Problems Column

Discussiones Mathematicae
Graph Theory 25 (2005) 217-218

ESTIMATION OF CUT-VERTICES IN EDGE-COLOURED COMPLETE GRAPHS

ADAM IDZIK
Akademia Świȩtokrzyska
15 Świȩtokrzyska street, 25-406 Kielce, Poland
and
Institute of Computer Science
Polish Academy of Sciences
21 Ordona street, 01-237 Warsaw, Poland
e-mail: adidzik@ipipan.waw.pl

All graphs considered here are finite simple graphs, i.e., graphs without loops, multiple edges or directed edges. For a graph $G=(V, E)$, where V is a vertex set and E is an edge set, we write sometimes $V(G)$ for V and $E(G)$ for E to avoid ambiguity. We shall write $G \backslash v$ instead of $G_{V \backslash\{v\}}=$ ($V \backslash\{v\}, E \cap 2^{V \backslash\{v\}}$), the subgraph induced by $V \backslash\{v\}$. A vertex $v \in V(G)$ is called a cut-vertex of G if G is connected and $G \backslash v$ is not. By a k-edgecolouring of a graph we mean any finite partition of the set of its edges into k subsets. A graph (V, E) with a given k-edge-colouring $\left(E^{1}, \cdots, E^{k}\right)$ $\left(E^{i} \cap E^{j}=\emptyset\right.$ for $i \neq j ; i, j \in\{1, \cdots, k\}$ and $\left.\bigcup_{i \in\{1, \cdots, k\}} E^{i}=E\right)$ is denoted by $\left(V, E^{1}, \cdots, E^{k}\right)$. The graphs $\left(V, E^{i}\right)$ are called monochromatic subgraphs of (V, E^{1}, \cdots, E^{k}), $i \in\{1, \cdots, k\}$. As usual, by K_{m} we denote the complete graph with m vertices.

Let $\mathrm{c}\left(G^{i}\right)$ denote the number of cut-vertices of G^{i} in a monochromatic subgraph $G^{i}=\left(V, E^{i}\right)$ of a k-edge-coloured complete graph $K_{m}=\left(V, E^{1}\right.$, $\left.\cdots, E^{k}\right)(i \in\{1, \cdots, k\})$.

Given a k-edge-coloured graph $G=\left(V, E^{1}, \cdots, E^{k}\right)$, we define $F^{i}=E \backslash$ $E^{i}, G^{i}=\left(V, E^{i}\right), \bar{G}^{i}=\left(V, F^{i}\right)$, where $E=\bigcup_{i \in\{1, \cdots, k\}} E^{i}$ and $i \in\{1, \cdots, k\}$. Here G^{i} is a monochromatic subgraph of G and \bar{G}^{i} its complement in G.

Theorem (Idzik, Tuza, Zhu). Let ($\left.E^{1}, \cdots, E^{k}\right)$ be a k-edge-colouring of K_{m} ($k \geq 2, m \geq 4$), such that all the graphs $\bar{G}^{1}, \cdots, \bar{G}^{k}$ are connected.
(i) If one of the subgraphs G^{1}, \cdots, G^{k} is 2 -connected, say G^{i}, then $c\left(\bar{G}^{i}\right) \leq$ $m-2$ and $c\left(\bar{G}^{j}\right)=0$ for $j \neq i(i, j \in\{1, \ldots, k\})$.
(ii) If none of the graphs G^{1}, \cdots, G^{k} is 2-connected, and one of them is connected, say G^{i}, then $c\left(\bar{G}^{i}\right) \leq 2(i \in\{1, \cdots, k\})$.
(iii) If none of the graphs G^{1}, \cdots, G^{k} is 2 -connected, and one of them is disconnected, say G^{i}, then $c\left(\bar{G}^{i}\right) \leq 1(i \in\{1, \cdots, k\})$.

Problem. Let $\left(E^{1}, \cdots, E^{k}\right)$ be a k-edge-colouring of $K_{m}(k \geq 2, m \geq 4)$. What is the cardinality of the set of the sum of cut-vertices of $\overline{\bar{G}}^{i}$ in the case none of G^{i} is 2-connected and (a) two of G^{i} are connected or (b) two of G^{i} are disconnected and $c\left(\bar{G}^{i}\right)=1(i \in\{1, \cdots, k\})$?

Observe that in both cases (a) and (b) all the graphs $\bar{G}^{1}, \cdots, \bar{G}^{k}$ are connected.

This problem is related to some theorems presented in [1] and [2].

References

[1] J. Bosák, A. Rosa and S. Znám, On decompositions of complete graphs into factors with given diameters, in: P. Erdős and G. Katona, eds., Theory of Graphs, Proceedings of the Colloquium Held at Tihany, Hungary (Academic Press, New York, 1968) 37-56.
[2] A. Idzik and Z. Tuza, Heredity properties of connectedness in edge-coloured complete graphs, Discrete Math. 235 (2001) 301-306.

