, E^i)$ of a k-edge-coloured complete graph $K_m = (V, E^1, \dots, E^k)$ $(i \in \{1, \dots, k\}).$

Given a k-edge-coloured graph $G = (V, E^1, \dots, E^k)$, we define $F^i = E \setminus E^i$, $G^i = (V, E^i)$, $\overline{G}^i = (V, F^i)$, where $E = \bigcup_{i \in \{1, \dots, k\}} E^i$ and $i \in \{1, \dots, k\}$. Here G^i is a monochromatic subgraph of G and \overline{G}^i its complement in G. **Theorem** (Idzik, Tuza, Zhu). Let (E^1, \dots, E^k) be a k-edge-colouring of K_m $(k \ge 2, m \ge 4)$, such that all the graphs $\bar{G}^1, \dots, \bar{G}^k$ are connected.

- (i) If one of the subgraphs G^1, \dots, G^k is 2-connected, say G^i , then $c(\bar{G}^i) \leq m-2$ and $c(\bar{G}^j) = 0$ for $j \neq i$ $(i, j \in \{1, \dots, k\})$.
- (ii) If none of the graphs G^1, \dots, G^k is 2-connected, and one of them is connected, say G^i , then $c(\overline{G}^i) \leq 2$ $(i \in \{1, \dots, k\})$.
- (iii) If none of the graphs G^1, \dots, G^k is 2-connected, and one of them is disconnected, say G^i , then $c(\bar{G}^i) \leq 1$ $(i \in \{1, \dots, k\})$.

Problem. Let (E^1, \dots, E^k) be a k-edge-colouring of K_m $(k \ge 2, m \ge 4)$. What is the cardinality of the set of the sum of cut-vertices of \overline{G}^i in the case none of G^i is 2-connected and (a) two of G^i are connected or (b) two of G^i are disconnected and $c(\overline{G}^i) = 1$ $(i \in \{1, \dots, k\})$?

Observe that in both cases (a) and (b) all the graphs $\bar{G}^1, \dots, \bar{G}^k$ are connected.

This problem is related to some theorems presented in [1] and [2].

References

- J. Bosák, A. Rosa and Š. Znám, On decompositions of complete graphs into factors with given diameters, in: P. Erdős and G. Katona, eds., Theory of Graphs, Proceedings of the Colloquium Held at Tihany, Hungary (Academic Press, New York, 1968) 37–56.
- [2] A. Idzik and Z. Tuza, Heredity properties of connectedness in edge-coloured complete graphs, Discrete Math. 235 (2001) 301–306.

Received 21 November 2003